
Alternative solution of problem 2.4

This solution will not use Gauss’ law. To start off, we remember that the potential obeys super-
position and as such, the potential everywhere can be computed as the sum of the contributions
of two spheres.

One sphere is held at potential 0 and the other at V0. Consider,

V (r) =
1

4πε0

∫
V

ρ

|r − r′|
dv′ (1)

From this equation we see that charges somewhere in our system is needed in order to have a
non-zero potential. In the region we have only two spheres and vacuum, thus any charges must
reside on the surfaces of the spheres. For now we assume that the inner sphere, of radius a,
have a total charge of Q1 and consequently a charge distribution of σ1 = Q1/4πa

2. Likewise for
the larger sphere, r = 2a, we have a charge Q2 and a charge distribution of σ2 = Q2/8πa

2.
Now let us compute the potential from an arbitrary sphere of radius b and surface charge
distribution σ. To do this we consider a ring on the sphere, as illustrated in the figure below.
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Figure 1: Geometry of a ring situated on a sphere.

The ring of interest is shown by the solid line and has a radius of ρ and is situated at height z0.
The potential along the symmetry axis of the ring is then given by,

Vring(z) =
1

4πε0

∫
σ

|r − r′|
dl (2)
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Our observation point, r, is any point along the z-axis, r = zẑ, and the source positions is any
point on the circle at height z0, r

′ = ρr̂ + z0ẑ.

Vring(z) =
1

4πε0

∫
σ

|r − r′|
dl =

1

4πε0

2π∫
0

σ√
ρ2 + (z − z0)2

ρdφ′ =
σ

2ε0

ρ√
ρ2 + (z − z0)2

(3)

Now a full sphere can be seen as the sum of many rings. By
integrating over θ in spherical coordinates we can obtain the po-
tential for the full sphere. During this integration the radius of
the circles will vary according to ρ = b sin θ and the position in
z as z0 = b cos θ, see Fig. 1. Along the z-axis we have that the
potential of the full sphere becomes,

Vsphere(z) =

π∫
0

Vring(z) sin θ dθ =
σ

2ε0

π∫
0

b2 sin θ√
b2 sin2 θ + (z − b cos θ)2

dθ

(4)
Consider the variable substitution u = cos θ (du = − sin θ dθ).

Vsphere(z) =
σ

2ε0

1∫
−1

b2√
b2(1− u2) + (z − bu)2

du =
σ

2ε0

1∫
−1

b2√
b2 − 2zbu+ z2

du

(5)
Now another variable substitution, s = b2 − 2buz + z2 ( ds = −2bz du).

Vsphere(z) =
bσ

4zε0

β∫
α

1√
s

ds (6)

where α = b2 − 2bz + z2 and β = b2 + 2bz + z2. Solving the integral, we obtain,

Vsphere(z) =
σb

2ε0z
(|b+ z| − |b− z|) (7)

Alternatively written as,

Vsphere(z) =


σb

ε0
, z ≤ b

σb2

ε0z
, z > b

(8)

Due to the symmetries of the sphere, this is valid for any chosen axis not just for z. Thus we
can replace z with r to get the potential at any position.

Vsphere(r) =


Q

4πε0b
, r ≤ b

Q

4πε0r
, r > b

(9)
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Now we can use superposition to obtain the potential in this specific problem.

Vtot(r) = V1(r) + V2(r) =



Q1

4πε0a
+

Q2

8πε0a
, r ≤ a

Q1

4πε0r
+

Q2

8πε0a
, a < r ≤ 2a

Q1

4πε0r
+

Q2

4πε0r
, r > 2a

(10)

The potential is known at two positions Vtot(a) = V0 and Vtot(2a) = 0,

Vtot(2a) = 0 ⇒ Q1 +Q2 = 0 ⇒ Q1 = −Q2 (11)

Vtot(a) = V0 ⇒ Q1

4πε0a
− Q1

8πε0a
= V0 ⇒ Q1 = 8πε0aV0 (12)

Putting it all together, we get the result at last,

Vtot(r) =



V0, r ≤ a

V0

(
2a

r
− 1

)
, a < r ≤ 2a

0, r > 2a

(13)
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