

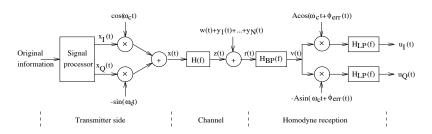
EITG05 – Digital Communications

Lecture 10

Equivalent baseband model, Compact description Chapter 6: Intersymbol interference ISI, Increasing the signaling rate

> Michael Lentmaier Monday, October 8, 2018

Overall transmission model



▶ The signal y(t) is given by

$$y(t) = z(t) + w(t) = x(t) * h(t) + w(t)$$

It can be written as

$$y(t) = y_I(t)\cos(2\pi f_c t) - y_Q(t)\sin(2\pi f_c t)$$

Can we express $u_I(t)$ and $u_O(t)$ in terms of $x_I(t)$ and $x_O(t)$?

Inphase and quadrature relationship

 \blacktriangleright With the complete signal r(t) entering the receiver the output signals become

$$u_I(t) = [y(t)A\cos(2\pi f_c t + \phi_{err}(t))]_{LP}$$

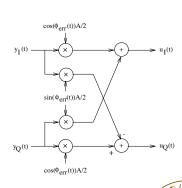
$$= \frac{y_I(t)}{2}A\cos(\phi_{err}(t))$$

$$+ \frac{y_Q(t)}{2}A\sin(\phi_{err}(t))$$

$$u_{Q}(t) = \left[-y(t)A\sin\left(2\pi f_{c}t + \phi_{err}(t)\right) \right]_{LP}$$

$$= \frac{y_{Q}(t)}{2}A\cos(\phi_{err}(t))$$

$$-\frac{y_{I}(t)}{2}A\sin(\phi_{err}(t))$$



Including the channel filter

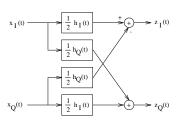
▶ Before we can relate y(t) = z(t) + w(t) to x(t) we need to consider the effect of the channel

$$z(t) = x(t) * h(t)$$
 $x(t)$ $h(t)$ $x(t)$

▶ We assume that the impulse response h(t) can be represented as a bandpass signal

$$h(t) = h_I(t) \cos(2\pi f_c t) - h_Q(t) \sin(2\pi f_c t)$$

With some calculations the signals can be written as (p. 159-160)

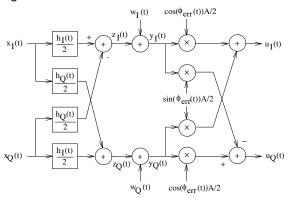


$$z_I(t) = \frac{1}{2} (x_I(t) * h_I(t) - x_Q(t) * h_Q(t))$$

$$z_Q(t) = \frac{1}{2} (x_I(t) * h_Q(t) + x_Q(t) * h_I(t))$$

Equivalent baseband model

Combining the channel with the receiver frontend we obtain



- Observe that all the involved signals are in the baseband
- ► The same is true for channel filter, noise and phase error Digital signal processing can be applied easily in baseband What happened with the carrier waveforms?

A compact description

A more compact description is possible by combining $x_I(t)$ and $x_Q(t)$ to an equivalent baseband signal

$$\tilde{x}(t) = x_I(t) + jx_O(t)$$

The transmitted signal can then be described as

$$x(t) = Re\left\{ \left(x_I(t) + j x_Q(t) \right) e^{+j2\pi f_C t} \right\} = Re\left\{ \tilde{x}(t) e^{+j2\pi f_C t} \right\}$$



• With $Re\{a\} = (a+a^*)/2$ we can write

$$x(t) = \frac{\tilde{x}(t)}{2} \cdot e^{+j2\pi f_c t} + \frac{\tilde{x}^*(t)}{2} \cdot e^{-j2\pi f_c t}$$

A compact description

- Let us first ignore the effect of the channel: w(t) = 0, $h(t) = \delta(t)$
- The receiver can invert the frequency shift operation by

$$\tilde{u}(t) = \left[x(t) \cdot A e^{-j(2\pi f_c t + \phi_{err}(t))} \right]_{LP}$$

▶ Using the expression for x(t) from the previous slide we get

$$\tilde{u}(t) = \left[\frac{A}{2} \left(\tilde{x}(t) e^{+j2\pi f_C t} + \tilde{x}^*(t) e^{-j2\pi f_C t} \right) \cdot e^{-j(2\pi f_C t + \phi_{err}(t))} \right]_{LP}$$

$$= \frac{\tilde{x}(t)}{2} A \cdot e^{-j\phi_{err}(t)} = u_I(t) + j u_Q(t)$$

▶ Observe that this expression is equivalent to our earlier result

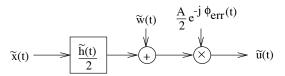
$$\tilde{u}(t) = \left(\frac{x_I(t)}{2} A \cos(\phi_{err}(t)) + \frac{x_Q(t)}{2} A \sin(\phi_{err}(t))\right) + j \left(\frac{x_Q(t)}{2} A \cos(\phi_{err}(t)) - \frac{x_I(t)}{2} A \sin(\phi_{err}(t))\right)$$

Compact equivalent baseband model

The effect of the channel filter becomes

$$\tilde{z}(t) = z_I(t) + jz_Q(t) = \tilde{x}(t) * \frac{\tilde{h}(t)}{2}$$

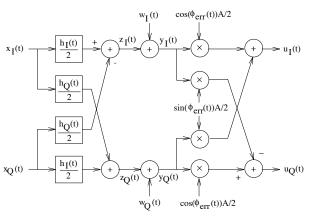
Combining these parts and the noise we obtain the simple model

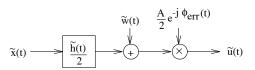


$$\tilde{u}(t) = \left[\left(\tilde{x}(t) * \frac{\tilde{h}(t)}{2} \right) + \tilde{w}(t) \right] \cdot e^{-j\phi_{err}(t)} \cdot \frac{A}{2} , \quad \tilde{w}(t) = w_I(t) + jw_Q(t)$$

► Complex signal notation simplifies expressions significantly

The two equivalent baseband models





M-ary QAM signaling

Considering M-ary QAM signals we get

$$x_I(t) = \sum_{n=-\infty}^{\infty} A_{m[n]} g(t - nT_s) , \quad x_Q(t) = \sum_{n=-\infty}^{\infty} B_{m[n]} g(t - nT_s)$$

Let us now introduce

$$\tilde{A}_m[n] = A_{m[n]} + jB_{m[n]}$$

▶ Then our complex baseband signal $\tilde{x}(t)$ can be written as

$$\tilde{x}(t) = x_I(t) + j x_Q(t) = \sum_{n = -\infty}^{\infty} \tilde{A}_{m[n]} g(t - nT_s)$$

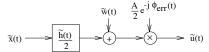
Example: (on the board)

Consider 4-QAM transmission of $\mathbf{b} = 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1$ Determine $A_{m[n]},\,B_{m[n]}$ and $\tilde{A}_{m[n]}$

How can we design the receiver for QAM signals?

Matched filter receiver

▶ At the receiver we see the complex baseband signal $\tilde{u}(t)$

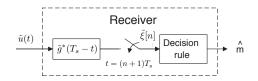


If we know the channel we can design a matched filter for

$$\tilde{z}(t) = \tilde{x}(t) * \frac{\tilde{h}(t)}{2} \Rightarrow \tilde{v}(t) = \tilde{z}^*(T_s - t)$$

▶ It is often convenient to match $\tilde{v}(t)$ to the pulse g(t) instead

$$\tilde{v}(t) = g^*(T_s - t) \quad \Rightarrow \quad \tilde{\xi}[n] = \left[\tilde{u}(t) * g^*(T_s - t)\right]_{t = (n+1)T_s}$$



Decision rule

- ▶ Consider now $\tilde{h}(t) = \delta(t)$ and $\tilde{w}(t) = 0$
- ► The ideal values of the decision variable are then given by

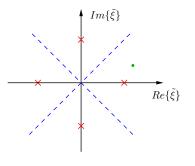
$$\begin{split} \tilde{\xi}_{m[n]} &= \left[\tilde{u}(t) * g^*(T_s - t) \right]_{t = (n+1)T_s} \\ &= \left[\left(\tilde{A}_{m[n]} g(t - nT_s) \cdot e^{-j\phi_{err}(t)} \cdot \frac{A}{2} \right) * g^*(T_s - t) \right]_{t = (n+1)T_s} \\ &= \tilde{A}_{m[n]} e^{-j\phi_{err}(t)} \cdot \frac{A}{2} \left[g(t - nT_s) * g^*(T_s - t) \right]_{t = (n+1)T_s} \\ &= \tilde{A}_{m[n]} e^{-j\phi_{err}((n+1)T_s)} \cdot \frac{A}{2} E_g \end{split}$$

- ▶ Due to noise $w(t) \neq 0$ and non-ideal channel $\tilde{h}(t)$ the decision variables at the receiver will differ from these ideal values
- The Euclidean distance receiver will base its decision on the ideal value $\tilde{\xi}_{m[n]}$ which is closest to the received value $\tilde{\xi}[i]$

Example: 4-PSK

• Assuming $\phi_{err}(t) = 0$ we obtain the ideal decision variables

$$\tilde{\xi}_{m[n]} = \tilde{A}_{m[n]} \cdot \frac{A}{2} \ E_{g} = (A_{m[n]} + jB_{m[n]}) \cdot \frac{A}{2} \ E_{g}$$



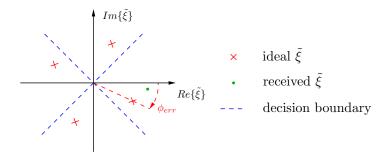
- \times ideal $\tilde{\xi}$
- received $\tilde{\xi}$
- --- decision boundary

▶ Based on the received value $\tilde{\xi}[n]$ we decide for

$$\hat{m}[n]: \quad \tilde{A}_{\hat{m}[n]} = (1+j\cdot 0)$$

Example: 4-PSK with phase offset

- ▶ Consider now a constant phase offset of $\phi_{err}(t) = \phi_{err} = 25^{\circ}$
- lacktriangle As a result the values $\tilde{\xi}_{m[n]}$ and $\tilde{\xi}[n]$ are rotated accordingly



How can we compensate for ϕ_{err} ?

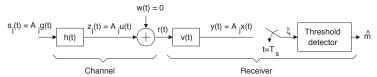
- 1. we can rotate the decision boundaries by the same amount
- **2.** or we can rotate back $\tilde{\xi}[n]$ by multiplying with $e^{+j\phi_{err}}$

Summary: *M***-ary QAM transmission**

- We can describe the transmitted messages $\tilde{A}_{\hat{m}[n]}$ and the decision variables $\tilde{\xi}[n]$ at the receiver as complex variables
- ▶ The effect of the noise $\tilde{w}(t)$ and the channel filter $\tilde{h}(t)$ on $\tilde{\xi}[n]$ can be described by the equivalent baseband model
- The transmitter and receiver frontends can be separated from the (digital) baseband processing
- Assumptions:
 - the pulse shape g(t) satisfies the ISI-free condition
 - the carrier frequency f_c is much larger than the bandwidth of g(t)
- ► Under these conditions the design of the baseband receiver and its error probability analysis can be applied as in Chapter 4

Intersymbol Interference (ISI)

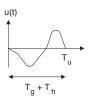
► Consider transmission of a single *M*-ary PAM signal alternative

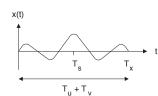


▶ In the noise-free case (w(t) = 0) the signal x(t) can be written as

$$x(t) = u(t) * v(t) = g(t) * h(t) * v(t)$$

Example:

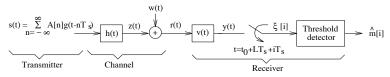




What happens if $T_u = T_g + T_h \ge T_s$? \Rightarrow ISI occurs

Intersymbol Interference (ISI)

- ▶ For $R_s = 1/T_s < 1/T_u$ we can use the ML receiver from Chapter 4
- ▶ **Question:** can we use such a receiver for larger rates $R_s \ge 1/T_u$?
- Consider the following receiver structure (compare to last slide)



- Note that z(t) now is a superposition of overlapping pulses u(t)
- ▶ The signal y(t) after the receiver filter v(t) is

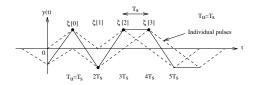
$$y(t) = \sum_{n=-\infty}^{\infty} A[n]x(t-nT_s) + w_c(t) ,$$

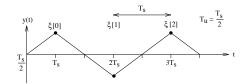
where $w_c(t)$ is a filtered Gaussian process

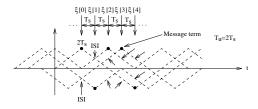
► The decision variable is obtained after sampling

$$\xi[i] = y(\mathcal{T} + iT_s)$$
, $\mathcal{T} = t_0 + LT_s$, where $LT_s \ge T_u$

Illustration of ISI in the receiver







Discrete time model for ISI

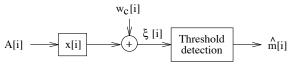
According to our model the decision variable can be written as

$$\xi[i] = y(\mathcal{T} + iT_s) = \sum_{n=-\infty}^{\infty} A[n]x(\mathcal{T} + iT_s - nT_s) + w_c(\mathcal{T} + iT_s)$$

Let us introduce the discrete sequences

$$x[i] = x(T + iT_s)$$
, $w_c[i] = w_c(T + iT_s)$

This leads to the following discrete-time model of our system

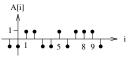


$$\xi[i] = \sum_{n=0}^{\infty} A[n]x[i-n] + w_c[i] = A[i] * x[i] + w_c[i]$$

Remark: the discrete-time impulse response x[i] represents pulse shape g(t), channel filter h(t), and receiver filter v(t)

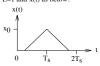
Example 6.1

The transmitted sequence of amplitudes A[i] is given as,

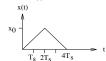


Calculate, and plot, the sequence of decision variables $\xi[i]$ in Figure 6.2, for $0 \le i \le 8$, in the noiseless case (i.e. w(t)=0) if $t_0=0$ and if the output pulse x(t) is:

i) L=1 and x(t) as below.



ii) L=2 and x(t) as below.



• i)
$$\xi[i] = x_0 A[i]$$

ii)
$$\xi[i] = \frac{x_0}{2}A[i+1] + x_0A[i] + \frac{x_0}{2}A[i-1]$$

