Dator- och telekommunikation

(EITG01)

Höstterminen 2022

"Lort sammanfattning"

- Föreläsningar
- Ovningar
- Laborationer

OSI-modellen

Applikation	Program som interagera med användaren; epost, www
Presentation	Kryptering, komprimering, teckensnitt, färger
Session	Kommunikationssamordning Sessioner ~ uppkoppling
Transport	TCP, UDP Ankomstkontroll <i>(segment)</i>
Nätverk	Vägval, virtuella vägar, IP (paket)
(Data)Länk	Fel- och flödeskontroll på länknivå, MAC, LLC, PPP <i>(ramar)</i>
Fysisk	Kodning, signalnivåer (bitar)

Multiplexering allmän princip

Flera signaler sänds samtidigt över samma länk

Multiplexering allmän princip

- En gemensam kanal delas på något av följande sätt
 - FDM (Frequency Division Multiplexing)
 - WDM (Wavelength Division Multiplexing)
 - TDM (Time Division Multiplexing)
 - CDM (Code Division Multiple Access)

Multiplexering FDM

Kombination av signaler med olika frekvens

Multiplexering, FDM

 Exempel: Multiplexering av 5 signaler (bandbredd 100 kHz) med "lucka" (guard band) på 10 kHz

Multiplexing, WDM

Användning av prismor för WDM

Multiplexing, TDM

 Time-Division Multiplexing (TDM) kombinerar flera digitala signaler så att de skickas tillsammans i snabb takt

Multiplexing, TDM

 Varje "tvärsnitt" skickas som en ram över länken fast N ggr så snabbt

Multiplexering, CDM

• Varje sändare har en vektor c_i som är ortogonal mot alla andra sändares vektorer:

Om $i \neq j$ så är $c_i \cdot c_j = 0$ Dessutom gäller $c_i \cdot c_i = 1$

• Data som ska skickas av sändare i kallas d_i

Multiplexering, CDM

Multiplexering, CDM

Raderna i en Walsh-matris är ortogonala mot varandra

$$W_1 = \begin{bmatrix} +1 \end{bmatrix} \qquad W_{2N} = \begin{bmatrix} W_N & W_N \\ W_N & \overline{W_N} \end{bmatrix}$$

a. Two basic rules

$$W_{1} = \begin{bmatrix} +1 \\ +1 \end{bmatrix}$$

$$W_{2} = \begin{bmatrix} +1 \\ +1 \\ +1 \end{bmatrix}$$

$$W_{4} = \begin{bmatrix} +1 \\ +1 \\ +1 \end{bmatrix}$$

$$W_{4} = \begin{bmatrix} +1 \\ +1 \\ +1 \end{bmatrix}$$

$$W_{4} = \begin{bmatrix} +1 \\ +1 \\ +1 \end{bmatrix}$$

$$W_{4} = \begin{bmatrix} +1 \\ +1 \\ +1 \end{bmatrix}$$

b. Generation of W₁, W₂, and W₄

Elements of a wireless network

Elements of a wireless network

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize
 themselves into a
 network: route among
 themselves

Wireless Link Characteristics

Differences from wired link

- decreased signal strength: radio signal attenuates fast
- interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving to a destination at slightly different times

Wireless network characteristics

Additional problems:

Hidden terminal problem

- * B, A hear each other
- * B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- * B, A hear each other
- * B, C hear each other
- * A, C can not hear each other interfering at B

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

802.16: WiMAX

like 802.11 & cellular: base station model

- transmissions to/from base station by hosts with omnidirectional antenna
- base station-to-base station backhaul with pointto-point antenna

* unlike 802.11:

- range ~ 6 miles ("city rather than coffee shop")
- ~14 Mbps

Mobility via Indirect Routing

Mobility via Direct Routing

Mobile IP

- * RFC 3344
- * has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)
- three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Telia, Telenor)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - could be home network

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams

Two Key Network-Layer Functions

- * forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination
 - routing algorithms

Analogy (driving):

- routing: process of planning trip from source to destimation
- forwarding: process of getting through single interchange

Datagram Forwarding

table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

<u>IPv6</u>

- Initial motivation: 32-bit address space soon to be completely allocated.
- * Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

Transition From IPv4 To IPv6

- * Not all routers can be upgraded simultaneous
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers
- Dual stack: Both IPv4 and IPv6 protocol implemented in the routers
- * Translation: When transiting, translate between protocols (information lost)

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ("source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k destinations

Notation:

- x to y: | we will be considered as $x ext{ to } y$: | we wi
- \bullet D(v): current value of cost of path from source to destination v
- ϕ p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

where min is taken over all neighbors v of x

Interconnected ASes

- forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-As sets entries for external dests

Intra-AS Routing

- also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Broadcast Routing

- * deliver packets from source to all other nodes
- source duplication is inefficient:

Virtuella kretskopplade nät virtual circuit networks

- Blandning mellan kretskoppling och datagram
- Förbindelser har tre faser:
 - Initiering
 - Dataöverföring
 - Nerkoppling
- Data skickas i paket med adress
- Alla paket i en förbindelse går samma väg

Virtuella kretskopplade nät

En växel, observera att VCI byts vid passagen

What is simulation?

- ➤ Simple synonym: imitation
- > We are interested in studying a system
- ➤ Instead of experimenting with the system itself we experiment with a model of the system

Two approaches to simulation

- Event-scheduling method
- Process-interaction method

Event scheduling approach

What is needed:

- A state description
- Events
- Rules telling what will happen when an event occurs
- Parameters

Processes in simulation

- In simulation a *process* is something that does something
- A process has some *internal state*
- Processes communicate by sending *signals* to each other
- Signals have a name and can carry information
- When a signal arrives to a process some *activity* is trigged
- During an activity the state of the receiving process might be changed and signals may be sent
- When a signal is sent the sender assigns it an arrival time

Punkt-till-punkt-access

- HDLC (High-level Data Link Control)
- PPP
 (Point-to-Point Protocol)

HDLC

NRM (Normal Response Mode)

a. Point-to-point

b. Multipoint

PPP

- PPP (Point-to-Point Protocol)
 - Vanligaste protokollet f\u00f6r punkt-till-punktf\u00f6rbindelser
 - Används för kontakt mellan användare och internetleverantör
 - Använder en variant av HDLC

PPP

• Formatet på en PPP-ram

PPP

Tillståndsgraf för PPP

ADSL

Multimedia and Quality of Service: What is it?

Streaming Stored Multimedia

Stored streaming:

* media stored at source

* transmitted to client

 <u>streaming</u>: client playout begins before all data has arrived

timing constraint for still-to-be transmitted data: in time for playout

ATM

- Asynchronous Transfer Mode (ATM)
 - Kan fungera som "informationsmotorväg"
 - I stället för ramar har man små paket (s.k. celler) med fix längd

ATM

- Multiplexering med ATM
 - Cellerna har fix storlek
 - Varje lucka (slot) behöver inte fyllas

ATM

- Indelning av förbindelser
 - TP (Transmission Path): Fysisk förbindelse
 - VP (Virtual Path): Logisk förbindelse mellan två växlar, vilken ingår som en del av en TP
 - VC (Virtual Circuit): Delar av en VP där varje VC utgör en väg mellan de två växlarna

Köteori

- Ankomstintensitet
- Genomströmning

Little's sats

- Betjäningstid
- •

$$E(N) = E(T) \cdot \lambda_{eff}$$

$$P(\text{spärr})=?$$

Projekt