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Equivalent baseband model, Compact description
Chapter 6: Intersymbol interference ) o
IS, Increasing the signaling rate > The signal y(r) is given by
Michael Lentmaier y(t) = z(t) +w(t) = x(t) * h(t)+w(t)

Monday, October 8, 2018

» |t can be written as

y(t) = yi(t) cos(2mfet) — yo(t) sin(2xf, 1)

Can we express u;(r) and ugp(r) in terms of x;(r) and xo(7)?
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Inphase and quadrature relationship Including the channel filter

> Before we can relate y(r) = z(¢) + w(z) to x(r) we need to consider
the effect of the channel

z(t) = x(t) * h(z) x(t) 2(t)

» With the complete signal r(¢) entering the receiver the output
signals become

ul(t) = [y(t)A cos (277:fct+ ¢err(t))]Lp

cOs(Oerr ()AL » We assume that the impulse response k() can be represented
- y’% A cos(¢err (1)) o N Dm0 as a bandpass signal
L h(t) =hy(t 2rf.t) —ho(t) sin(2xf .t
220 4 (o 0) (1) = hi(r) cos(2fe1) — ho 1) sin(2x/, 1)
Sn(0r)AL2 » With some calculations the signals can be written as (p. 159-160)
ug(t) =[—y(t) A sin 2xfet+ Gerr(1)) ], p f ) X0
t yQ(l) x " + uQ(l)
= 200 4 cos g0 (1) ¥
2 08O erp (D)A/2
210 4 sin(gur (1)

xQ(l)
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Equivalent baseband model

» Combining the channel with the receiver frontend we obtain
Wi  cos@err()A/2

xq(t)

uy(t)

QO uQ®

WQ)  cos@err(1)A2

» Observe that all the involved signals are in the baseband
» The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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A compact description

» Let us first ignore the effect of the channel: w(z) =0, h(z) = 3(¢)
» The receiver can invert the frequency shift operation by

ii(t) = {x(,) AeiCnfe z+¢m<z>>] .

» Using the expression for x(¢) from the previous slide we get

ii(t) = { (R(1)e 2R 4 3 (1) 72751 .ej(anL-rwerr(z))}
2 LP

" .
= (T)A.eﬁ@rr(t) = uy (1) +jug(t)
» Observe that this expression is equivalent to our earlier result

a(r) = (X[ét) A cos(@err(1)) + @A sin(q)e,,(t)))

Xgl?) )C[(l‘)

+j <xQ2(t) A cos(Perr (1)) — TA Sin(¢err(t))>
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A compact description

» A more compact description is possible by combining x;(¢) and
xg(t) to an equivalent baseband signal

X(1) = xi(1) +jxo(1)
» The transmitted signal can then be described as

x(t) =Re { (xr (1) +jxp(1)) e+j2”fct} =Re {)?(t) e”z’rf“t}

X% -V .
[\ T AT
- fe 0 fe

» With Re{a} = (a+a*)/2 we can write

a(r) = *O)  grizmper KO g
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Compact equivalent baseband model

» The effect of the channel filter becomes

» Combining these parts and the noise we obtain the simple model

sy At %en
X(t) —= H(—zt) (+) é uw

i(t) = Kx(r) J’g”) +w(:)] -eﬂ'%r(f%% ;o w(t) = wi(t) +jwo(?)

» Complex signal notation simplifies expressions significantly
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The two equivalent baseband models

wp(®)  cos@er(D)A/2

XI(t) uI(t)
xQ® uQ(®)
wo® o8 opp (1)A/2
A - t
s Ae J Gerr (D)
X ‘th) & éé ii(t)
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Matched filter receiver
» At the receiver we see the complex baseband signal i(r)

wo 5 Ferr(®
() —= H(T[) %&%&% a(t)

» |f we know the channel we can design a matched filter for

Z(t):x(;)*h(zi) = W) =7 (T,—1)

» It is often convenient to match ¥(z) to the pulse g(r) instead
W) =g (T—1) = &)= [a(t) * & (T —1)] iy,

i Receiver |
. I q !
a(t) | ><§[n;] Decision | | o
| -5 i |
} t=(n+1)T; e }
|
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M-ary QAM signaling

» Considering M-ary QAM signals we get

(0= Y Awaglt—nT) . ()= Y, Byygli—nT)

n=—oco n=—oo

» Let us now introduce

Ap[n] = Am[n] +ij[n]

» Then our complex baseband signal x(¢) can be written as

X(0) =)+ v0() = Y. Aupyglt—nT)

» Example: (on the board)

Consider 4-QAM transmissjon ofb=10111001
Determine A, Byyjy) @nd A,y

How can we design the receiver for QAM signals?
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Decision rule
» Consider now a(t) = §(¢) and w(t) = 0

» The ideal values of the decision variable are then given by

gm[n] = [ﬁ(t) * g*(TS_t)]t:(rH—l)Ts

(Am[n]g(t_ nTy) e /9 (0. ) * 8" (Ts — t):|
2 t:(ﬂ+1)Tx

: 4 A
— —Jerr(1) 2 — * —
A0 Sge—nT) « (T =0)]

e*j¢err(("+1)Ts) . é Eg

= A 5

» Due to noise w(t) # 0 and non-ideal channel /(r) the decision
variables at the receiver will differ from these ideal values

» The Euclidean distance receiver will base its decision on the
ideal value &, which is closest to the received value &[i]
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Example: 4-PSK Example: 4-PSK with phase offset

> Assuming ¢.,-(t) = 0 we obtain the ideal decision variables » Consider now a constant phase offset of ¢,,,(f) = @, = 25°
z - A . A > As aresult the values &,,,; and &[n] are rotated according|
ém[n] :Am[n] : 5 Eg = (Am[n] +]Bm[n]) : 5 Eg ém[n] é[ ] 9y
) Im{&}
Im{&}
AY 4 \\ k // ~
AN i _ AN 0 X ideal &
I . X ideal & N i
DN I ‘ - S : . received &
4 i . received & NS T Refél
RN Re{¢} o N G ---  decision boundary
L N ---  decision boundary o x S

How can we compensate for ¢,,.?
1. we can rotate the decision boundaries by the same amount
2. or we can rotate back &[n] by multiplying with 7%

» Based on the received value &[n] we decide for
ﬁ’l[l’l] : A,;,[n] :(1+j'0)
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Summary: M-ary QAM transmission Intersymbol Interference (ISI)

» Consider transmission of a single M-ary PAM signal alternative

» We can describe the transmitted messages A,;,[n] and the wit)=0

decision variables E[n] at the receiver as complex variables s{0=A g
» The effect of the noise W(r) and the channel filter i(z) on &[n] can

?< §,| Threshold | A

detector

=T
be described by the equivalent baseband model .t >
» The transmitter and receiver frontends can be separated from . chemel . ecener .
the (digital) baseband processing » In the noise-free case (w(t) = 0) the signal x(¢) can be written as
> Assumptions: o N x(t) = u(t) * v(t) = g(t) * h(t) * v(r)
- the pulse shape g(r) satisfies the I1SI-free condition Example:
- the carrier frequency f, is much larger than the bandwidth of g(¢) u(t) X(t
» Under these conditions the design of the baseband receiver and o I
its error probability analysis can be applied as in Chapter 4 t : ot
t Tu ‘ TS TX
o T e M

What happens if 7, = T, + T, > T,? = IS| occurs
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lllustration of ISl in the receiver

Intersymbol Interference (ISI)
» For Ry, =1/T; < 1/T, we can use the ML receiver from Chapter 4 ¥ <D —
. . &[0 E[1] g2l £13]
» Question: can we use such a receiver for larger rates Ry > 1/T,,? ] A PN it s
» Consider the following receiver structure (compare to last slide) —5 e N
w(t) pNPE \/ N .
sO= 3 AllgtnTg 70 r(t) o) €0l | Threshold a E R
=T - e g detector | = Ml
TS
t=tg+LTs+Ts D —— T
y(® Tu=
Transmitter Channel Receiver /l\/i[()]\ gl /?,LZ]\ 2
» Note that z(¢) now is a superposition of overlapping pulses u(r) . iy W ny ‘
» The signal y(¢) after the receiver filter v(z) is
E[01E[1TE121EBIE 4]
)’(t) = Z A[n]x(t_nTs)""Wc(t)v To | Ty Ti -rj
. . == . Messageterm 1 o
where w.(t) is a filtered Gaussian process T, . '
» The decision variable is obtained after sampling T TN S o .
T =1y+LT,, where LT, > T, R
IS1
Digital Communications: Lecture 10
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é[’] ZY(T+iTv) )
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Discrete time model for ISI Example 6.1
» According to our model the decision variable can be written as The transmitted sequence of amplitudes Ali] is given as,
Ali]
4 1t ¢ tee
: + 1 e 5 s 89 s

i

Ei =y (T+iT) = Y Alnx(T +iT,—nT,)+we(T +iT,)

n=—oo
Calculate, and plot, the sequence of decision variables £[i] in Figure 6.2, for 0 < i <8,

» Let us introduce the discrete sequences
Al =x(T+iTy), weli] = we(T +iTy)
in the noiseless case (i.e. w(t) =0) if to = 0 and if the output pulse x(t) is:
i) L=2 and x(t) as below.

» This leads to the following discrete-time model of our system b e and () s below.
weli] X() X(®
0 2T ' Ts 2T 4Ts '

JVL £ 1
ALl L] detection =il -
i) E[i ' i) E[i] = D Ali+ 1]+ x0A[i] + D Ali— 1]

> i) E[i] = x0Ali]
glil

§li) = i Al xli = n] +weli] = Ali] * x[i] +weli]

n—=—oo
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Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter (z), and receiver filter v(¢)

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 10

Michael Lentmaier, Fall 2018



