Exercise Lesson 3

Problems from the compendium:

2.18, 2.16, 2.17a, 2.19a, Example 2.17 on page 64

Other problems:

3.1 Determine if the following statement is true or false.
"For 4-ary QAM with equally likely signal alternatives and a triangular pulse $g(t)=$ $g_{t r i}(t)$ with amplitude A and duration $6 T_{s} / 10$ the average signal power is $2 A^{2} / 10$."
3.2 Consider a QAM signal constellation, with rectangular pulse shape of duration $T=T_{s}$,

$$
s_{\ell}(t)=A_{\ell} g_{\text {rec }}(t) \cos \left(2 \pi f_{c} t\right)-B_{\ell} g_{\text {rec }}(t) \sin \left(2 \pi f_{c} t\right), \quad \ell=0, \ldots, 7,
$$

for which the $M=8$ possible amplitude pairs are given as follows:

$$
\begin{aligned}
& \left(A_{0}, B_{0}\right)=(+2,0),\left(A_{1}, B_{1}\right)=(+1,+1),\left(A_{2}, B_{2}\right)=(0,+2),\left(A_{3}, B_{3}\right)=(-1,+1), \\
& \left(A_{4}, B_{4}\right)=(-2,0),\left(A_{5}, B_{5}\right)=(-1,-1),\left(A_{6}, B_{6}\right)=(0,-2),\left(A_{7}, B_{7}\right)=(+1,-1) .
\end{aligned}
$$

(a) Draw the constellation diagrams for both conventional 8 PSK and for the QAM constellation defined above.
(b) You want to scale the amplitude of 8 PSK with some factor C to achieve equal average energy per bit \bar{E}_{s} for both constellations. Determine the scaling factor C, assuming equally likely signal alternatives. Which constellation will then have a larger minimum squared Euclidean distance $\min _{i, j} D_{i, j}^{2}$?

