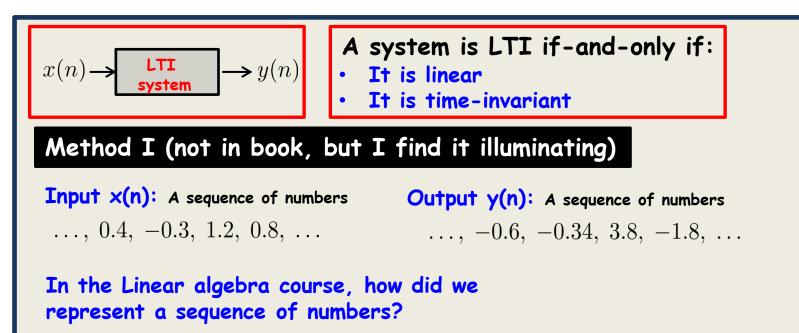
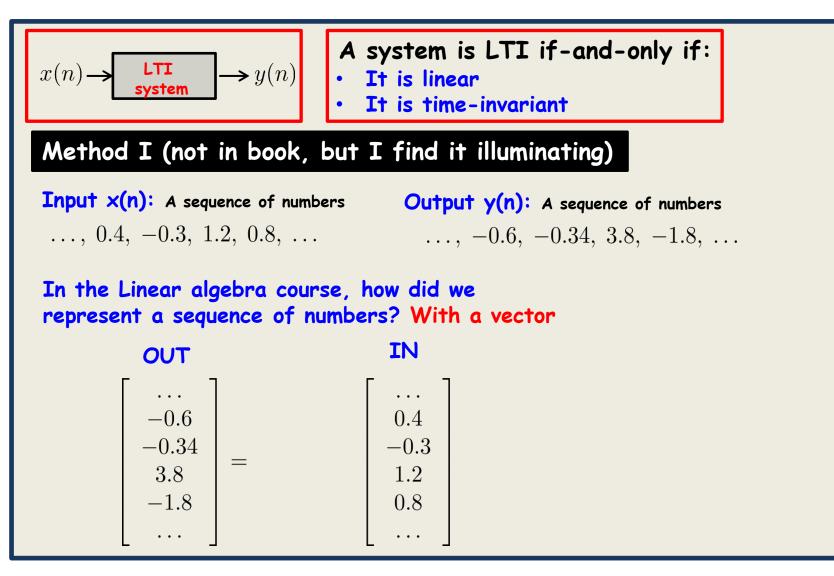
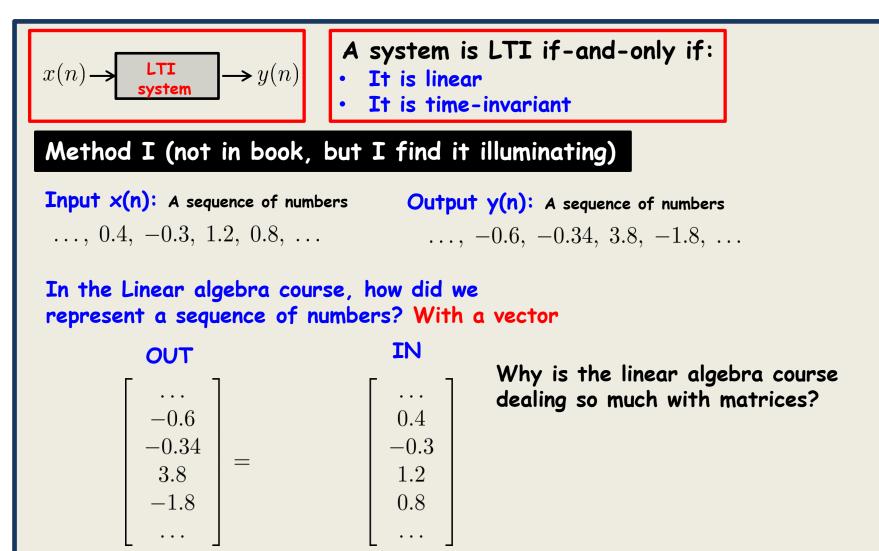
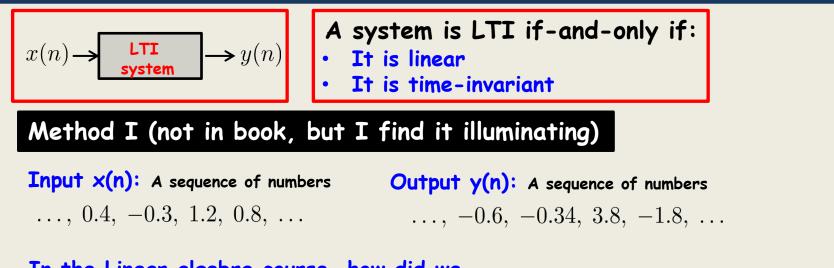


LTI systems have compact mathematical representation We next provide two ways the reach the representation

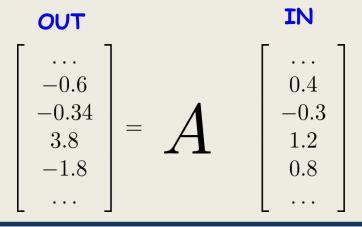




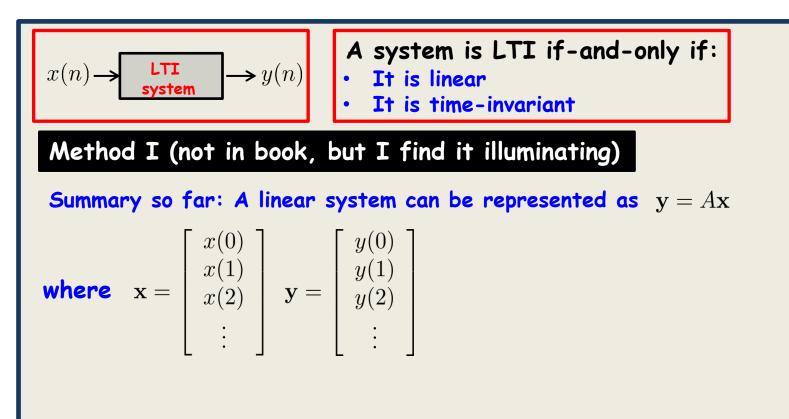


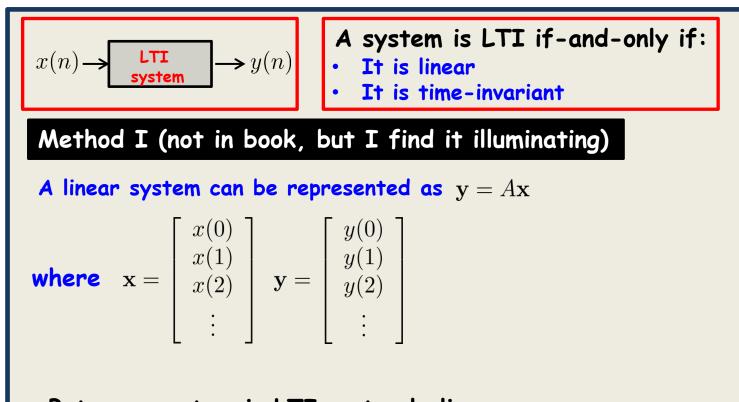


In the Linear algebra course, how did we represent a sequence of numbers? With a vector

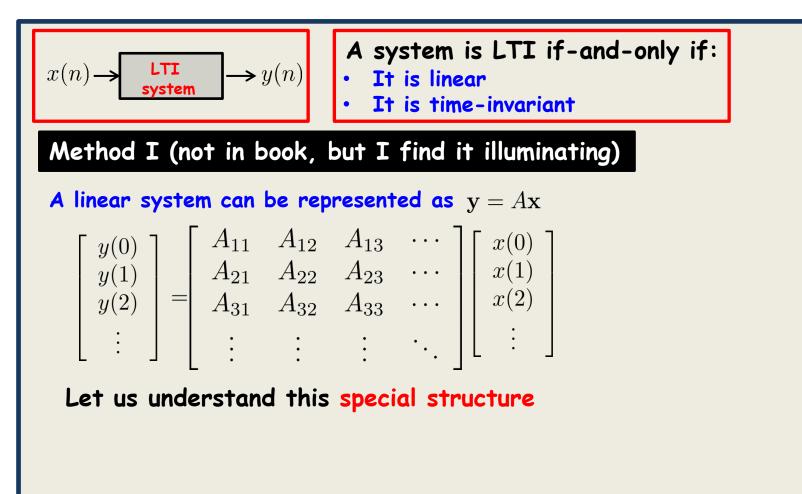


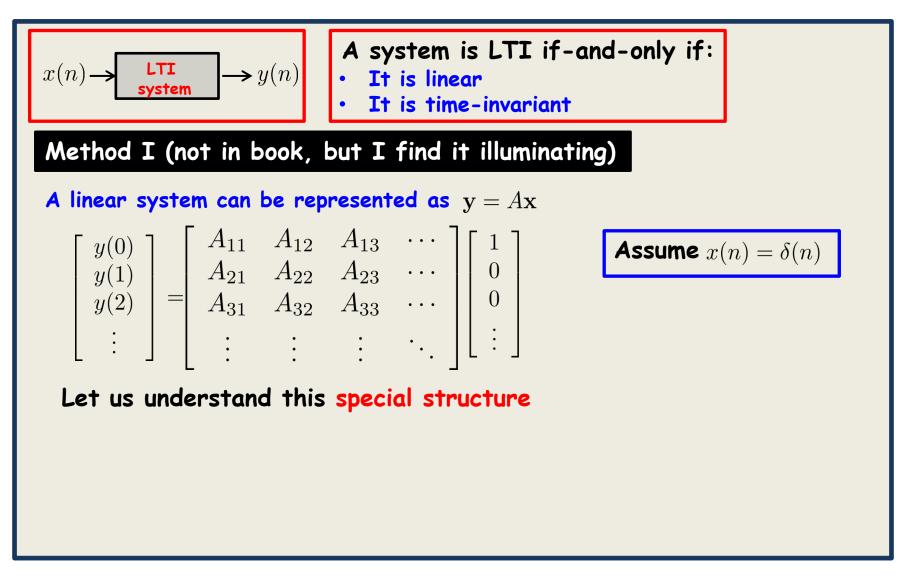
Why is the linear algebra course dealing so much with matrices? Because every linear function can be represented by a matrix

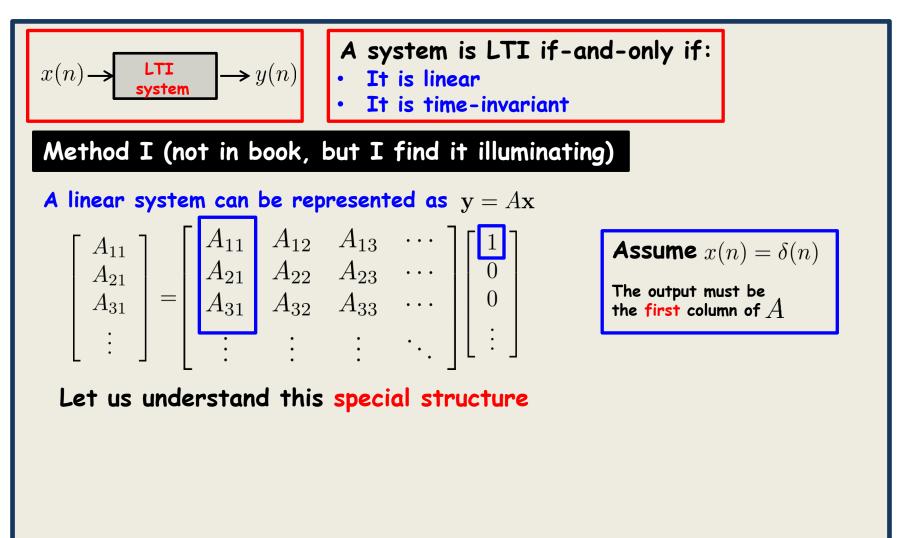


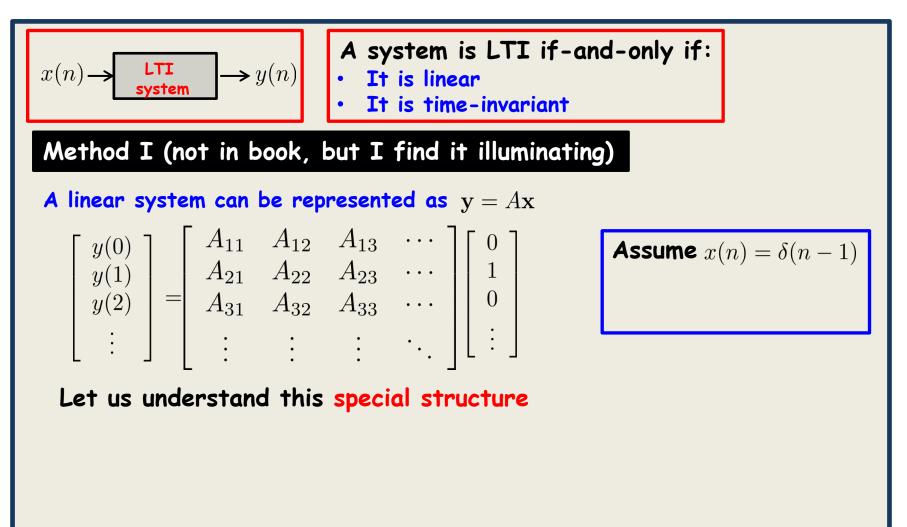


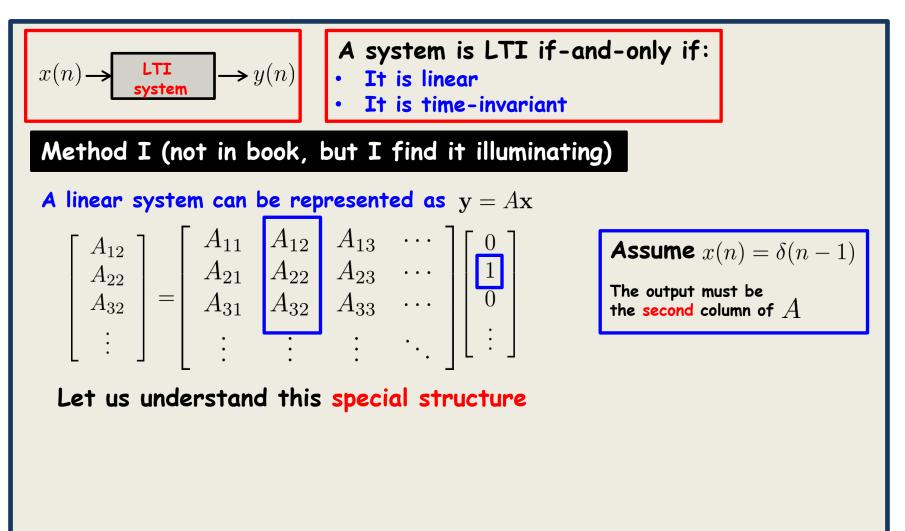
But, our system is LTI, not only linear, so this imposes restrictions on A i.e., A must have a special structure

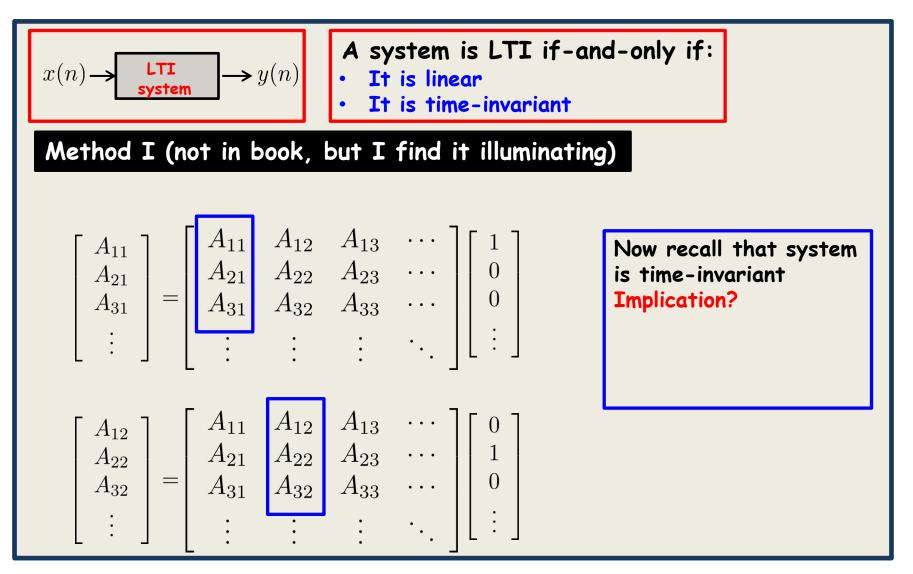


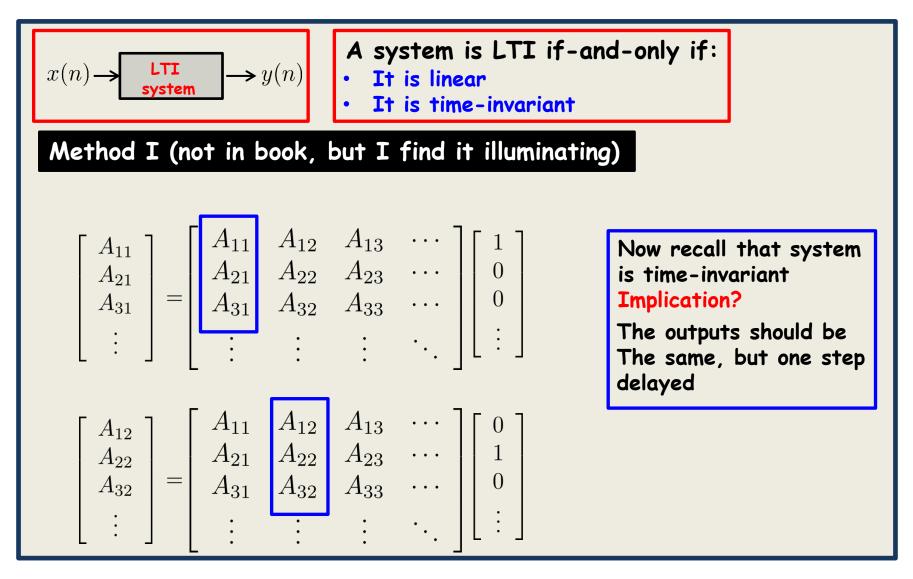


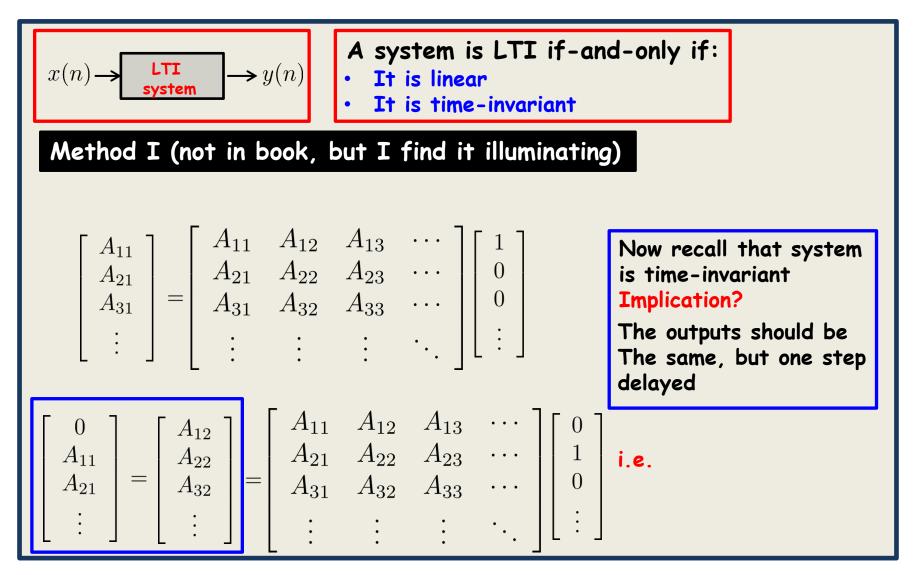


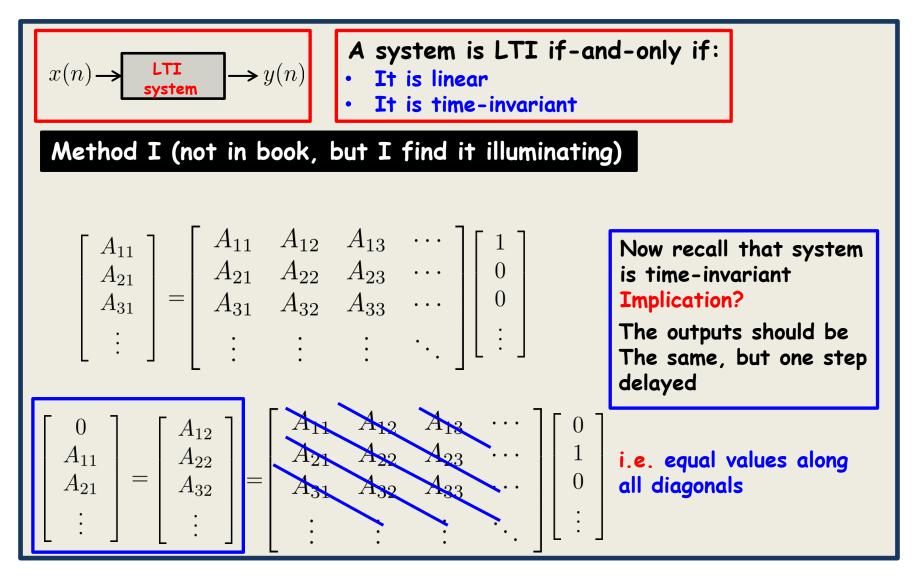


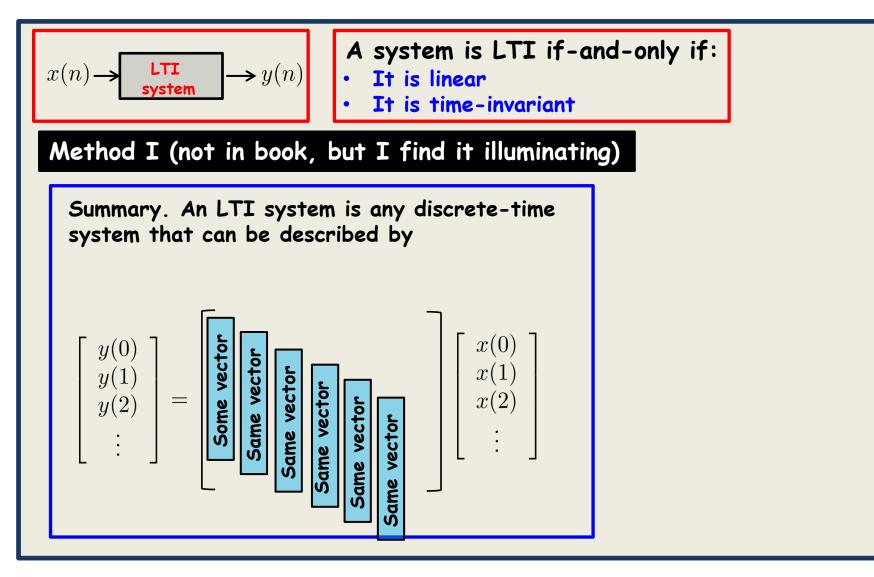


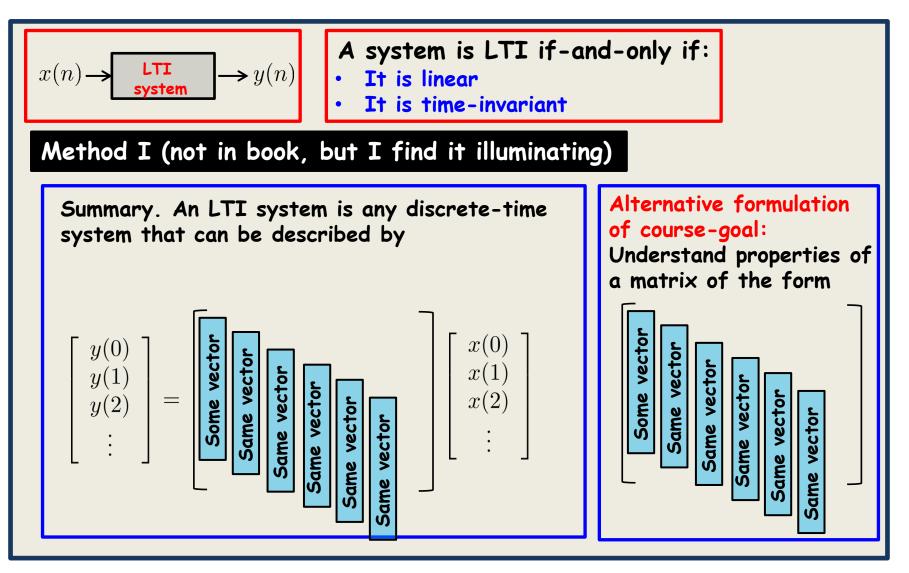


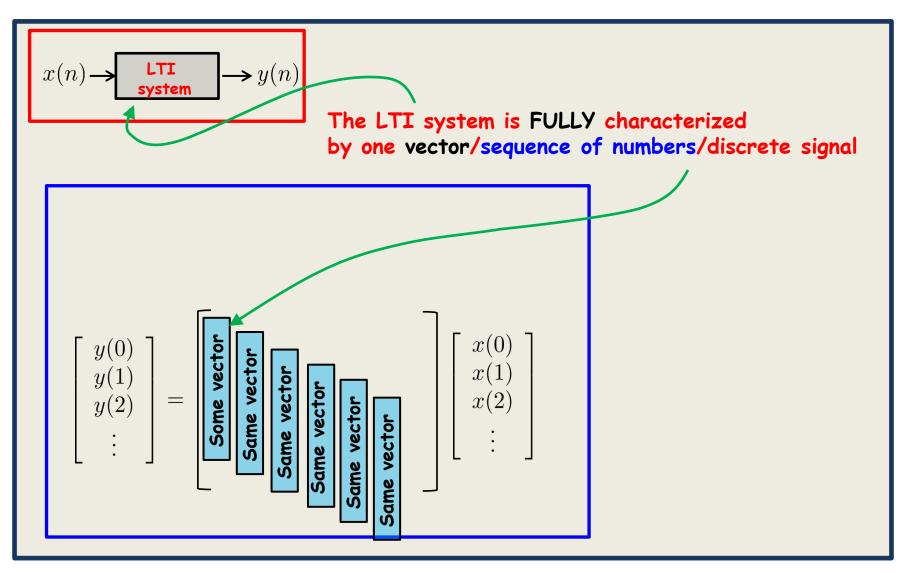


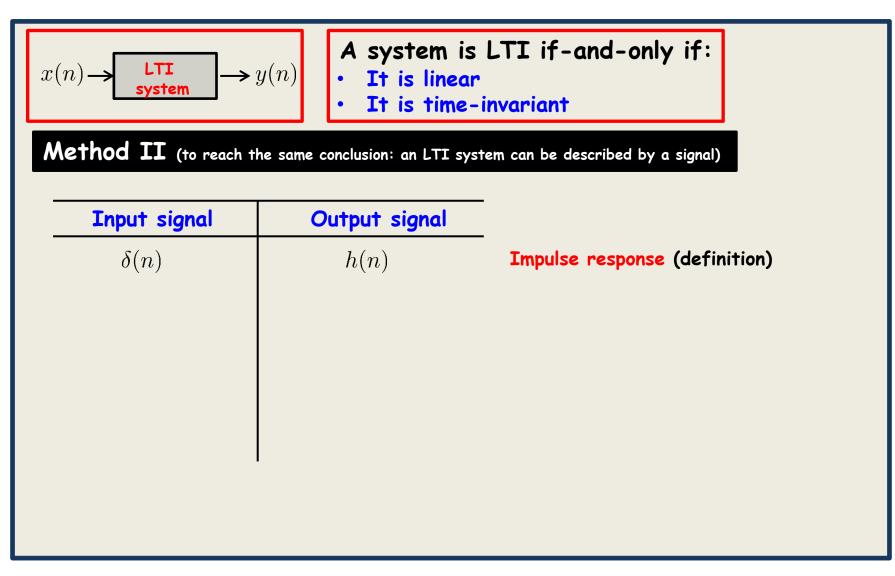


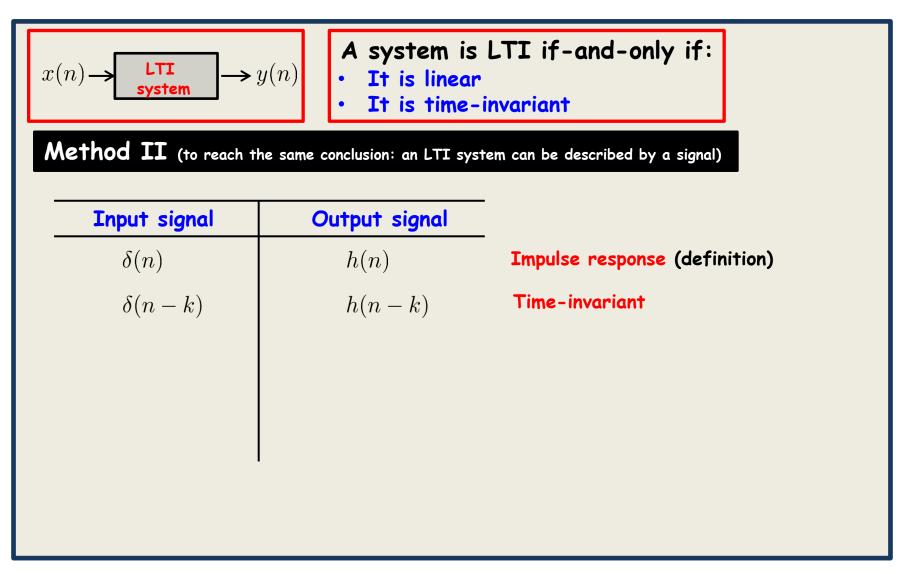


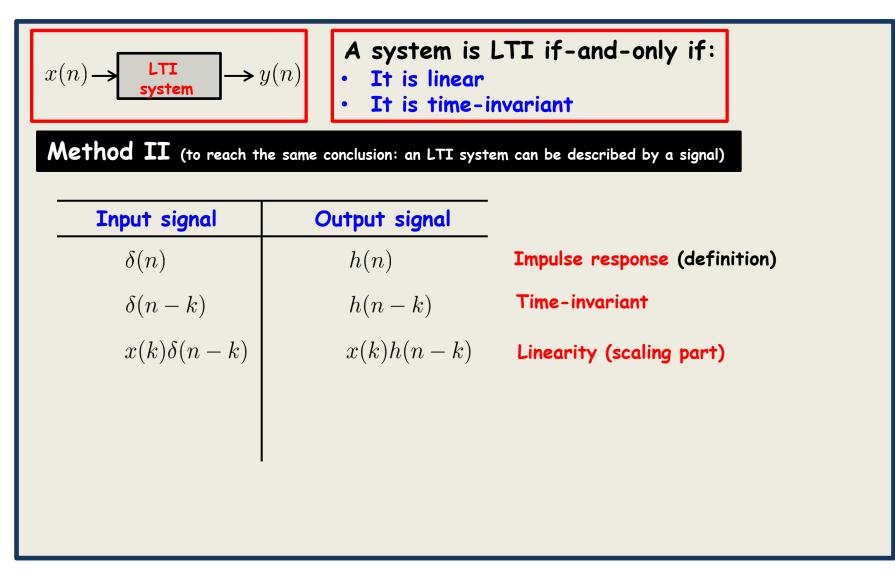


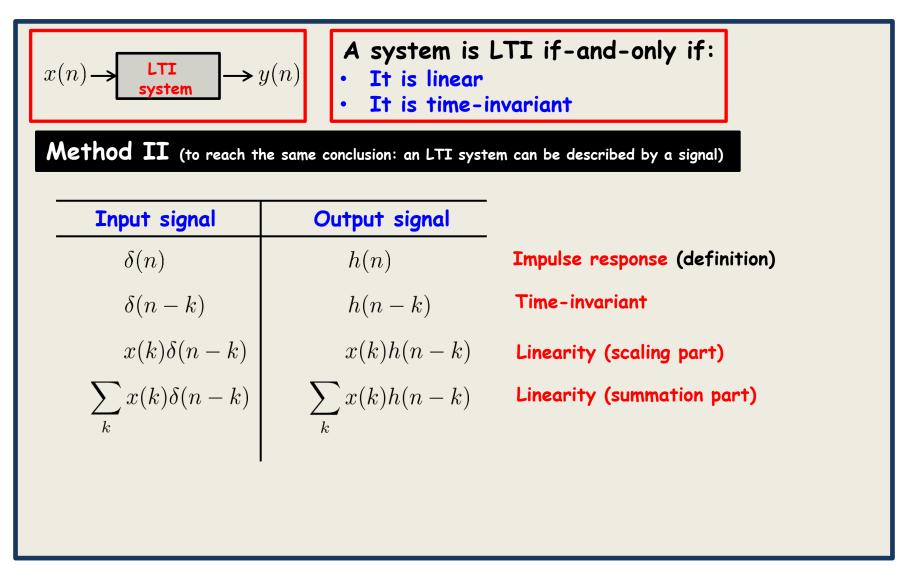


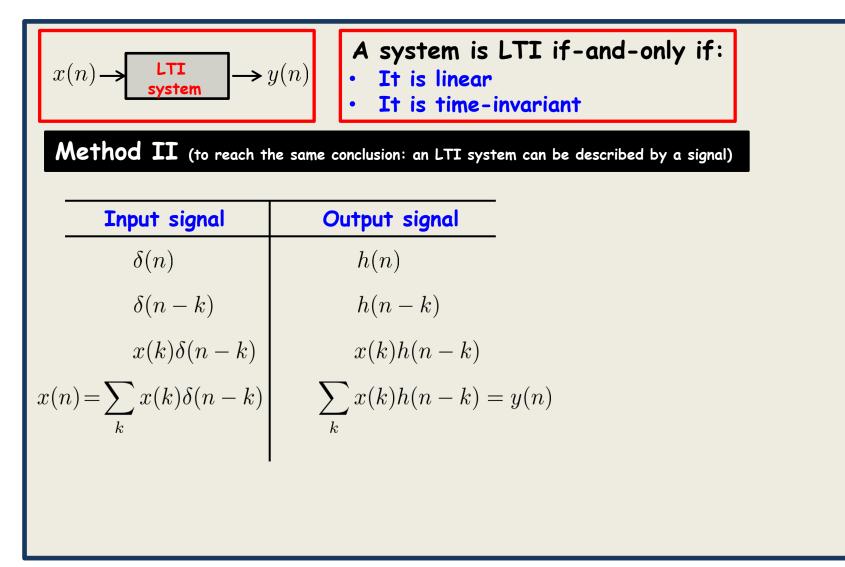


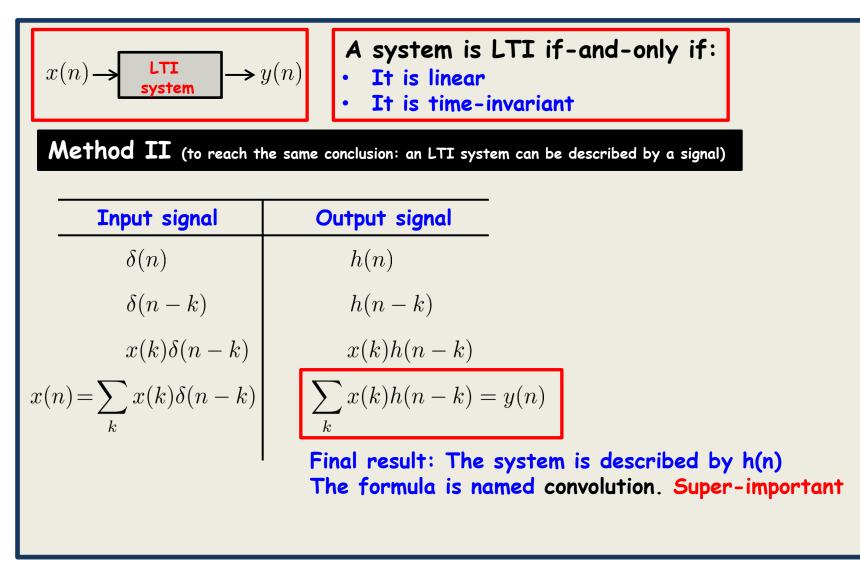


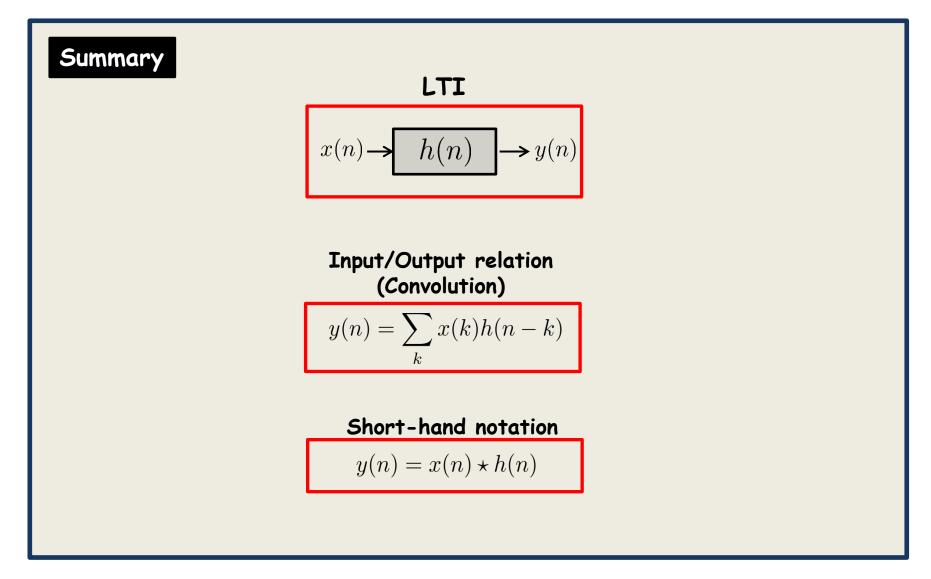












Agenda

Today

Get familiar with $y(n) = x(n) \star h(n)$ through some examples For what h(n) do we have BIBO stability? See relationship between h(n) and $\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$ Some notes on correlation functions

In the long run

Agenda

Today

Get familiar with $y(n) = x(n) \star h(n)$ through some examples For what h(n) do we have BIBO stability? See relationship between h(n) and $\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$ Some notes on correlation functions

In the long run (Loosely speaking)

 $\begin{array}{l} {\rm Study}\sum_k a(k)y(n-k) = \sum_\ell b(\ell)x(n-\ell) \ \ {\rm in \ \ detail \ \ via \ \ z-transform, \ \ and \ \ 2 \ \ types} \\ {\rm of \ \ Fourier \ \ transforms} \end{array}$

The sampling-reconstruction issues

Agenda

Today

Get familiar with $y(n) = x(n) \star h(n)$ through some examples For what h(n) do we have BIBO stability? See relationship between h(n) and $\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$ Some notes on correlation functions

In the long run (Loosely speaking)

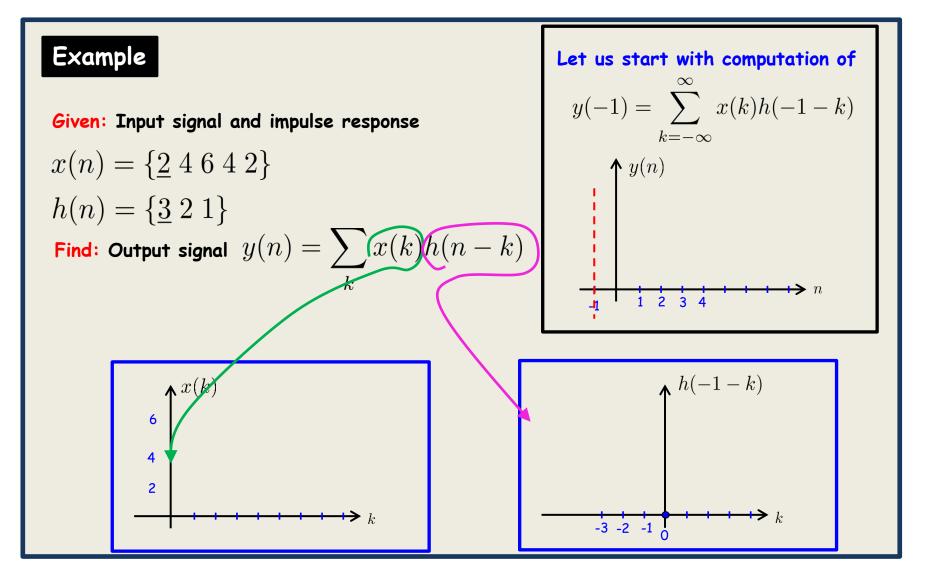
 $\begin{array}{l} {\rm Study}\sum_k a(k)y(n-k) = \sum_\ell b(\ell)x(n-\ell) \ \ {\rm in \ \ detail \ \ via \ \ z-transform, \ \ and \ \ 2 \ \ types} \\ {\rm of \ \ Fourier \ \ transforms} \end{array}$

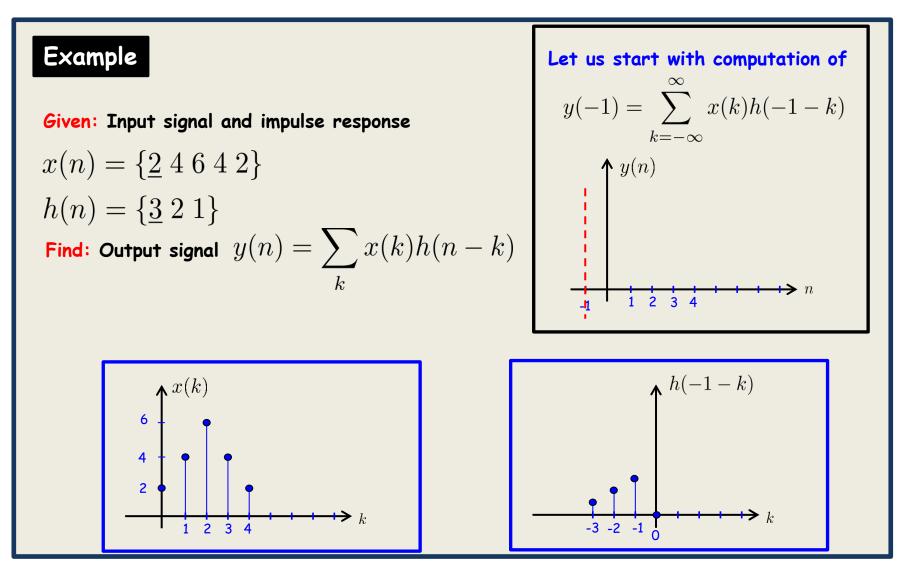
The sampling-reconstruction issues

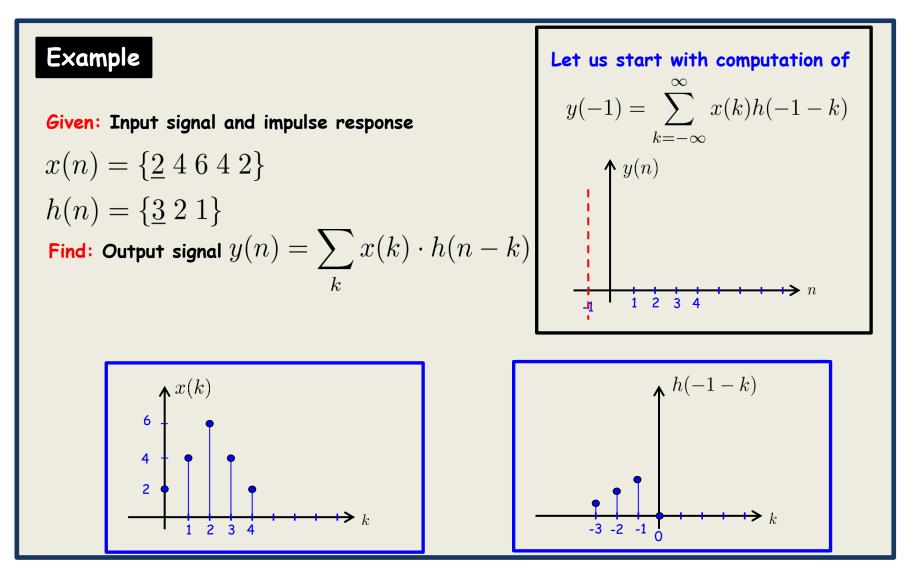
Example

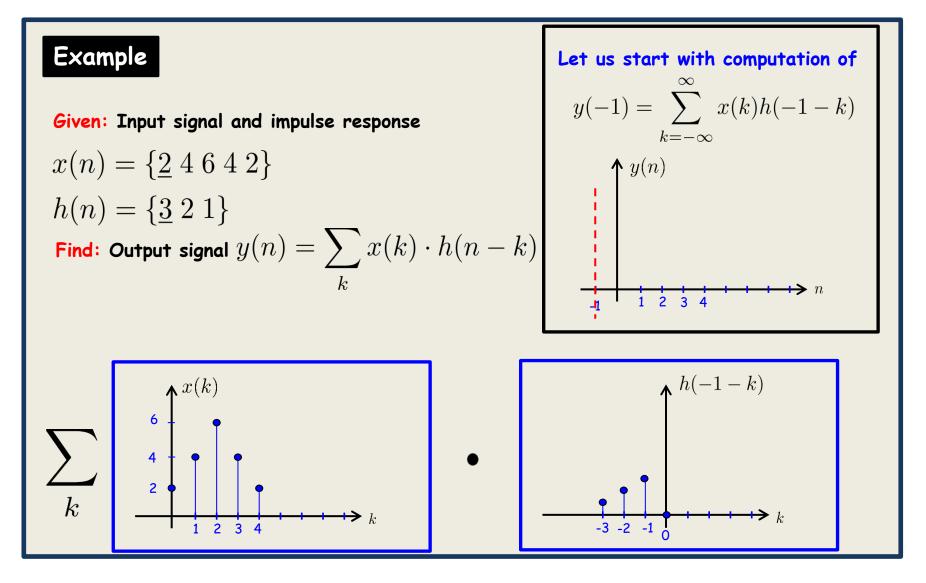
Given: Input signal and impulse response $x(n) = \{ \underline{2} \ 4 \ 6 \ 4 \ 2 \}$ $h(n) = \{ \underline{3} \ 2 \ 1 \}$ Find: Output signal $y(n) = \sum_{k} x(k)h(n-k)$

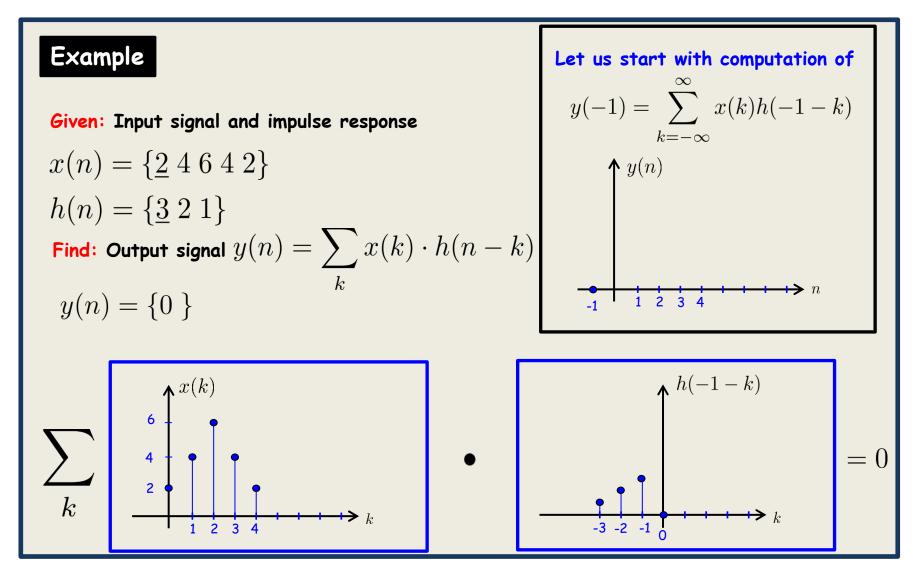
Example Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum_{k} x(k)h(n-k)$

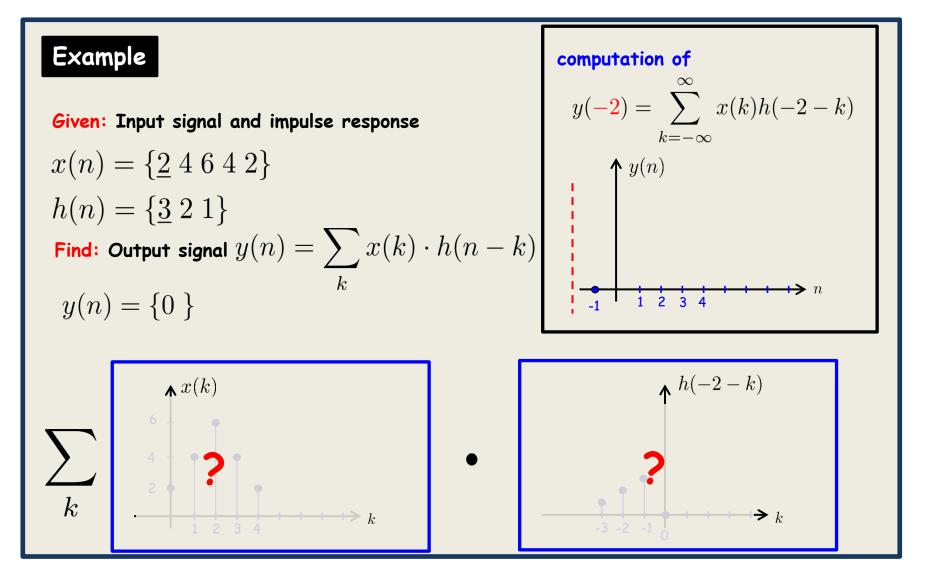


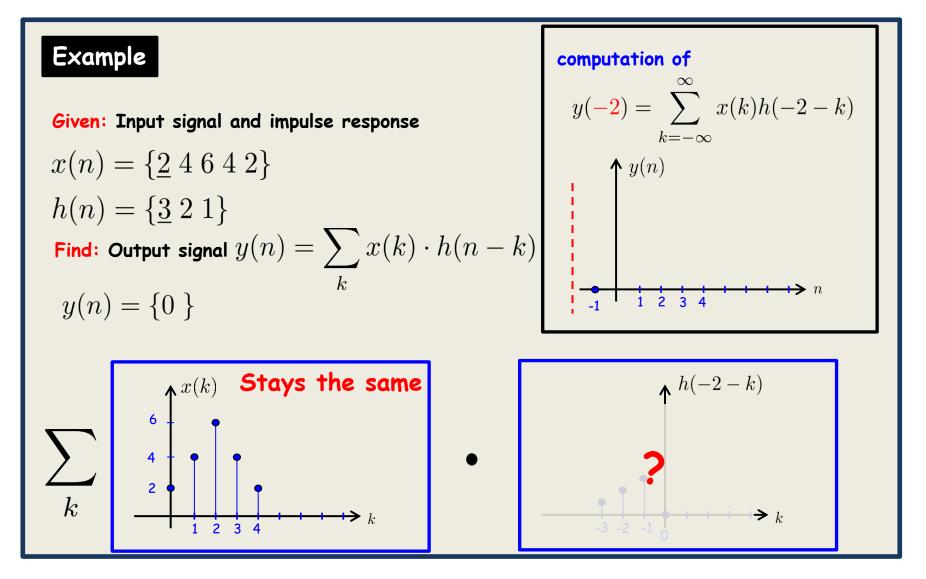


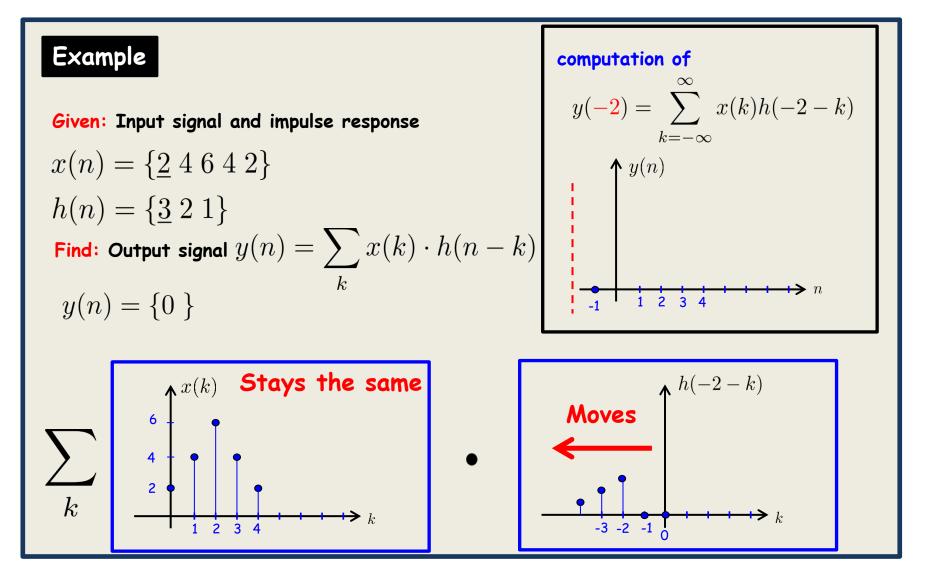


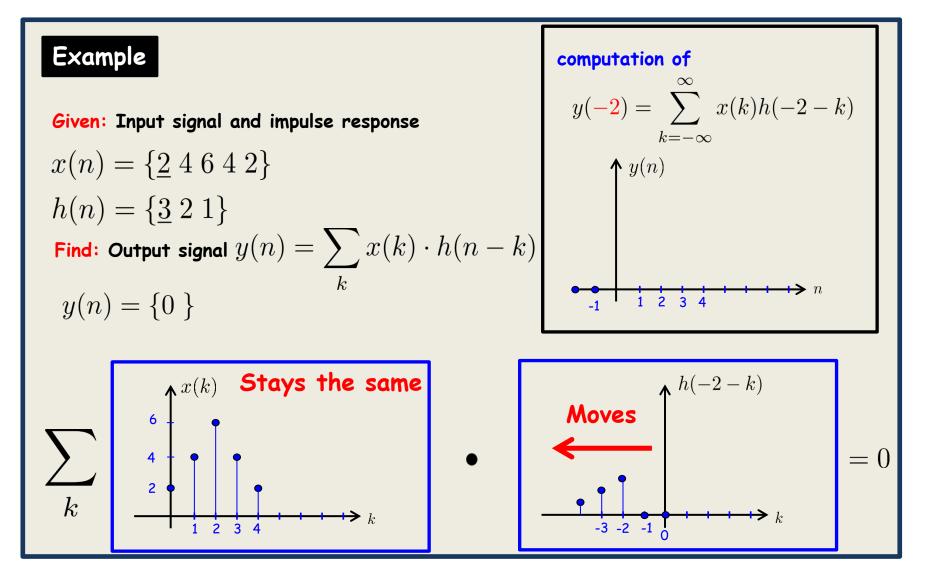


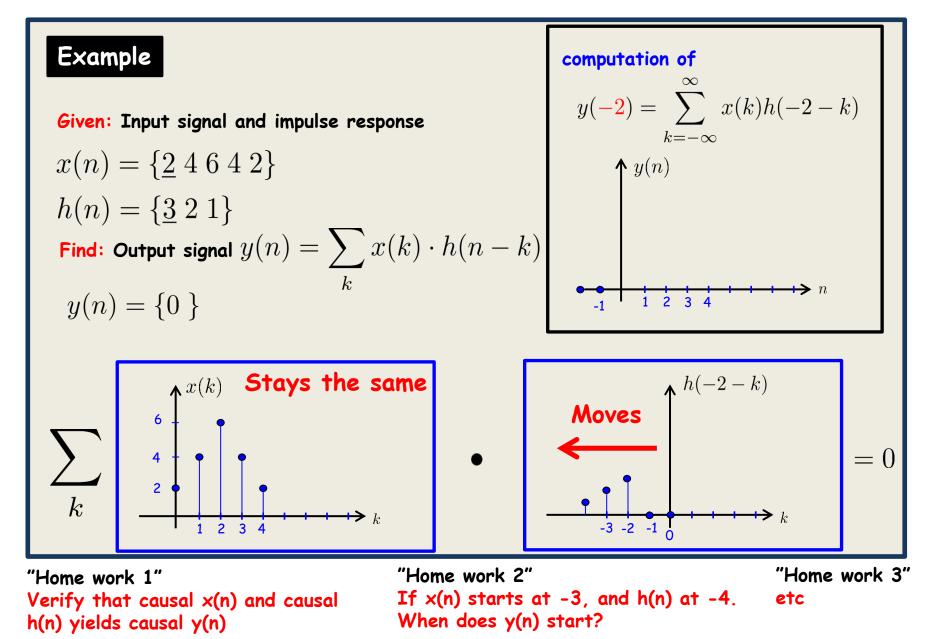


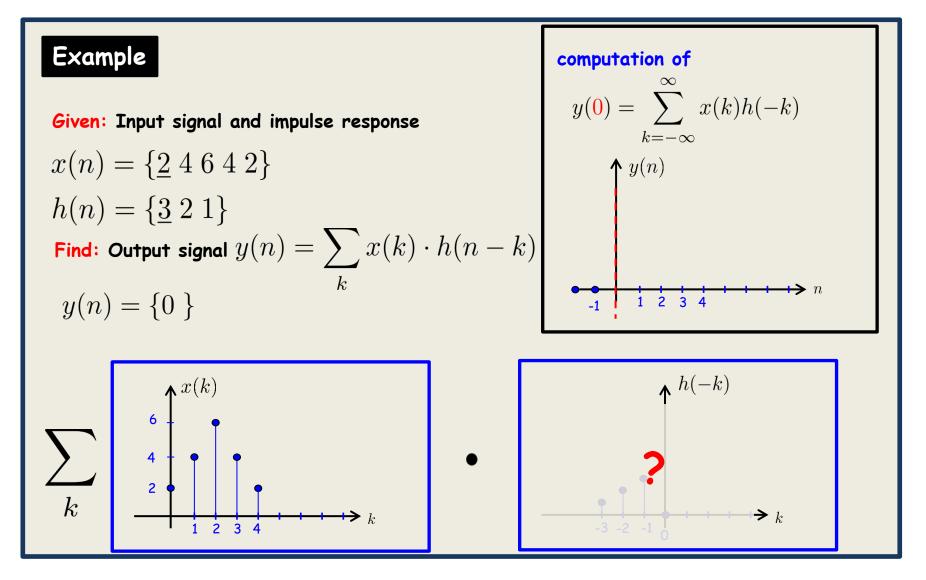


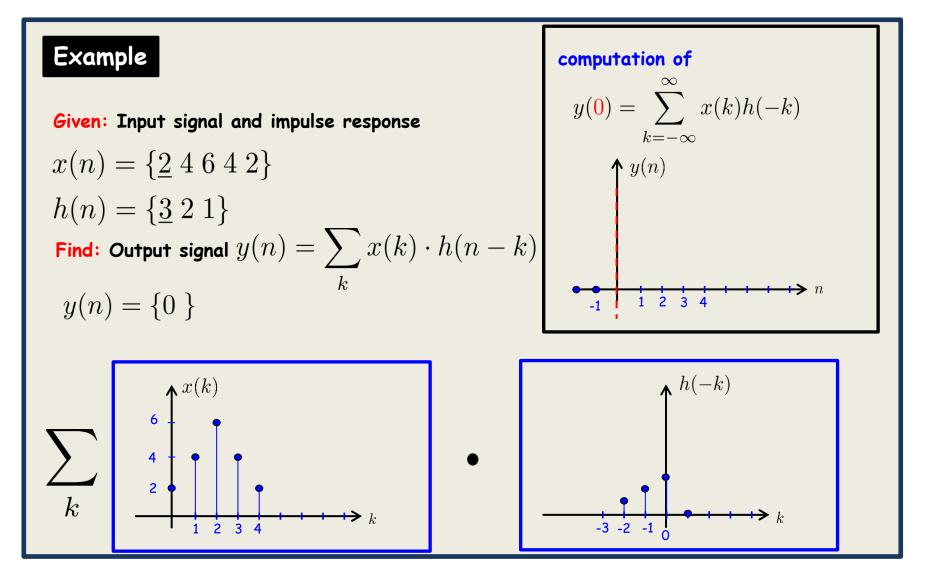


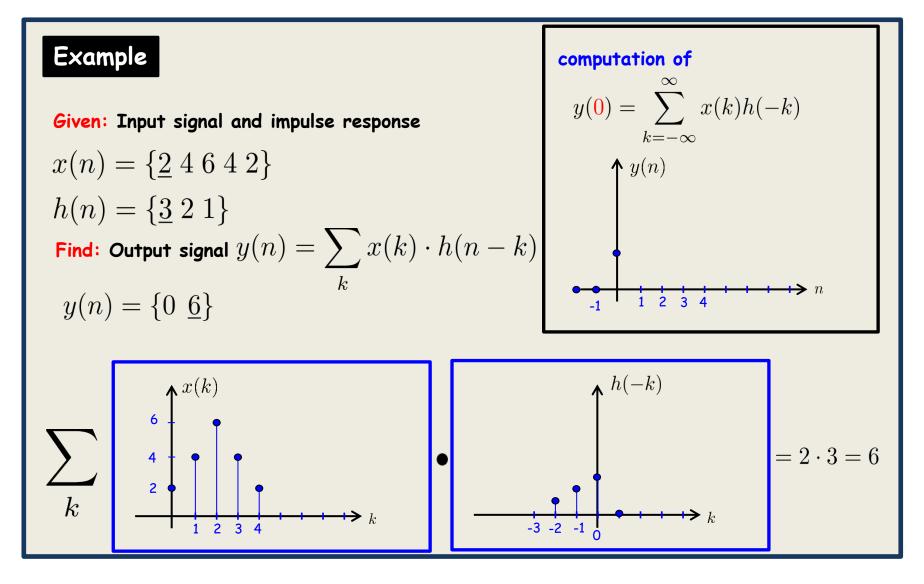


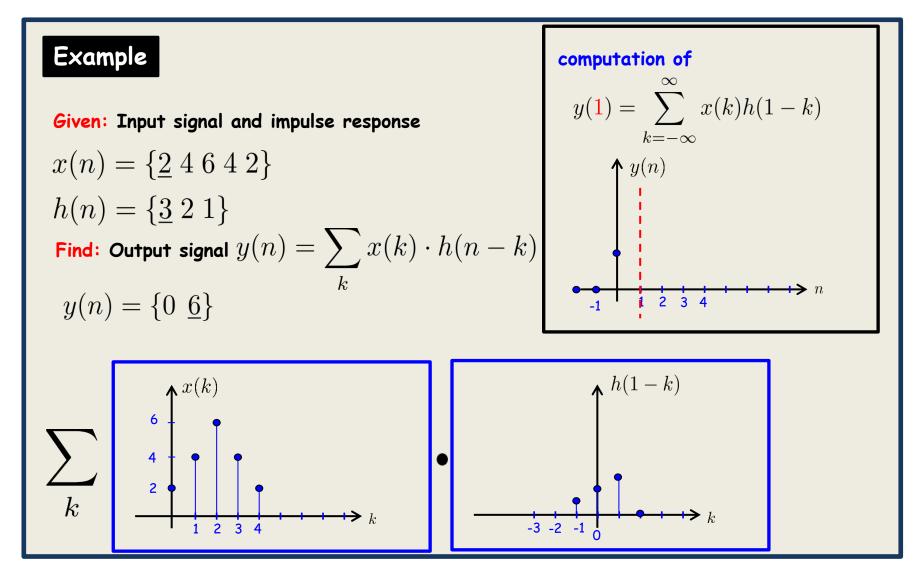


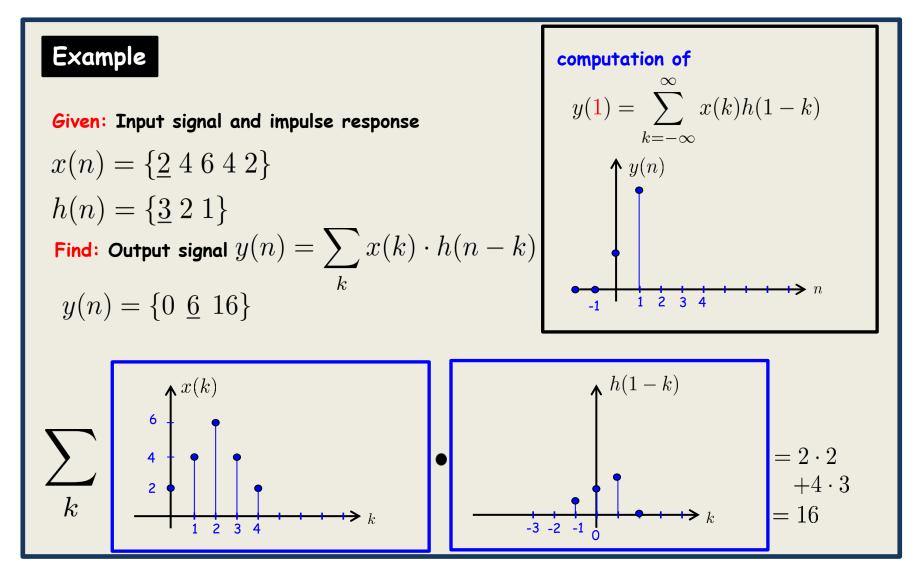


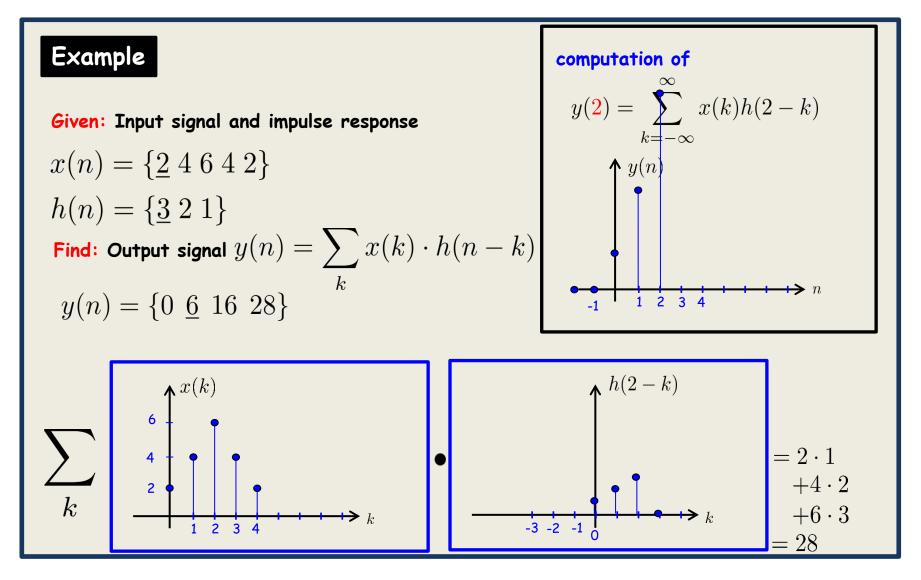












Example

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum_{k} x(k) \cdot h(n-k)$ $y(n) = \{0 \ \underline{6} \ 16 \ 28 \ 28 \ \underline{20} \ 8 \ 2\}$

Repeating gives

Example

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum_{k} x(k) \cdot h(n-k)$ $y(n) = \{\underline{6} \ 16 \ 28 \ 28 \ 20 \ 8 \ 2\}$

Example

Three more methods

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum_{k} x(k) \cdot h(n-k)$

Example

Three more methods Method 1

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum_{k} x(k) \cdot h(n-k)$ = 3x(n) + 2x(n-1) + x(n-2)

Example

Three more methods Method 1

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum x(k) \cdot h(n-k)$ = 3x(n) + 2x(n-1) + x(n-2)n = 0 $h(0-k) \qquad 1 \quad 2 \quad \underline{3}$ 2 4 6 4 2 x(k)h(0-k)x(k) $\sum = 6 = \psi(0)$ 6

Example

Three more methods Method 1

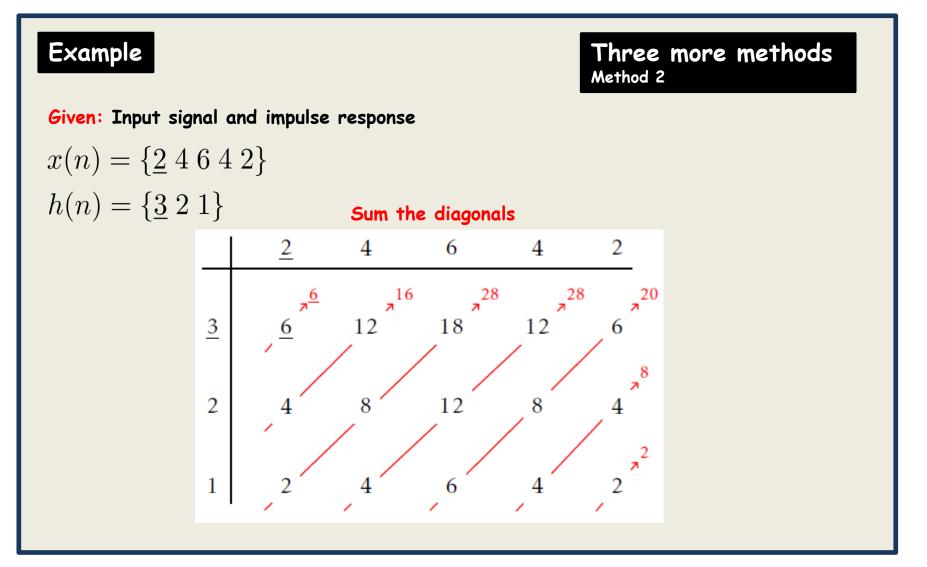
Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum x(k) \cdot h(n-k)$ = 3x(n) + 2x(n-1) + x(n-2)n = 11 2 <u>3</u> h(1-k)2 4 6 4 2 x(k)h(1-k)x(k)4 12 $\Sigma = 16 = y(1)$

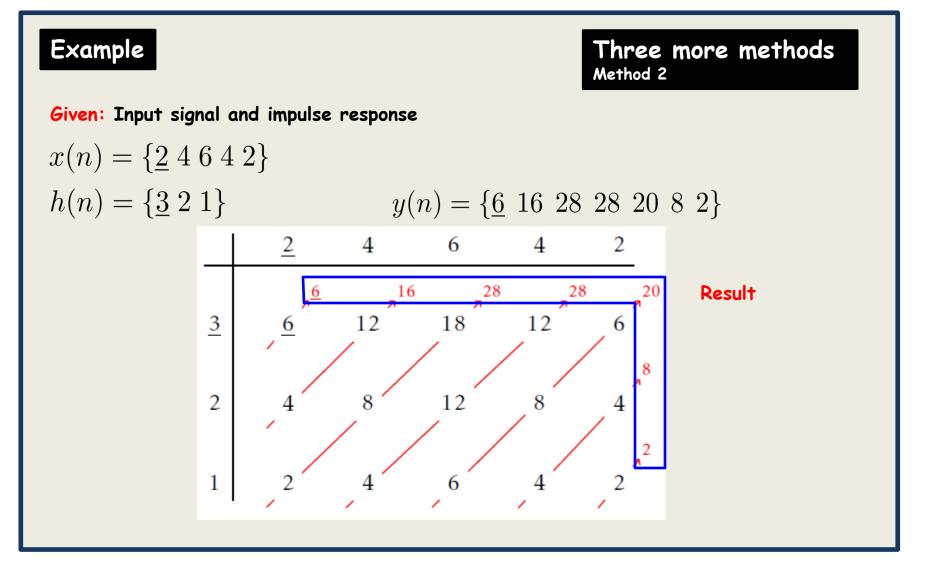
Example

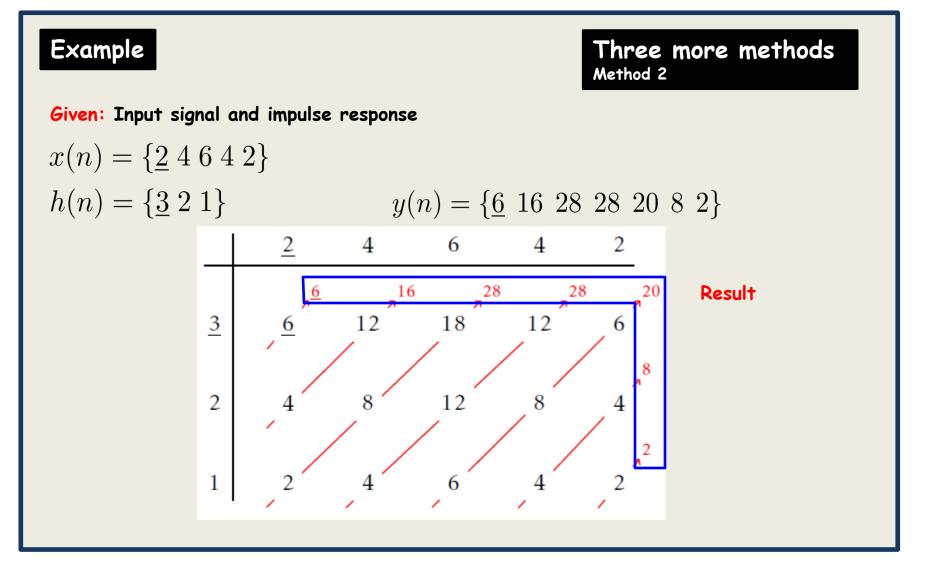
Three more methods Method 1

Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\}$ Find: Output signal $y(n) = \sum x(k) \cdot h(n-k)$ = 3x(n) + 2x(n-1) + x(n-2)n=2h(2-k)1 2 <u>3</u> 2 4 6 4 2 x(k) $\sum = 28 = y(2)$ h(2-k)x(k)2 8 18

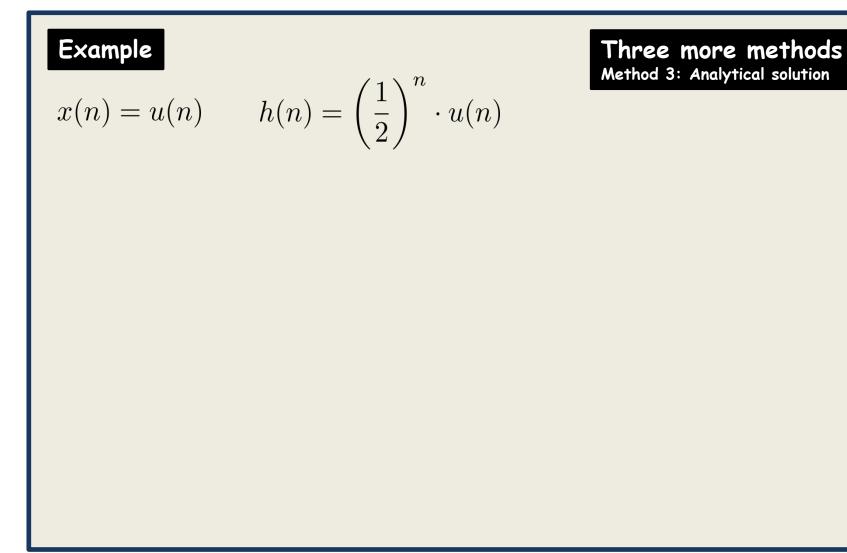
Example Three more methods Method 2 Given: Input signal and impulse response $x(n) = \{\underline{2} \ 4 \ 6 \ 4 \ 2\}$ $h(n) = \{\underline{3} \ 2 \ 1\} \qquad \text{Put numbers in a table and multiply}$ 2 4 6 4 2 <u>6</u> 12 18 12 6 3 4 8 12 8 4 2 2 4 6 4 2 1

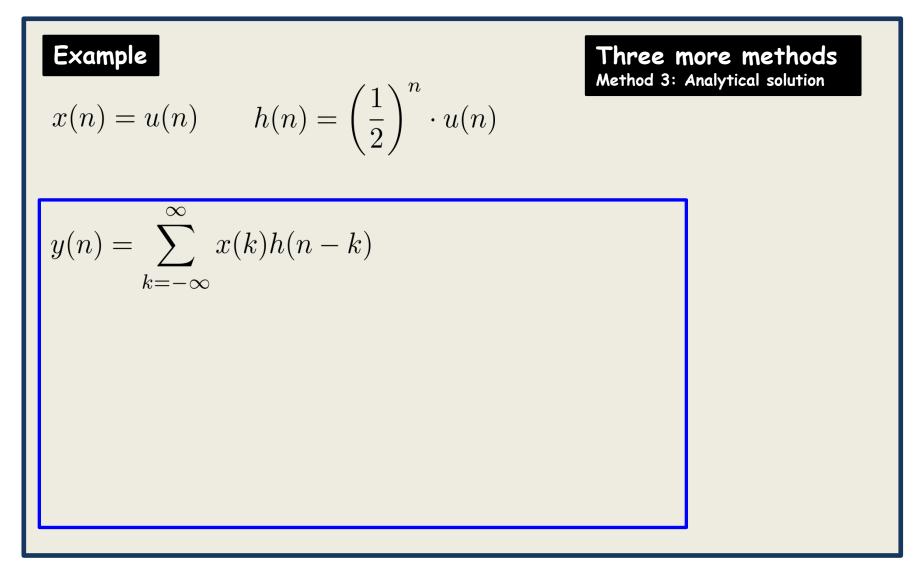






Make sure that you understand why a convolution of a length K signal with a length L signal has length K+L-1





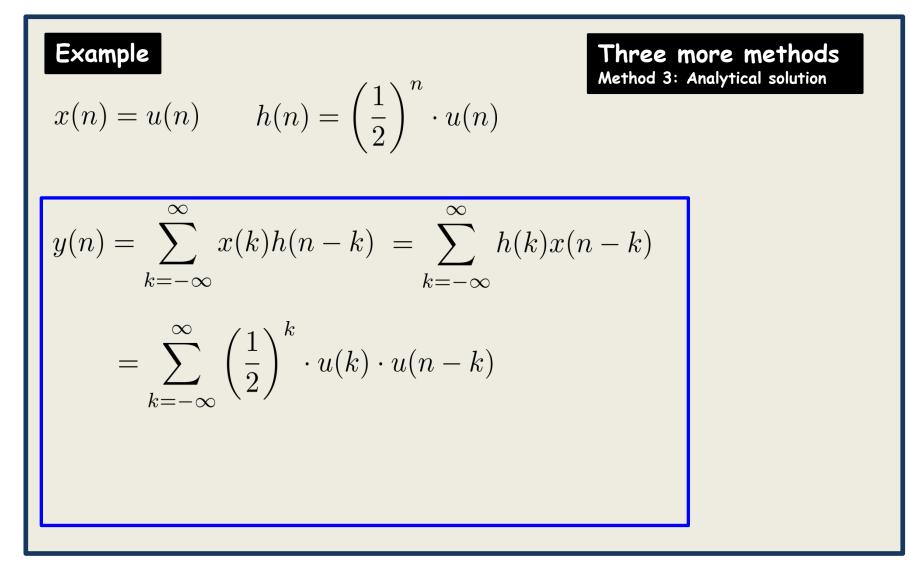
Example

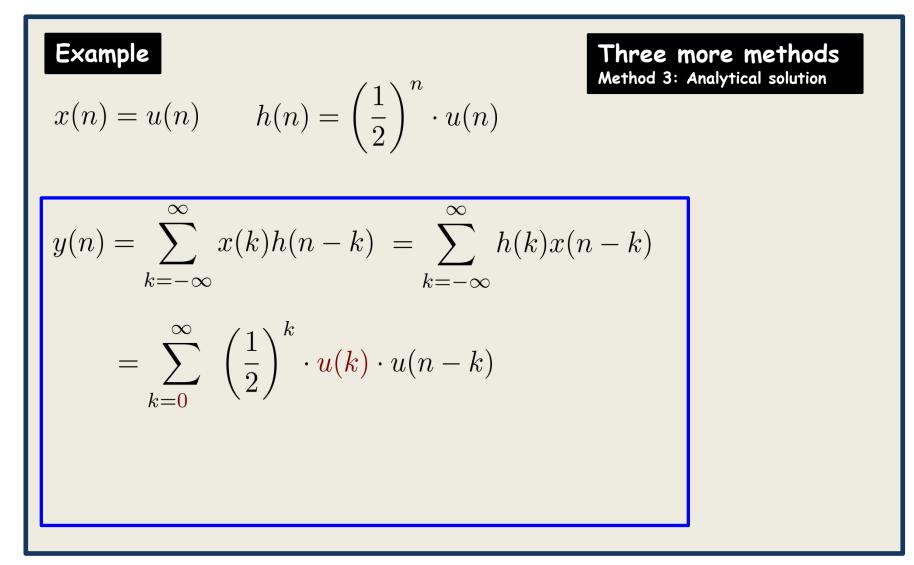
$$x(n) = u(n)$$
 $h(n) = \left(\frac{1}{2}\right)^n \cdot u(n)$

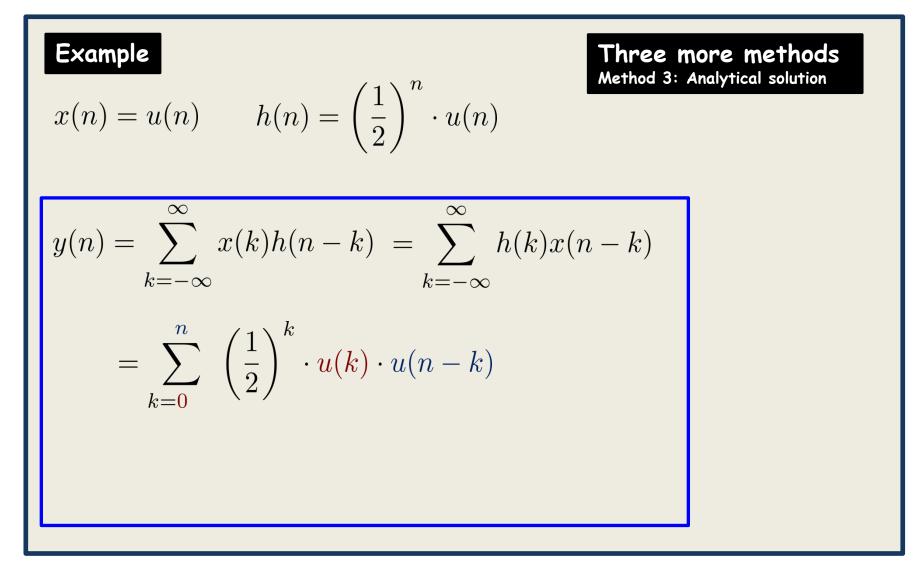
Three more methods Method 3: Analytical solution

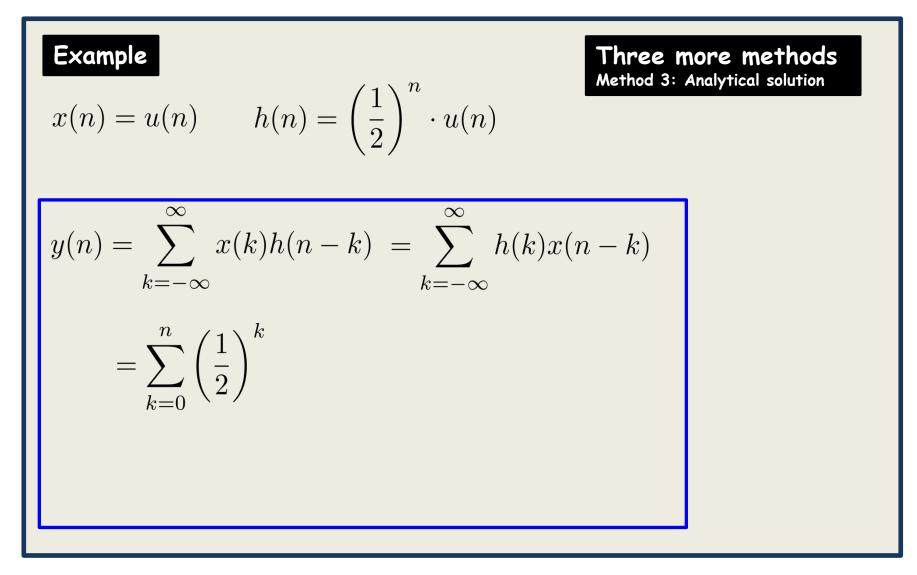
$$y(n) = \sum_{k=-\infty}^{\infty} \widehat{x(k)h(n-k)} = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

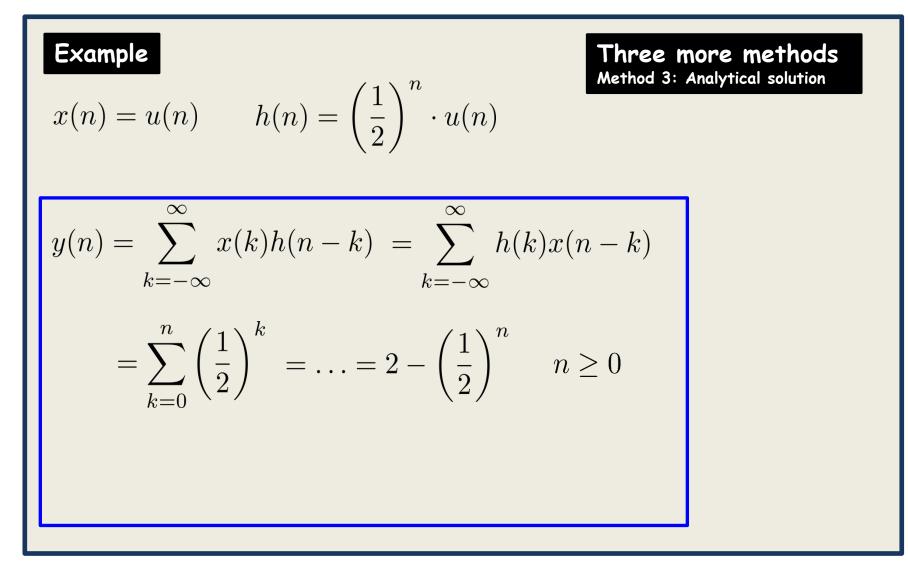
Minor trick. Not really needed, but slightly simpler. Try without the trick at home

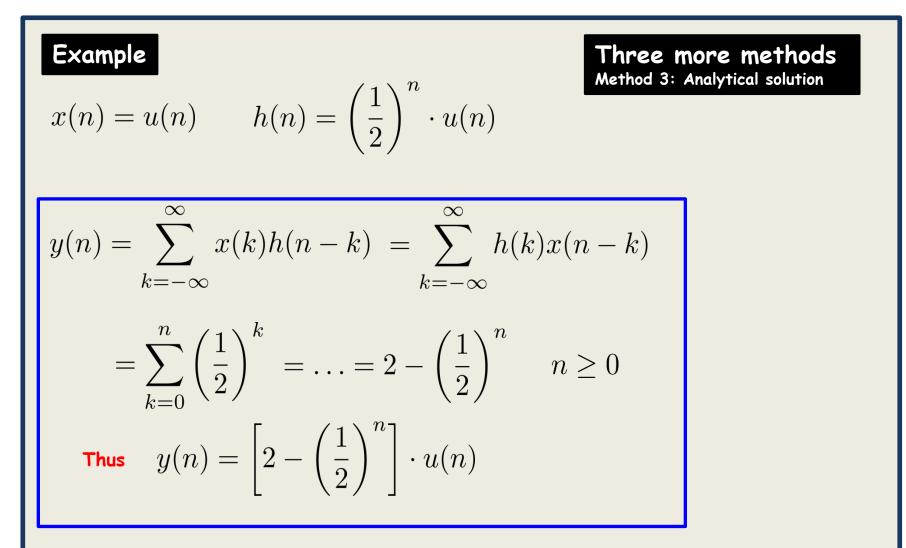












Standard Properties

Commutativity

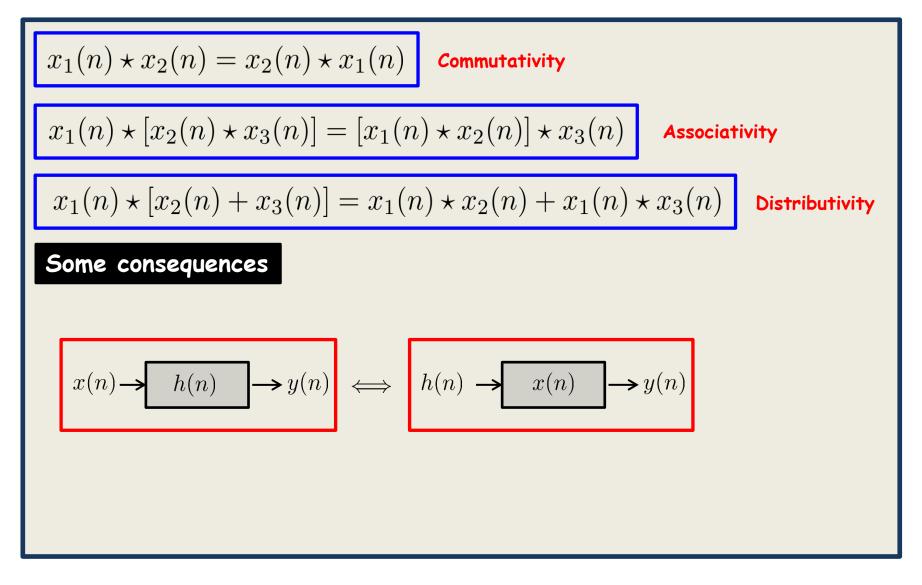
$$x_1(n) \star x_2(n) = x_2(n) \star x_1(n)$$

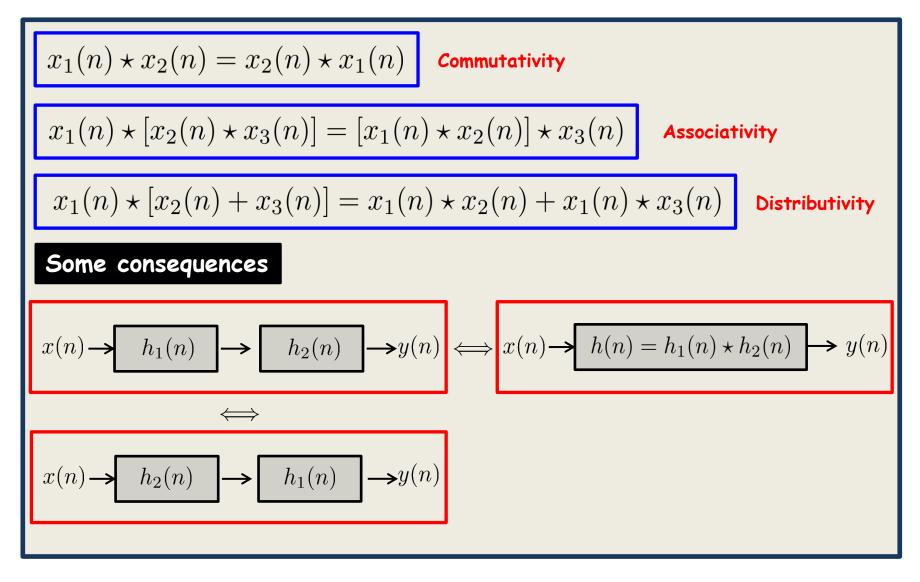
Associativity

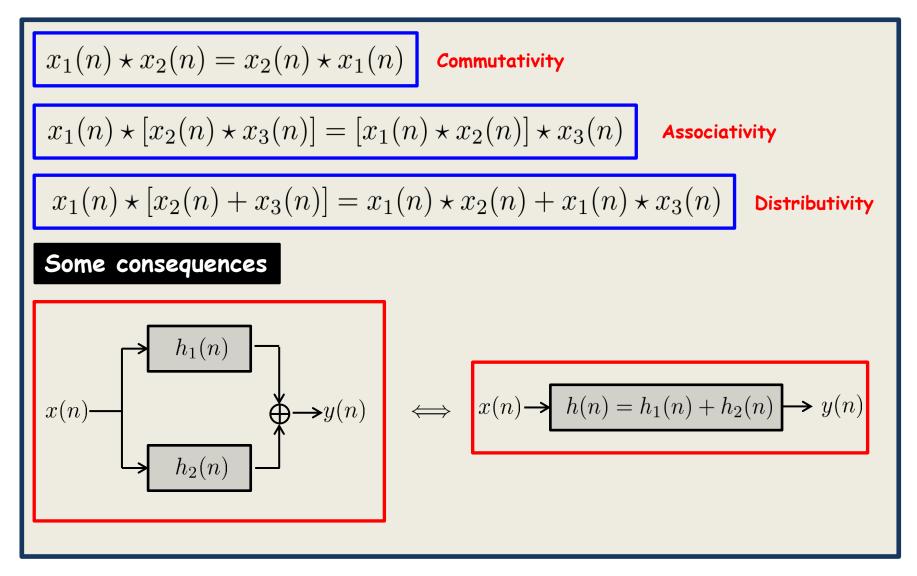
$$x_1(n) \star [x_2(n) \star x_3(n)] = [x_1(n) \star x_2(n)] \star x_3(n)$$

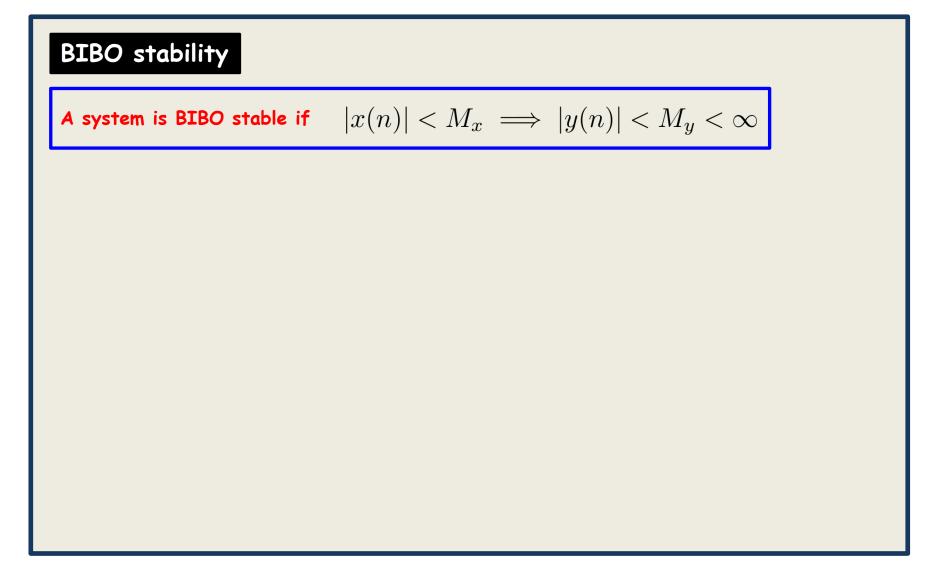
Distributivity

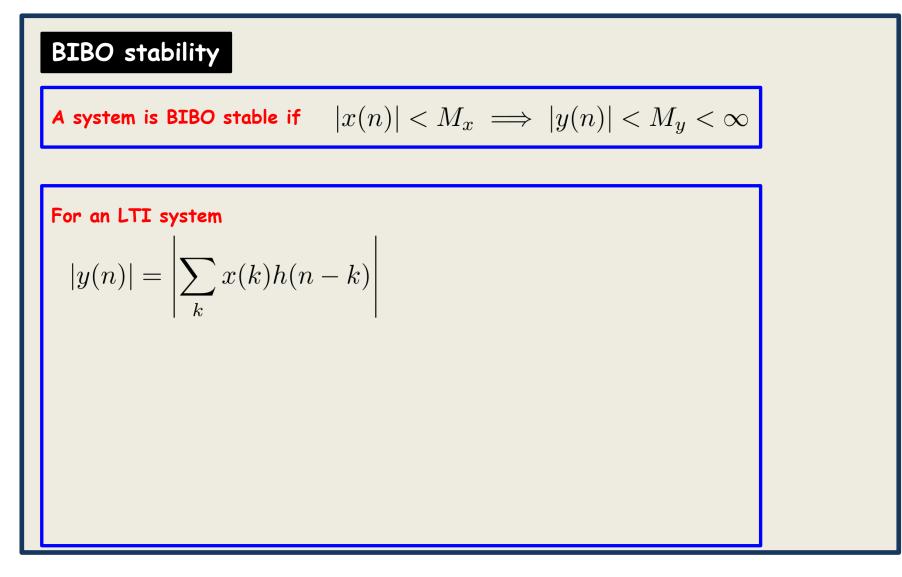
$$x_1(n) \star [x_2(n) + x_3(n)] = x_1(n) \star x_2(n) + x_1(n) \star x_3(n)$$

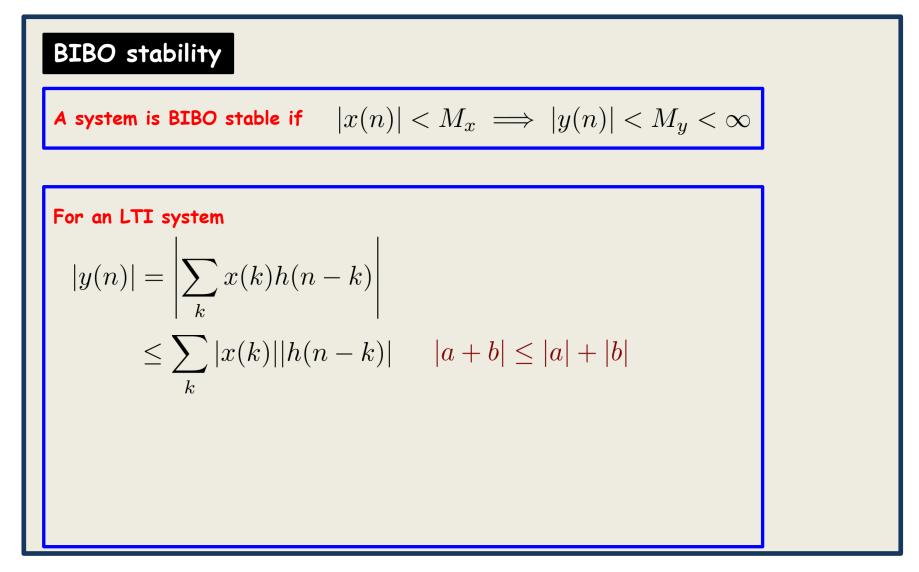


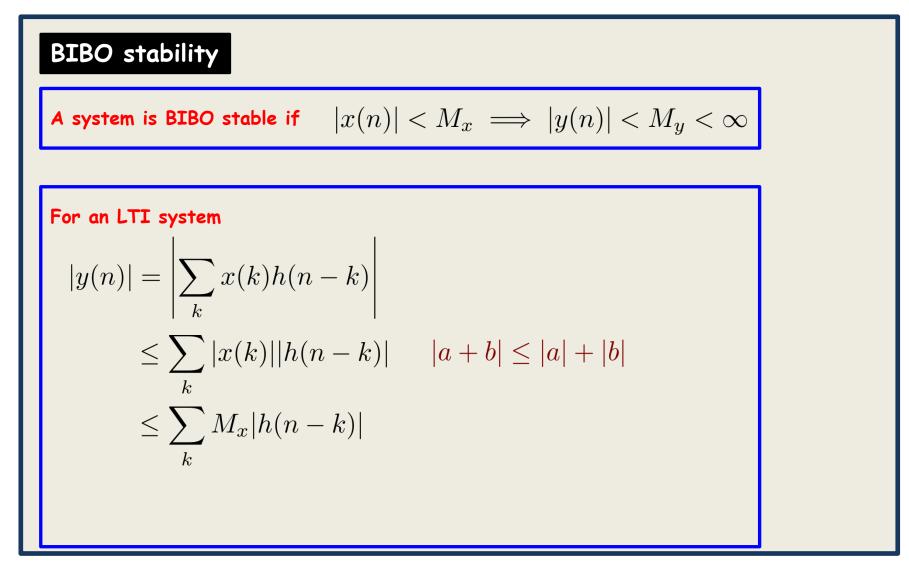


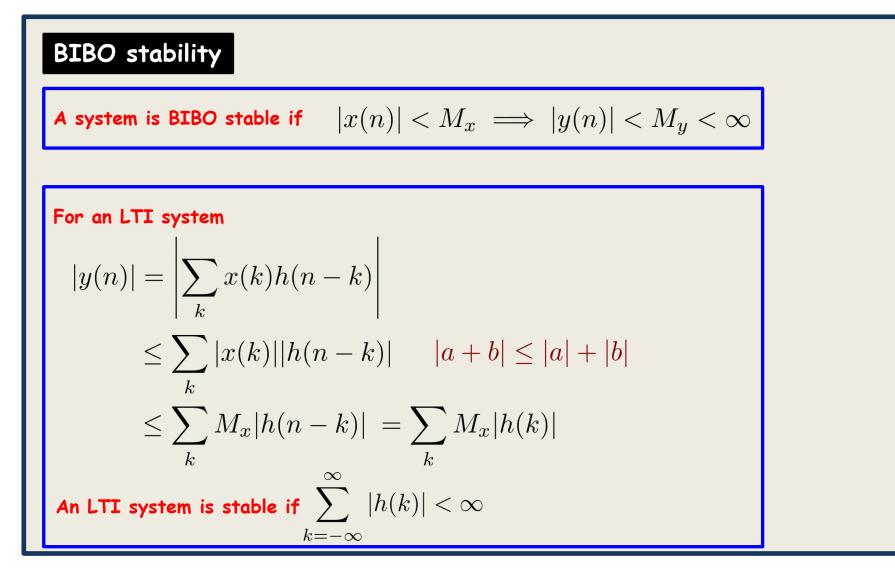












Relation to difference equations

We have seen that an LTI system is fully described by an impulse response h(n)

Relation to difference equations

We have seen that an LTI system is fully described by an impulse response h(n)

We have also mentioned that difference equations are important for LTI systems

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Relation to difference equations

We have seen that an LTI system is fully described by an impulse response h(n)

We have also mentioned that difference equations are important for LTI systems

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

This means that every impulse response h(n) is equivalent to a difference equation We now investigate this

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Suppose
$$a(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$
 $b(\ell) = 0, \ \ell > L, \ell < 0$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Suppose
$$a(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$
 $b(\ell) = 0, \ \ell > L, \ell < 0$

We then get

$$y(n) = \sum_{\ell=0}^{L} b(\ell) x(n-\ell)$$

Relation to difference equations

We t

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Suppose
$$a(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$
 $b(\ell) = 0, \ \ell > L, \ell < 0$

when get
$$y(n) = \sum_{\ell=0}^{L} b(\ell) x(n-\ell)$$

This is a convolution, with a finite length impulse response b(n)

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

The class of systems described by difference equations encompasses LTI systems with finite length impulse responses

Suppose
$$a(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$
 $b(\ell) = 0, \ \ell > L, \ell < 0$

т

We then get
$$y(n) = \sum_{\ell=0}^{L} b(\ell) x(n-\ell)$$

This is a convolution, with a finite length impulse response b(n)

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now $a(0) = 1, a(1) = a_1$ $b(0) = b_0$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get $y(n) = -a_1y(n-1) + b_0x(n)$

 $y(0) = -a_1 y(-1) + b_0 x(0)$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

$$y(0) = -a_1 y(-1) + b_0 x(0)$$

$$y(1) = -a_1 y(0) + b_0 x(1) = (-a_1)^2 y(-1) + b_0 x(1) + (-a_1) b_0 x(0)$$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

$$y(0) = -a_1 y(-1) + b_0 x(0)$$

$$y(1) = -a_1 y(0) + b_0 x(1) = (-a_1)^2 y(-1) + b_0 x(1) + (-a_1) b_0 x(0)$$

$$y(2) = -a_1 y(1) + b_0 x(2)$$

$$= (-a_1)^3 y(-1) + b_0 x(2) + (-a_1) b_0 x(1) + (-a_1)^2 b_0 x(0)$$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

Pattern recognition, suitably done at home, gives

n

$$y(n) = \sum_{k=0}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$$

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

Pattern recognition, suitably done at home, gives

$$y(n) = \sum_{k=0}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$$

Convolution

Relation to difference equations

$$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$$

Consider now
$$a(0) = 1, a(1) = a_1 \quad b(0) = b_0$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

Pattern recognition, suitably done at home, gives

$$y(n) = \sum_{\substack{k=0\\n}}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$$
$$= \sum_{\substack{k=0\\k=0}}^{n} h(k) x(n-k) + (-a_1)^{n+1} y(-1)$$
$$h(k) = (-a_1)^k b_0 u(k)$$

Infinite Impulse response (IIR)

Relation to difference equations $\sum_k a(k)y(n-k) = \sum_\ell b(\ell)x(n-\ell)$

Infinite Impulse response (IIR)

Consider now $a(0) = 1, a(1) = a_1 \quad b(0) = b_0$

$$h(k) = (-a_1)^k b_0 u(k)$$

We then get
$$y(n) = -a_1y(n-1) + b_0x(n)$$

Pattern recognition, suitably done at home, gives

$$y(n) = \sum_{\substack{k=0 \ n}}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$$

What is this?
$$= \sum_{k=0}^{n} \frac{h(k)x(n-k)}{k} + (-a_1)^{n+1} y(-1)$$

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
	mpulse response (IIR) $=(-a_1)^kb_0u(k)$
We then get $y(n) = -a_1y(n-1) + b_0x(n)$	
Pattern recognition, suitably done at home, gives $y(n) = \sum_{\substack{k=0 \\ n}}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$ What is this? $= \sum_{k=0}^{n} h(k) x(n-k) + (-a_1)^{n+1} y(-1)$	It does not depend on ×(n)

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
Infinite I	npulse response (IIR)
	$= (-a_1)^k b_0 u(k)$
We then get $y(n)=-a_1y(n-1)+b_0x(n)$	
Pattern recognition, suitably done at home, gives n	It does not depend on ×(n)
$y(n) = \sum_{\substack{k=0 \ n}}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$ What is this? $= \sum_{k=0}^{n} \frac{h(k)}{k} x(n-k) + (-a_1)^{n+1} y(-1)$	If y(-1)≠0, we have output without any input
$-\sum_{k=0}^{n(\kappa)x(n-\kappa)+(-\mathbf{a}_1)} \mathbf{y}(-1)$	

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
	mpulse response (IIR) $=(-a_1)^kb_0u(k)$
We then get $y(n)=-a_1y(n-1)+b_0x(n)$	
Pattern recognition, suitably done at home, gives	It does not depend on ×(n)
$y(n) = \sum_{\substack{k=0 \\ n}}^{n} (-a_1)^k b_0 x(n-k) + (-a_1)^{n+1} y(-1)$ What is this?	If y(-1)≠0, we have output without any input
$= \sum_{k=0}^{n} h(k) x(n-k) + (-\mathbf{a_1})^{n+1} y(-1)$	Not Linear system Not time-invariant

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
	Impulse response (IIR) $f(x) = (-a_1)^k b_0 u(k)$
We then get $y(n)=-a_1y(n-1)+b_0x(n)$	
If y(-1)=0, we say that the system is at rest. System is LTI	It does not depend on ×(n)
n	If y(-1)≠0, we have output without any input
$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) + (-a_1)^{n+1}y(-1)$	Not Linear system Not time-invariant

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
	mpulse response (IIR) $=(-a_1)^kb_0u(k)$
We then get $y(n)=-a_1y(n-1)+b_0x(n)$	
If y(-1)=0, we say that the system is at rest. System is LTI	It does not depend on ×(n)
If $y(-1) \neq 0$, we say that the system is not at rest/has initial conditions. Strictly speaking: Not LTI. However, so common, so still treated within a study of LTI systems n	If y(-1)≠0, we have output without any input
$y(n) = \sum_{k=0}^{n} \frac{h(k)x(n-k) + (-a_1)^{n+1}y(-1)}{(-1)}$	Not Linear system Not time-invariant

Relation to difference equations	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$	
	mpulse response (IIR) $=(-a_1)^kb_0u(k)$
We then get $y(n)=-a_1y(n-1)+b_0x(n)$	
If $y(-1)=0$, we say that the system is at rest. System is LTI	Note: Only makes sense to assume
If $y(-1) \neq 0$, we say that the system is not at rest/has initial conditions. Strictly speaking: Not LTI. However, so common, so	$ a_1 < 1$
still treated within a study of LTI systems $y(n) = \sum_{k=0}^n h(k) x(n-k) + (-a_1)^{n+1} y(-1)$	So, transient will fade out and "after a while it is LTI"

Relation to difference equations $\sum_k a(k)y(n-k) = \sum_\ell b(\ell)x(n-\ell)$	The class of syste difference equatio LTI systems with impulse responses	ns encompasses
Consider now $a(0) = 1, a(1) = a_1$ $b(0) = b_0$ We then get $y(n) = -a_1y(n-1) + b_0x(n)$ Infinite Impulse response (IIR) $h(k) = (-a_1)^k b_0 u(k)$		
If $y(-1)=0$, we say that the system is at rest. System is LTI If $y(-1) \neq 0$, we say that the system is not at rest/has initial conditions. Strictly speaking: Not LTI. However, so common, so still treated within a study of LTI systems $y(n) = \sum_{k=0}^{n} h(k)x(n-k) + (-a_1)^{n+1}y(-1)$ Note: Only makes sense to assume $ a_1 < 1$ So, transient will fade out and "after a while it is LTI"		sense to assume $ a_1 < 1$ So, transient will fade out and "after

Relation to difference equations	Every impulse response corresponds to one difference equation.	
$\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$		
Consider now $a(0)=1, a(1)=a_1$ $b(0)=b_0$ Infinite Impulse response (IIR) $h(k)=(-a_1)^kb_0u(k)$		
We then get $y(n)=-a_1y(n-1)+b_0x(n)$		
If y(-1)=0, we say that the system is at rest. System is LTI Note: Only makes sense to assume		
If y(-1) \neq 0, we say that the system is not at rest/has initial conditions. Strictly speaking: Not LTI. However, so common, so		
still treated within a study of LTI systems $y(n) = \sum_{k=0}^{n} \frac{h(k)x(n-k) + (-a)}{k}$	$(1)^{n+1}y(-1)$ So, transient will fade out and "after a while it is LTI"	

Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation

Cross correlation

$$r_{xx}(k) = \sum_{n = -\infty}^{\infty} x(n)x(n-k) = x(n) \star x(-n) \quad r_{yx}(k) = \sum_{n = -\infty}^{\infty} y(n)x(n-k) = y(n) \star x(-n)$$

Measures similarity between time shifted versions of the same signal

Measures similarity between time shifted versions of different signals

Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation

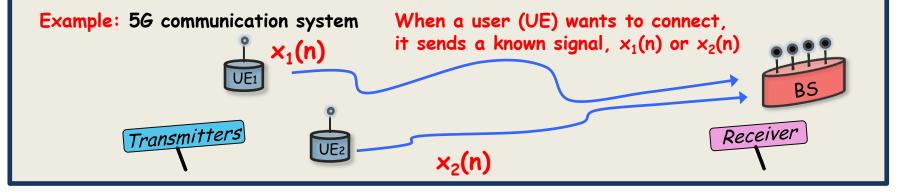
 ∞ $r_{xx}(k) = \sum x(n)x(n-k) = x(n) \star x(-n) \quad r_{yx}(k) = \sum y(n)x(n-k) = y(n) \star x(-n)$ $n = -\infty$

Measures similarity between time shifted Measures similarity between time shifted versions of the same signal

versions of different signals

Cross correlation

 $n = -\infty$



Brief info on correlation

 ∞

Not focal point of course, but highly important in signal processing

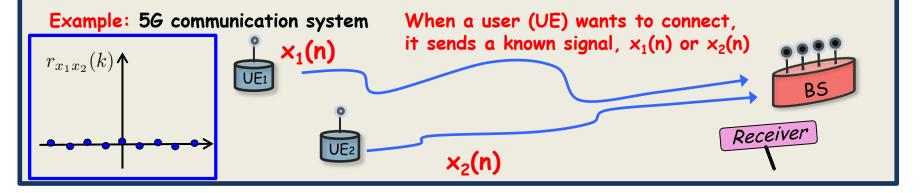
Correlation measures similarity between two signals

 $r_{xx}(k) = \sum x(n)x(n-k) = x(n) \star x(-n) \quad r_{yx}(k) = \sum y(n)x(n-k) = y(n) \star x(-n)$ $n = -\infty$ Measures similarity between time shifted Measures similarity between time shifted versions of the same signal

Auto correlation

 $n = -\infty$ versions of different signals

Cross correlation



Cross correlation between $x_1(n)$ and $x_2(n)$ should be small (to know who is connecting)

Brief info on correlation

 ∞

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

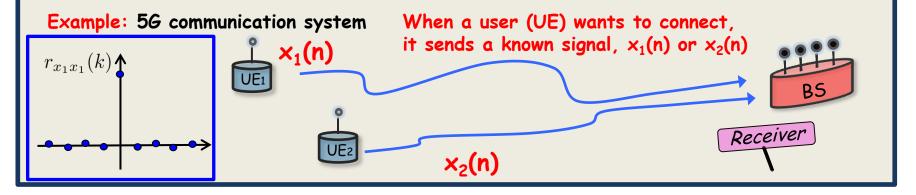
Auto correlation

 $r_{xx}(k) = \sum x(n)x(n-k) = x(n) \star x(-n) \quad r_{yx}(k) = \sum y(n)x(n-k) = y(n) \star x(-n)$ $n = -\infty$ Measures similarity between time shifted Measures similarity between time shifted versions of the same signal

versions of different signals

Cross correlation

 $n = -\infty$



Auto correlation of $x_1(n)$ (and $x_2(n)$) should be delta (to know when a user is connectina)

Brief info on correlation

Cross correlation for input and output signals

$$x(n) \longrightarrow h(n) \longrightarrow y(n)$$

$$r_{yx}(k) = y(k) \star x(-k)$$

$$= x(k) \star h(k) \star x(-k)$$

$$= h(k) \star x(k) \star x(-k)$$

$$= h(k) \star x(k) \star x(-k)$$

$$= h(k) \star r_{xx}(k)$$

$$r_{yy}(k) = y(k) \star y(-k)$$

$$= x(k) \star h(k) \star x(-k) \star h(-k)$$

$$= r_{hh}(k) \star r_{xx}(k)$$