Exercise Lesson 1

Problems from the compendium:
2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8

Other problems:

1.1 Binary transmission:

Consider $g(t)=g_{t r i}(t)$ given in Fig. D. 5 in the Appendix (triangular pulse).
(a) Draw the transmitted signal

$$
s(t)=b[0] g(t)+b[1] g\left(t-T_{b}\right)+b[2] g\left(t-2 T_{b}\right)+b[3] g\left(t-3 T_{b}\right)
$$

where $\mathbf{b}=b[0] b[1] b[2] b[3]=10110$ and $T=T_{b}$.
(b) Repeat part (a) for $T=T_{b} / 2$.

1.2 Shifting and scaling:

For the signal $g(t)=g_{t r i}(t)$ from Problem 1.1,
(a) Draw the signal $g(t-2 T)$.
(b) Draw the signal $g((t-T) / 2)$.
(c) Draw the signal $g(t T-T / 2)$.

1.3 Reflection:

Consider now the signal $x(t)=g_{\text {tri }}(t / 2) \cdot g_{\text {rec }}(t)$.
(a) Draw the signal $x(t)$.
(b) Draw the signal $x(-t)$.
(c) Draw the signal $x(-t-T)$.

1.4 Sinusoidal signals:

(a) Draw the signal $s(t)=\sin (t)$ in the interval $0 \leq t \leq 2 \pi$.
(b) Draw the signal $s(t)=\sin (2 \pi / T t)$ in the interval $0 \leq t \leq 2 T$.
(c) Draw the signal $s(t)=\sin (2 \pi / T t+\pi / 2)$ in the interval $0 \leq t \leq 2 T$.

