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� The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

� It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?
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Inphase and quadrature relationship

� With the complete signal r(t) entering the receiver the output
signals become
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Including the channel filter
� Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t) x(t) z(t)h(t)

� We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

� With some calculations the signals can be written as (p. 159-160)
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Equivalent baseband model
� Combining the channel with the receiver frontend we obtain
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� Observe that all the involved signals are in the baseband
� The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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A compact description
� A more compact description is possible by combining xI(t) and

xQ(t) to an equivalent baseband signal

x̃(t) = xI(t)+ j xQ(t)

� The transmitted signal can then be described as

x(t) = Re
{
(xI(t)+ j xQ(t))e+j2π fc t}= Re

{
x̃(t)e+j2π fc t}

|X(f)|
2

f c- f c

W

f [Hz]
0

� With Re{a}= (a+a∗)/2 we can write

x(t) =
x̃(t)

2
· e+j2π fc t +

x̃∗(t)
2

· e−j2π fc t
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A compact description
� Let us first ignore the effect of the channel: w(t) = 0, h(t) = δ (t)
� The receiver can invert the frequency shift operation by

ũ(t) =
[
x(t) ·Ae−j(2π fc t+φerr(t))

]
LP

� Using the expression for x(t) from the previous slide we get

ũ(t) =
[

A
2
(
x̃(t)e+j2π fc t + x̃∗(t)e−j2π fc t) · e−j(2π fc t+φerr(t))

]
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=
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2
A · e−jφerr(t) = uI(t)+ juQ(t)

� Observe that this expression is equivalent to our earlier result
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Compact equivalent baseband model
� The effect of the channel filter becomes

z̃(t) = zI(t)+ j zQ(t) = x̃(t) ∗ h̃(t)
2

� Combining these parts and the noise we obtain the simple model

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~

ũ(t) =
[(

x̃(t) ∗ h̃(t)
2

)
+ w̃(t)

]
· e−jφerr(t) · A

2
, w̃(t) = wI(t)+ jwQ(t)

� Complex signal notation simplifies expressions significantly
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The two equivalent baseband models
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M-ary QAM signaling
� Considering M-ary QAM signals we get

xI(t) =
∞

∑
n=−∞

Am[n] g(t−nTs) , xQ(t) =
∞

∑
n=−∞

Bm[n] g(t−nTs)

� Let us now introduce

Ãm[n] = Am[n] + jBm[n]

� Then our complex baseband signal x̃(t) can be written as

x̃(t) = xI(t)+ j xQ(t) =
∞

∑
n=−∞

Ãm[n] g(t−nTs)

� Example: (on the board)

Consider 4-QAM transmission of b = 1 0 1 1 1 0 0 1
Determine Am[n], Bm[n] and Ãm[n]

How can we design the receiver for QAM signals?
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Matched filter receiver
� At the receiver we see the complex baseband signal ũ(t)

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~

� If we know the channel we can design a matched filter for

z̃(t) = x̃(t) ∗ h̃(t)
2

⇒ ṽ(t) = z̃∗(Ts − t)

� It is often convenient to match ṽ(t) to the pulse g(t) instead

ṽ(t) = g∗(Ts − t) ⇒ ξ̃ [n] =
[
ũ(t) ∗ g∗(Ts − t)

]
t=(n+1)Ts

r(t) r1 m̂
t=T S

Receiver

Decision
ruleϕ1(Ts-t)

ũ(t)
g̃∗(Ts − t)

ξ̃[n]

t = (n+ 1)Ts

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 10

Decision rule
� Consider now h̃(t) = δ (t) and w̃(t) = 0
� The ideal values of the decision variable are then given by

ξ̃m[n] =
[
ũ(t) ∗ g∗(Ts − t)

]
t=(n+1)Ts

=

[(
Ãm[n]g(t−nTs) · e−jφerr(t) · A

2

)
∗ g∗(Ts − t)

]
t=(n+1)Ts

= Ãm[n]e
−jφerr(t) · A

2

[
g(t−nTs) ∗ g∗(Ts − t)

]
t=(n+1)Ts

= Ãm[n]e
−jφerr((n+1)Ts) · A

2
Eg

� Due to noise w(t) �= 0 and non-ideal channel h̃(t) the decision
variables at the receiver will differ from these ideal values

� The Euclidean distance receiver will base its decision on the
ideal value ξ̃m[n] which is closest to the received value ξ̃ [i]
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Example: 4-PSK
� Assuming φerr(t) = 0 we obtain the ideal decision variables

ξ̃m[n] = Ãm[n] ·
A
2

Eg = (Am[n] + jBm[n]) ·
A
2

Eg

ideal ξ̃

received ξ̃

decision boundary
Re{ξ̃}

Im{ξ̃}

� Based on the received value ξ̃ [n] we decide for

m̂[n] : Ãm̂[n] = (1+ j ·0)
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Example: 4-PSK with phase offset
� Consider now a constant phase offset of φerr(t) = φerr = 25◦

� As a result the values ξ̃m[n] and ξ̃ [n] are rotated accordingly

ideal ξ̃

received ξ̃

decision boundary
Re{ξ̃}

Im{ξ̃}

φerr

How can we compensate for φerr?
1. we can rotate the decision boundaries by the same amount
2. or we can rotate back ξ̃ [n] by multiplying with e+jφerr
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Summary: M-ary QAM transmission

� We can describe the transmitted messages Ãm̂[n] and the
decision variables ξ̃ [n] at the receiver as complex variables

� The effect of the noise w̃(t) and the channel filter h̃(t) on ξ̃ [n] can
be described by the equivalent baseband model

� The transmitter and receiver frontends can be separated from
the (digital) baseband processing

� Assumptions:
- the pulse shape g(t) satisfies the ISI-free condition
- the carrier frequency fc is much larger than the bandwidth of g(t)

� Under these conditions the design of the baseband receiver and
its error probability analysis can be applied as in Chapter 4
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Intersymbol Interference (ISI)
� Consider transmission of a single M-ary PAM signal alternative

sj(t) = A jg(t)

h(t)
zj(t) = A ju(t)

v(t)
y(t) = A jx(t) ξ

t=T s

Threshold
detector

w(t) = 0

Channel Receivera)

m̂
r(t)

� In the noise-free case (w(t) = 0) the signal x(t) can be written as

x(t) = u(t) ∗ v(t) = g(t) ∗ h(t) ∗ v(t)
Example:

g(t)

0 Tg
t

u(t)

Tg + T h

Tu

t

)

x(t)

Ts

Tu + T v

Tx

t

What happens if Tu = Tg +Th ≥ Ts? ⇒ ISI occurs
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Intersymbol Interference (ISI)
� For Rs = 1/Ts < 1/Tu we can use the ML receiver from Chapter 4
� Question: can we use such a receiver for larger rates Rs ≥ 1/Tu?
� Consider the following receiver structure (compare to last slide)

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑
8

r(t) y(t)

Receiver

� Note that z(t) now is a superposition of overlapping pulses u(t)
� The signal y(t) after the receiver filter v(t) is

y(t) =
∞

∑
n=−∞

A[n]x(t−nTs)+wc(t) ,

where wc(t) is a filtered Gaussian process
� The decision variable is obtained after sampling

ξ [i] = y(T + iTs) , T = t0 +LTs , where LTs ≥ Tu
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Illustration of ISI in the receiver
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. . . . . .
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Discrete time model for ISI
� According to our model the decision variable can be written as

ξ [i] = y(T + iTs) =
∞

∑
n=−∞

A[n]x(T + iTs −nTs)+wc(T + iTs)

� Let us introduce the discrete sequences

x[i] = x(T + iTs) , wc[i] = wc(T + iTs)

� This leads to the following discrete-time model of our system

[i]ξ
+

w  [i]c

x[i] Threshold
detection m[i]^A[i]

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i] ∗ x[i]+wc[i]

Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter h(t), and receiver filter v(t)
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Example 6.1
The transmitted sequence of amplitudes A[i] is given as,

A[i]

1

1 5 8 9
i

Calculate, and plot, the sequence of decision variables ξ[i] in Figure 6.2, for 0 ≤ i ≤ 8,
in the noiseless case (i.e. w(t) = 0) if t0 = 0 and if the output pulse x(t) is:

Ts 2Ts

x0

2Ts 4TsTs

x0

x(t)

0
t

x(t)

t

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.

� i) ξ [i] = x0 A[i] ii) ξ [i] = x0
2 A[i+1]+ x0 A[i]+ x0

2 A[i−1]
ξ [i]

x0

-x 0

i
1 5 6 8
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