
Simulation

Simulation is experiments with a model of a
system
• Event scheduling method
• Process interaction method

Event scheduling approach

What is needed:
• A state description
• Events
• Rules telling what will happen when an

event occurs
• Parameters

A more complicated example

We want to find
• the mean number of customers in queueing

system 1 and 2
• the probability that a customer is rejected

when it arrives to queueing system 1

1 2

4 slots 16 slots

State description

N1 = number of customers in queueing system 1
N2 = number of customers in queueing system 2

Measuring variables:
• NoOfArrivals (is just what you think!)
• NoRejected (is just what you think!)

This is not state variables in a strict sense but they
also have to be updated at certain events!

Events needed

• ArrivalTo1
• DepartureFrom1
• DepartureFrom2
• Measurement

Rule for ArrivalTo1
void RuleArrivalTo1(){

NoOfArrivals++;
If (N1 < 4)

N1++;
else

NoRejected++;
If (N1 == 1)

InsertEvent(DepartureFrom1, time + 0.2);
InsertEvent(ArrivalTo1, time + nextArrival());

}

void RuleDepartureFrom1{
N1--;
if (N2 < 16)

N2++;
if (N2 == 1)

InsertEvent(DepartureFrom2, time + 0.1);
if (N1 >) 0 then

InsertEvent(DepartureFrom1, time + 0.2);
}

Rule for DepartureFrom1

Rule for DepartureFrom2
void RuleDepartureFrom2{

N2--;
if (N2 > 0)

InsertEvent(DepartureFrom2, time + 0.1);
}

void RuleMeasurement{
write(file1, N1);
write(file2, N2);
InsertEvent(Measurement, time +

NextMeasurement());
}

Rule for Measurement

Another example

Assume that we want to measure the probability that
a customer spends more than 5 seconds in the system.

Then it is not enough to keep track of the number
of customers in the queueing system!

Events here are Arrival and Departure.

The state of this system

In this case the state can be a list where we
can store customers and mark them with their
arrival time:

8.3 6.2 5.3 4.4 2.4

Can be implemented by a double linked list
or a vector

Drawback of event scheduling

Assume that we have a complicated network
with many nodes. The network can model e.g.
a computer network, material flow or luggage
handling. The nodes are similar.

Drawbacks

• Many different events or events with
attributes are needed

• It is difficult to change the system, a change
in one of the nodes affects the programs
global variables and rules

• It is more natural to think of such a problem
as entities flowing through the network,
than to think about events

What we would like

We would like to
• create a template for the nodes and

customers
• That when the program executes, instances

of the nodes and customers are created
• set parameters to the instances when they

are created

The solution

One way of solving this is the

process interaction method

Processes in simulation

• In simulation a process is something that does something
• A process has some internal state
• Processes communicate by sending signals to each other
• Signals have a name and can carry information
• When a signal arrives to a process some activity is trigged
• During an activity the state of the receiving process might

be changed and signals may be sent
• When a signal is sent the sender assigns it an arrival time

An example

Assume that we want to describe a queueing system
with the process interaction method.

The processes we need

One process
• representing the queueing system
• generating customers
• measuring the number of customers in the

queueing system

The processes and signals

Generator Queue Measure

Generate

customer

Ready Sample

question

answer

Generate, Ready and Sample are delayed

answer has a parameter, the number of customers.

The internal state of the processes

Generator: no internal state needed

Queue: N = number of customers

Measure: no internal state needed

Activity of Generator

if received signal = generate {
SendSignal(customer, Queue, time);
SendSignal(generate, Generator, time + Exp(4));

}

Generator Queue Measure

Generate

customer

Ready Sample

question

answer

if received signal = customer{
N := N + 1;
if N = 1 then

SendSignal(ready, Queue, time + Exp(2));
}
else if received signal = ready{

N := N – 1;
if N > 0 then

SendSignal(ready, Queue, time + Exp(2));
}
else if received signal = question{

SendSignal(answer(N), Measure, time);
}

Activity of Queue

Generator Queue Measure

Generate

customer

Ready Sample

question
answer

Activity of Measure

If received signal = sample {
SendSignal(question, Queue, time);
SendSignal(sample, Measure, time + Exp(10));

}
else if received signal = answer {

Extract N from signal answer;
write(outfile, N);

}

Generator Queue Measure

Generate

customer

Ready Sample

question

answer

Some problems we must solve

• How to keep track of time in the system
• How to make sure that signals arrive at the

right time

Observe that it is not a question of real time!

Time is just updated when a signal arrives. It
does not have any values in between.

Signal list

Each process has a signal list. It is very similar to the
event list in the event scheduling method.

T1

S1

P1

T2

S2

P2

T3

S3

P3

Ti = arrival time of signal
Si = what kind of signal this is (the name of the signal)
Pi = parameters of the signals (if any)
T1 < T2 < T3 < etc

Process list
Processes with signals in their signal lists are
organized in a process list. Only the arrival times of
the signals are shown here.

A B C

TA1

TA2

TB1

TB2

TC1

The process list is sorted so that TA1 < TB1 < TC1< etc

How the process interaction method works

1. Remove the first process from the
process list (call it A)

2. Remove the first signal in A:s signal list
3. Process the activ ities
4. If there are any signals left in A:s signal

list, sort it into the process list again
5. If simulation shall continue, go to 1

What to do when a process gets a signal

Assume that process B gets a signal.

 Sort the signal into process B:s signal list.
 If the signal list was empty before the signal arrived,

B shall be sorted into the process list.
 If the signal list was not empty, B is already in the

process list.
o If the signal is put first in B:s signal list, B might have to

change its place in the process list.

An example, the queuing system (1)

Time = 0
Generator: (3,arrival)
Measure: (10, sample)

Queue: [N=0] () Queue is not in the process list!

Time = 3

Queue: [N=0] (3,customer)
Measure: (10, sample)
Generator: (11, generate)

An example, the queuing system (2)

Time = 3

Queue: [N=0] (3,customer)
Measure: (10, sample)
Generator: (11, generate)

Time = 3

Measure: (10, sample)
Generator: (11, generate)
Queue: [N=1] (12,ready)

An example, the queuing system (3)

Time = 3

Measure: (10, sample)
Generator: (11, generate)
Queue: [N=1] (12,ready)

Time = 10

Queue: [N=1](10,question)(12,ready)
Generator: (11, generate)
Measure: (20, sample)

An example, the queuing system (4)

Time = 10

Queue: [N=1](10,question) (12,ready)
Generator: (11, generate)
Measure: (20, sample)

Time = 10

Measure: (10, answer) (20, sample)
Generator: (11, generate)
Queue: [N=1](12,ready)

An example, the queuing system (5)

Time = 10

Measure: (10, answer) (20, sample)
Generator: (11, generate)
Queue: [N=1](12,ready)

Time = 10

Generator: (11, generate)
Queue: [N=1](12,ready)
Measure: (20, sample)

The steps in constructing a process interaction
simulation program

Which
• processes are needed?
• variables are needed to describe the state of the processes?
• signals are needed?
• information (besides its name) shall a signal contain?
• activity shall occur when a signal arrives at a process?

When these questions are answered, it is not difficult to write
a process interaction simulation program!

Time spent thinking on these questions
will save a lot of time later!

A further wish

We would like to define process types, e.g.
generator and queue. When we start a
program we would like to create as many
instances of these types as we need.

In this way we can create a library of
processes that can be reused. This is one
more advantage of the process interaction
approach.

Only one signal list

• It is possible to use just one signal list in a
program

• In that case the implementation of a process
interaction simulation program is very
similar to a event scheduling simulation
program

	Simulation
	Event scheduling approach
	A more complicated example
	State description
	Events needed
	Rule for ArrivalTo1
	Bildnummer 7
	Rule for DepartureFrom2
	Bildnummer 9
	Another example
	The state of this system
	Drawback of event scheduling
	Drawbacks
	What we would like
	The solution
	Processes in simulation
	An example
	The processes we need
	The processes and signals
	The internal state of the processes
	Activity of Generator
	Activity of Queue
	Activity of Measure
	Some problems we must solve
	Signal list
	Process list
	How the process interaction method works
	What to do when a process gets a signal
	An example, the queuing system (1)
	An example, the queuing system (2)
	An example, the queuing system (3)
	An example, the queuing system (4)
	An example, the queuing system (5)
	The steps in constructing a process interaction simulation program
	A further wish
	Only one signal list

