LUND
UNIVERSITY

EITG05 - Digital Communications

Lecture 10

Equivalent baseband model, Compact description
Chapter 6: Intersymbol interference
ISI, Increasing the signaling rate
Michael Lentmaier
Monday, October 8, 2018

Inphase and quadrature relationship

- With the complete signal $r(t)$ entering the receiver the output signals become

$$
\begin{aligned}
u_{I}(t)= & {\left[y(t) A \cos \left(2 \pi f_{c} t+\phi_{e r r}(t)\right)\right]_{L P} } \\
= & \frac{y_{I}(t)}{2} A \cos \left(\phi_{\text {err }}(t)\right) \\
& +\frac{y_{Q}(t)}{2} A \sin \left(\phi_{e r r}(t)\right) \\
u_{Q}(t)= & {\left[-y(t) A \sin \left(2 \pi f_{c} t+\phi_{e r r}(t)\right)\right]_{L P} } \\
= & \frac{y_{Q}(t)}{2} A \cos \left(\phi_{\text {err }}(t)\right) \\
& -\frac{y_{I}(t)}{2} A \sin \left(\phi_{e r r}(t)\right)
\end{aligned}
$$

Overall transmission model

- The signal $y(t)$ is given by

$$
y(t)=z(t)+w(t)=x(t) * h(t)+w(t)
$$

- It can be written as

$$
y(t)=y_{I}(t) \cos \left(2 \pi f_{c} t\right)-y_{Q}(t) \sin \left(2 \pi f_{c} t\right)
$$

Can we express $u_{I}(t)$ and $u_{Q}(t)$ in terms of $x_{I}(t)$ and $x_{Q}(t)$?

Including the channel filter

- Before we can relate $y(t)=z(t)+w(t)$ to $x(t)$ we need to consider the effect of the channel

$$
z(t)=x(t) * h(t)
$$

$$
\mathrm{x}(\mathrm{t}) \longrightarrow \mathrm{h}(\mathrm{t}) \longrightarrow \mathrm{z}(\mathrm{t})
$$

- We assume that the impulse response $h(t)$ can be represented as a bandpass signal

$$
h(t)=h_{I}(t) \cos \left(2 \pi f_{c} t\right)-h_{Q}(t) \sin \left(2 \pi f_{c} t\right)
$$

- With some calculations the signals can be written as (p. 159-160)

$$
z_{I}(t)=\frac{1}{2}\left(x_{I}(t) * h_{I}(t)-x_{Q}(t) * h_{Q}(t)\right)
$$

$$
z_{Q}(t)=\frac{1}{2}\left(x_{I}(t) * h_{Q}(t)+x_{Q}(t) * h_{I}(t)\right)
$$

Equivalent baseband model

- Combining the channel with the receiver frontend we obtain

- Observe that all the involved signals are in the baseband
- The same is true for channel filter, noise and phase error Digital signal processing can be applied easily in baseband What happened with the carrier waveforms?

A compact description

- Let us first ignore the effect of the channel: $w(t)=0, h(t)=\delta(t)$
- The receiver can invert the frequency shift operation by

$$
\tilde{u}(t)=\left[x(t) \cdot A e^{-j\left(2 \pi f_{c} t+\phi_{e r r}(t)\right)}\right]_{L P}
$$

- Using the expression for $x(t)$ from the previous slide we get

$$
\begin{aligned}
\tilde{u}(t) & =\left[\frac{A}{2}\left(\tilde{x}(t) e^{+j 2 \pi f_{c} t}+\tilde{x}^{*}(t) e^{-j 2 \pi f_{c} t}\right) \cdot e^{-j\left(2 \pi f_{c} t+\phi_{e r r}(t)\right)}\right]_{L P} \\
& =\frac{\tilde{x}(t)}{2} A \cdot e^{-j \phi_{e r r}(t)}=u_{I}(t)+j u_{Q}(t)
\end{aligned}
$$

- Observe that this expression is equivalent to our earlier result

$$
\begin{aligned}
\tilde{u}(t)= & \left(\frac{x_{I}(t)}{2} A \cos \left(\phi_{e r r}(t)\right)+\frac{x_{Q}(t)}{2} A \sin \left(\phi_{e r r}(t)\right)\right) \\
& +j\left(\frac{x_{Q}(t)}{2} A \cos \left(\phi_{e r r}(t)\right)-\frac{x_{I}(t)}{2} A \sin \left(\phi_{\text {err }}(t)\right)\right)
\end{aligned}
$$

A compact description

- A more compact description is possible by combining $x_{I}(t)$ and $x_{Q}(t)$ to an equivalent baseband signal

$$
\tilde{x}(t)=x_{I}(t)+j x_{Q}(t)
$$

- The transmitted signal can then be described as

$$
x(t)=\operatorname{Re}\left\{\left(x_{I}(t)+j x_{Q}(t)\right) e^{+j 2 \pi f_{c} t}\right\}=\operatorname{Re}\left\{\tilde{x}(t) e^{+j 2 \pi f_{c} t}\right\}
$$

- With $\operatorname{Re}\{a\}=\left(a+a^{*}\right) / 2$ we can write

$$
x(t)=\frac{\tilde{x}(t)}{2} \cdot e^{+j 2 \pi f_{c} t}+\frac{\tilde{x}^{*}(t)}{2} \cdot e^{-j 2 \pi f_{c} t}
$$

Compact equivalent baseband model

- The effect of the channel filter becomes

$$
\tilde{z}(t)=z_{I}(t)+j z_{Q}(t)=\tilde{x}(t) * \frac{\tilde{h}(t)}{2}
$$

- Combining these parts and the noise we obtain the simple model

$$
\tilde{u}(t)=\left[\left(\tilde{x}(t) * \frac{\tilde{h}(t)}{2}\right)+\tilde{w}(t)\right] \cdot e^{-j \phi_{e r r}(t)} \cdot \frac{A}{2}, \quad \tilde{w}(t)=w_{I}(t)+j w_{Q}(t)
$$

- Complex signal notation simplifies expressions significantly

The two equivalent baseband models

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 10
$$

Matched filter receiver

- At the receiver we see the complex baseband signal $\tilde{u}(t)$

- If we know the channel we can design a matched filter for

$$
\tilde{z}(t)=\tilde{x}(t) * \frac{\tilde{h}(t)}{2} \quad \Rightarrow \quad \tilde{v}(t)=\tilde{z}^{*}\left(T_{s}-t\right)
$$

- It is often convenient to match $\tilde{v}(t)$ to the pulse $g(t)$ instead

$$
\tilde{v}(t)=g^{*}\left(T_{s}-t\right) \quad \Rightarrow \quad \tilde{\xi}[n]=\left[\tilde{u}(t) * g^{*}\left(T_{s}-t\right)\right]_{t=(n+1) T_{s}}
$$

 variables at the receiver will differ from these ideal values

- The Euclidean distance receiver will base its decision on the ideal value $\tilde{\xi}_{m[n]}$ which is closest to the received value $\tilde{\xi}_{[i]}$

Decision rule

- Consider now $\tilde{h}(t)=\boldsymbol{\delta}(t)$ and $\tilde{w}(t)=0$
- The ideal values of the decision variable are then given by

$$
\begin{aligned}
\tilde{\xi}_{m[n]} & =\left[\tilde{u}(t) * g^{*}\left(T_{s}-t\right)\right]_{t=(n+1) T_{s}} \\
& =\left[\left(\tilde{A}_{m[n]} g\left(t-n T_{s}\right) \cdot e^{-j \phi_{e r r}(t)} \cdot \frac{A}{2}\right) * g^{*}\left(T_{s}-t\right)\right]_{t=(n+1) T_{s}} \\
& =\tilde{A}_{m[n]} e^{-j \phi_{e r r}(t)} \cdot \frac{A}{2}\left[g\left(t-n T_{s}\right) * g^{*}\left(T_{s}-t\right)\right]_{t=(n+1) T_{s}} \\
& =\tilde{A}_{m[n]} e^{\left.-j \phi_{e r r}(n+1) T_{s}\right)} \cdot \frac{A}{2} E_{g}
\end{aligned}
$$

- Due to noise $w(t) \neq 0$ and non-ideal channel $\tilde{h}(t)$ the decision

Example: 4-PSK

- Assuming $\phi_{e r r}(t)=0$ we obtain the ideal decision variables

$$
\tilde{\xi}_{m[n]}=\tilde{A}_{m[n]} \cdot \frac{A}{2} E_{g}=\left(A_{m[n]}+j B_{m[n]}\right) \cdot \frac{A}{2} E_{g}
$$

$\times \quad$ ideal $\tilde{\xi}$

- received $\tilde{\xi}$
-- - decision boundary
- Based on the received value $\tilde{\xi}[n]$ we decide for

$$
\hat{m}[n]: \quad \tilde{A}_{\hat{m}[n]}=(1+j \cdot 0)
$$

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 10
$$

Summary: M-ary QAM transmission

- We can describe the transmitted messages $\tilde{A}_{\hat{m}[n]}$ and the decision variables $\tilde{\xi}[n]$ at the receiver as complex variables
- The effect of the noise $\tilde{w}(t)$ and the channel filter $\tilde{h}(t)$ on $\tilde{\xi}[n]$ can be described by the equivalent baseband model
- The transmitter and receiver frontends can be separated from the (digital) baseband processing
- Assumptions:
- the pulse shape $g(t)$ satisfies the ISI-free condition
- the carrier frequency f_{c} is much larger than the bandwidth of $g(t)$
- Under these conditions the design of the baseband receiver and its error probability analysis can be applied as in Chapter 4

Example: 4-PSK with phase offset

- Consider now a constant phase offset of $\phi_{e r r}(t)=\phi_{e r r}=25^{\circ}$
- As a result the values $\tilde{\xi}_{m[n]}$ and $\tilde{\xi}[n]$ are rotated accordingly

How can we compensate for $\phi_{e r r}$?

1. we can rotate the decision boundaries by the same amount
2. or we can rotate back $\tilde{\xi}[n]$ by multiplying with $e^{+j \phi_{e r r}}$

Intersymbol Interference (ISI)

- Consider transmission of a single M-ary PAM signal alternative

- In the noise-free case $(w(t)=0)$ the signal $x(t)$ can be written as

Example:

$$
x(t)=u(t) * v(t)=g(t) * h(t) * v(t)
$$

What happens if $T_{u}=T_{g}+T_{h} \geq T_{s} ? \Rightarrow$ ISI occurs

Intersymbol Interference (ISI)

- For $R_{s}=1 / T_{s}<1 / T_{u}$ we can use the ML receiver from Chapter 4
- Question: can we use such a receiver for larger rates $R_{s} \geq 1 / T_{u}$?
- Consider the following receiver structure (compare to last slide)

- Note that $z(t)$ now is a superposition of overlapping pulses $u(t)$
- The signal $y(t)$ after the receiver filter $v(t)$ is

$$
y(t)=\sum_{n=-\infty}^{\infty} A[n] x\left(t-n T_{s}\right)+w_{c}(t),
$$

where $w_{c}(t)$ is a filtered Gaussian process

- The decision variable is obtained after sampling

$$
\xi[i]=y\left(\mathcal{T}+i T_{s}\right), \quad \mathcal{T}=t_{0}+L T_{s}, \text { where } L T_{s} \geq T_{u}
$$

$$
\text { Digital Communications: Lecture } 10
$$

Discrete time model for ISI

- According to our model the decision variable can be written as

$$
\xi[i]=y\left(\mathcal{T}+i T_{s}\right)=\sum_{n=-\infty}^{\infty} A[n] x\left(\mathcal{T}+i T_{s}-n T_{s}\right)+w_{c}\left(\mathcal{T}+i T_{s}\right)
$$

- Let us introduce the discrete sequences

$$
x[i]=x\left(\mathcal{T}+i T_{s}\right), \quad w_{c}[i]=w_{c}\left(\mathcal{T}+i T_{s}\right)
$$

- This leads to the following discrete-time model of our system

$$
\begin{aligned}
& \mathrm{A}[\mathrm{i}] \longrightarrow \mathrm{x}[\mathrm{i}]^{\mathrm{w}_{\mathrm{c}}[\mathrm{i}]} \xrightarrow{\downarrow} \stackrel{{ }^{[\mathrm{i}]}}{\substack{\text { Threshold } \\
\text { detection }}} \rightarrow \hat{\mathrm{m}[\mathrm{i}]} \\
& \xi[i]=\sum_{n=-\infty}^{\infty} A[n] x[i-n]+w_{c}[i]=A[i] * x[i]+w_{c}[i]
\end{aligned}
$$

Remark: the discrete-time impulse response $x[i]$ represents pulse shape $g(t)$, channel filter $h(t)$, and receiver filter $v(t)$

Illustration of ISI in the receiver

Example 6.1

The transmitted sequence of amplitudes $A[i]$ is given as,

Calculate, and plot, the sequence of decision variables $\xi[i]$ in Figure 6.2, for $0<i \leq 8$, in the noiseless case (i.e. $w(t)=0$) if $t_{0}=0$ and if the output pulse $x(t)$ is:

- i) $\xi[i]=x_{0} A[i]$
ii) $\xi[i]=\frac{x_{0}}{2} A[i+1]+x_{0} A[i]+\frac{x_{0}}{2} A[i-1]$

