
Network Layer 4-1

Network layer
 transport segment from

sending to receiving host
 on sending side

encapsulates segments
into datagrams

 on receiving side,
delivers segments to
transport layer

 network layer protocols
in every host, router

 router examines header
fields in all IP datagrams

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical network

data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Network Layer 4-2

Two Key Network-Layer Functions

 forwarding: move
packets from router’s
input to appropriate
router output

 routing: determine
route taken by
packets from source
to destination

 routing algorithms

Analogy (driving):

 routing: process of
planning trip from
source to destimation

 forwarding: process
of getting through
single interchange

Network Layer 4-3

Datagram Forwarding
table

1

23

IP destination address in
arriving packet’s header

routing algorithm

local forwarding table
dest address output link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

4 billion IP addresses, so
rather than list individual
destination address
list range of addresses
(aggregate table entries)

Network Layer 4-4

Datagram Forwarding table
Destination Address Range

11001000 00010111 00010000 00000000
through
11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through
11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through
11001000 00010111 00011111 11111111

otherwise

Link Interface

0

1

2

3

Network Layer 4-5

IPv4 datagram format

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier
header

checksum
time to

live

32 bit source IP address

IP protocol version
number

header length
(bytes)

max number
remaining hops

(decremented at
each router)

for
fragmentation/
reassembly

total datagram
length (bytes)

upper layer protocol
to deliver payload to

head.
len

type of
service

“type” of data flgs fragment
offset

upper
layer

32 bit destination IP address

Options (if any)

Network Layer 4-6

IP Addressing: introduction
 IP address: 32-bit

identifier for host,
router interface

 interface: connection
between host/router
and physical link
 router’s typically have

multiple interfaces
 host typically has one

interface
 IP addresses

associated with each
interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

Network Layer 4-7

Subnets
 IP address:

 subnet part (high
order bits)

 host part (low order
bits)

 What’s a subnet ?
 device interfaces with

same subnet part of IP
address

 can physically reach
each other without
intervening router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

Network Layer 4-8

Subnets 223.1.1.0/24 223.1.2.0/24

223.1.3.0/24

Recipe
 to determine the

subnets, detach each
interface from its
host or router,
creating islands of
isolated networks

 each isolated network
is called a subnet.

Subnet mask: /24

Network Layer 4-9

IP addressing: CIDR
CIDR: Classless InterDomain Routing
 subnet portion of address of arbitrary length
 address format: a.b.c.d/x, where x is # bits in

subnet portion of address

11001000 00010111 00010000 00000000

subnet
part

host
part

200.23.16.0/23

Network Layer 4-10

IP addresses: how to get one?

Q: How does a host get an IP address?

 hard-coded by system admin in a file
 Windows: control-panel->network->configuration-

>tcp/ip->properties
 UNIX: /etc/rc.config

 DHCP: Dynamic Host Configuration Protocol:
dynamically get address from a server
 “plug-and-play”

Network Layer 4-11

IP addressing: the last word...

Q: How does an ISP get block of addresses?
A: ICANN: Internet Corporation for Assigned

Names and Numbers
 allocates addresses
 manages DNS
 assigns domain names, resolves disputes

Network Layer 4-12

IPv6
 Initial motivation: 32-bit address space soon

to be completely allocated.
 Additional motivation:
 header format helps speed processing/forwarding
 header changes to facilitate QoS
IPv6 datagram format:
 fixed-length 40 byte header
 no fragmentation allowed

Network Layer 4-13

IPv6 Header
Priority: identify priority among datagrams in flow
Flow Label: identify datagrams in same “flow”

(concept of “flow” not well defined)
Next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit
flow labelpriver

32 bits

Network Layer 4-14

IPv6 Addresses
(IPv4 addresses, 32 bits long, written in decimal, separated by periods)
IPv6 addresses, 128 bits long, written in hexadecimal,
separated by colons.

3ffe:1900:4545:3:200:f8ff:fe21:67cf

Leading zeros can be omitted in each field, :0003: is
written :3:. A double colon (::) can be used once in an
address to replace multiple fields of zeros.

fe80:0000:0000:0000:0200:f8ff:fe21:67cf
can be written
fe80::200:f8ff:fe21:67cf

Network Layer 4-15

Other Changes from IPv4

 Checksum: removed entirely to reduce
processing time at each hop

 Options: allowed, but outside of header,
indicated by “Next Header” field

 ICMPv6 (Internet Control Message
Protocol) : new version of ICMP
 additional message types, e.g. “Packet Too Big”
 multicast group management functions

Network Layer 4-15

Transition From IPv4 To IPv6

 Not all routers can be upgraded simultaneous
 How will the network operate with mixed IPv4 and

IPv6 routers?

 Tunneling: IPv6 carried as payload in IPv4
datagram among IPv4 routers

 Dual stack: Both IPv4 and IPv6 protocol
implemented in the routers

 Translation: When transiting, translate
between protocols (information lost)

Network Layer 4-17

Tunneling

A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6IPv4 IPv4

Network Layer 4-18

Tunneling
A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

A-to-B:
IPv6

E-to-F:
IPv6B-to-C:

IPv6 inside
IPv4

B-to-C:
IPv6 inside

IPv4

Routingalgoritmer

Network Layer 4-19

Hur skapas innehållet i routingtabellerna??

Network Layer 4-20

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-21

Graph abstraction: costs

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5 • c(x,x’) = cost of link (x,x’)

- e.g., c(w,z) = 5

• cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

Network Layer 4-22

Routing Algorithm classification
Global or decentralized

information?
Global:
 all routers have complete

topology, link cost info
 “link state” algorithms
Decentralized:
 router knows physically-

connected neighbors, link
costs to neighbors

 iterative process of
computation, exchange of
info with neighbors

 “distance vector” algorithms

Static or dynamic?
Static:
 routes change slowly

over time
Dynamic:
 routes change more

quickly
 periodic update
 in response to link

cost changes

Network Layer 4-23

A Link-State Routing Algorithm

Dijkstra’s algorithm
 net topology, link costs

known to all nodes
 accomplished via “link

state broadcast”
 all nodes have same info

 computes least cost paths
from one node (“source”) to
all other nodes
 gives forwarding table

for that node
 iterative: after k

iterations, know least cost
path to k destinations

Notation:
 c(x,y): link cost from node

x to y; = ∞ if not direct
neighbors

 D(v): current value of cost
of path from source to
destination v

 p(v): predecessor node
along path from source to v

 N': set of nodes whose
least cost path definitively
known

Network Layer 4-24

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Network Layer 4-25

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9

Dijkstra’s algorithm: example

Step N'
D(v)

p(v)
0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx
uwxv 14,x 10,v

uwxvy 12,y

Notes:
 construct shortest path

tree by tracing
predecessor nodes

 ties can exist (can be
broken arbitrarily)

uwxvyz

Network Layer 4-26

Dijkstra’s algorithm: another example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Network Layer 4-27

Dijkstra’s algorithm: example (2)

u

yx

wv

z

Resulting shortest-path tree from u:

v
x
y
w
z

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination link

Resulting forwarding table in u:

Network Layer 4-28

Dijkstra’s algorithm, discussion
Algorithm complexity: n nodes
 each iteration: need to check all nodes, w, not in N
 n(n+1)/2 comparisons: O(n2)
 more efficient implementations possible: O(nlogn)
Oscillations possible:
 e.g., link cost = amount of carried traffic

A
D

C
B

1 1+e

e0

e
1 1

0 0

A
D

C
B

2+e 0

00
1+e 1

A
D

C
B

0 2+e

1+e1
0 0

A
D

C
B

2+e 0

e0
1+e 1

initially … recompute
routing

… recompute … recompute

Network Layer 4-29

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)
Define
dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbors v of x

v

Network Layer 4-30

Bellman-Ford example

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5
Clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
c(u,x) + dx(z),
c(u,w) + dw(z) }

= min {2 + 5,
1 + 3,
5 + 3} = 4

Node that achieves minimum is next
hop in shortest path ➜ forwarding table

B-F equation says:

Network Layer 4-31

Distance Vector Algorithm

 Dx(y) = estimate of least cost from x to y
 x maintains distance vector Dx = [Dx(y): y є N]

 node x:
 knows cost to each neighbor v: c(x,v)
 maintains its neighbors’ distance vectors.

For each neighbor v, x maintains
Dv = [Dv(y): y є N]

Network Layer 4-32

Distance vector algorithm

Basic idea:
 from time-to-time, each node sends its own

distance vector estimate to neighbors
 when x receives new DV estimate from neighbor,

it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

 under minor, natural conditions, the estimate Dx(y)
converge to the actual least cost dx(y)

Network Layer 4-33

Distance Vector Algorithm

Iterative, asynchronous:
each local iteration caused
by:

 local link cost change
 DV update message from

neighbor
Distributed:
 each node notifies

neighbors only when its DV
changes
 neighbors then notify

their neighbors if
necessary

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

Each node:

Network Layer 4-34

x y z
x
y
z

0 2 7
∞ ∞ ∞
∞ ∞ ∞

fr
om

cost to

fr
om

fr
om

x y z
x
y
z

0

fr
om

cost to

x y z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

32

Network Layer 4-35

x y z
x
y
z

0 2 7
∞ ∞ ∞
∞ ∞ ∞

fr
om

cost to

fr
om

fr
om

x y z
x
y
z

0 2 3

fr
om

cost to
x y z

x
y
z

0 2 3

fr
om

cost to

x y z
x
y
z

∞ ∞

∞ ∞ ∞

cost to
x y z

x
y
z

0 2 7

fr
om

cost to
x y z

x
y
z

0 2 3

fr
om

cost to

x y z
x
y
z

0 2 3

fr
om

cost to
x y z

x
y
z

0 2 7

fr
om

cost to
x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

Network Layer 4-36

Distance Vector: link cost changes

Link cost changes:
 node detects local link cost change
 updates routing info, recalculates

distance vector
 if DV changes, notify neighbors

“good
news
travels
fast”

x z
14

50

y
1

t0 : y detects link-cost change, updates its DV, informs its
neighbors.

t1 : z receives update from y, updates its table, computes
new least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least
costs do not change, so y does not send a message to z.

Network Layer 4-37

Distance Vector: link cost changes

Link cost changes:
 good news travels fast
 bad news travels slow -

“count to infinity” problem!
 44 iterations before

algorithm stabilizes: see
text

Poisoned reverse:
 If Z routes through Y to

get to X :
 Z tells Y its (Z’s) distance

to X is infinite (so Y won’t
route to X via Z)

 will this completely solve
count to infinity problem?

x z
14

50

y
60

Network Layer 4-38

Comparison of LS and DV algorithms

Message complexity
 LS: with n nodes, E links,

O(nE) msgs sent
 DV: exchange between

neighbors only
 convergence time varies

Speed of Convergence
 LS: O(n2) algorithm requires

O(nE) msgs
 may have oscillations

 DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens
if router malfunctions?

LS:
 node can advertise

incorrect link cost
 each node computes only

its own table
DV:

 DV node can advertise
incorrect path cost

 each node’s table used by
others

• error propagate thru
network

	Network layer
	Two Key Network-Layer Functions
	Datagram Forwarding �table
	Datagram Forwarding table
	IPv4 datagram format
	IP Addressing: introduction
	Subnets
	Subnets
	IP addressing: CIDR
	IP addresses: how to get one?
	IP addressing: the last word...
	IPv6
	IPv6 Header
	IPv6 Addresses
	Other Changes from IPv4
	Transition From IPv4 To IPv6
	Tunneling
	Tunneling
	Routingalgoritmer
	Graph abstraction
	Graph abstraction: costs
	Routing Algorithm classification
	A Link-State Routing Algorithm
	Dijsktra’s Algorithm
	Bildnummer 25
	Dijkstra’s algorithm: another example
	Dijkstra’s algorithm: example (2)
	Dijkstra’s algorithm, discussion
	Distance Vector Algorithm
	Bellman-Ford example
	Distance Vector Algorithm
	Distance vector algorithm
	Distance Vector Algorithm
	Bildnummer 34
	Bildnummer 35
	Distance Vector: link cost changes
	Distance Vector: link cost changes
	Comparison of LS and DV algorithms

