EITF75 Systems and Signals

Lecture 11
More on DFTs

Fredrik Rusek
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For a sequence X(71) of arbitrary length, the
N-point DFT is defined as

Xprr(k) = Zx(n)e_jzn'%'” fork=0,1,...,N-1
n=0

and the inver'se transform (IDFT) as

1
T =~ )N forn=0,1,...,N — 1

k=0

o
E x(n)e_i%”f Formula for DTFT

n=-—oo
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For a sequence x(n)of arbitrary length, the

N-point DFT is defined as suitable for

Xprr(k) = x(n) 2y fork=0,1,...,N -1 computers

* Fast to compute
and the i se transform (IDFT) as Discrete)

X(k)eﬂ“ N forn=0,1,...,N -1

Suitable for analysis
(by human)
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Convolutions

In real life, the input signal is very long, does not
start/stop. Previous method (Lecture 10) fails

r(n) —— h(n) [ y(n)=2z(n)*h(n)

Three common methods
Overlap-add to be described
Overlap-save

Overlap-discard
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Convolutions 2(n) ——s

h(n)

Overlap-add

Visualization of input

- | x(57) x(58) x(59) x(60)

x(1835466)| -

Visualization of impulse response

h(0)  h(M-1)|
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L

z1(n) ! T2(n) ! etc

Visualization of impulse response

h(0)  h(M-1)|
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L

z1(n) ! T2(n) ! etc

Visualization of impulse response

h(0)  h(M-1)|

Convolution £1(n) * h(n) (length L+M-1)
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1

z1(n) zo(n) i efc

. . . . I
Visualization of impulse response

h©0) h(W-1) |

Convolution £1(n) % h(1}) (length L+M-1)

Convolution T2(n) * h(n) (length L+M-1)
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Convolutions z(n) — h(n)

Overlap-add

Partion the input in blocks of length L

x1(n) xa(n)

. . . . I
Visualization of impulse response

h(0)  h(M-1)| |

{
I
I
I
I
I
I
I
I
I
I
I
n

Convolution T2(n) *x h(fn) (length L+M-1)

I
I

Convolution x1(n) * h(n:) (length L+M-1)
|
|

| Convolution of etc
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Convolutions z(n) — h(n)

Overlap-add

Partion the input in blocks of length L

x1(n) xa(n)

. . . . I
Visualization of impulse response

h(0)  h(M-1)| |

I
I
Convolution x1(n) * h(n:) (length L+M-1)

|
1
|
I
1
I
|
1
I
|
I
Convolution o(n) * h(f) (length L+M-1)

|
| Convolution of etc

Output
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Convolutions r(n) —> h(n)

Overlap-add

Partion the input in blocks of length L

T (n) T2 (n) | efc

. . . . |
Visualization of impulse response

h(0)  h(M-1)| |

|

I

I

I

I

. [

! [

Convolution x1(n) * h(n:) (length L+M-1) :
Block 1, body l :
| Convolution xa(n) * (1'2) (length L+M-1)

+ |

| Convolution of etc

Output l
Block 1, body i
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Convolutions ;) —f 1) —— y(n) =

Overlap-add

Partion the input in blocks of length L
I (n) o (n) I efc

. . . . |
Visualization of impulse response

h(0) h(M-1) |

|

1

|

1

1

. I

! I

Convolution :Cl(n) * h(n:) (length L+M-1) :
Block 1, body 1 B1, fail :

| Convolution xa(n) * (1'2) (length L+M-1)

+ B2 body1_ i

| Convolution of etc

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add

Partion the input in blocks of length L

T (n) T2 (n) | efc

. . . . |
Visualization of impulse response

h(0) h(M-1) |

|

1

1

1

I

: |

. |

Convolution Z1(n) * h(n}) (length L+M-1) ,
Block 1, body 1 B1, fail :
| Convolution xa(n) * (1'2) (length L+M-1)

+ [ o2

|
| Convolution of etc

+

Output

Block 1, body  1B1,T + B2,b1 B2,b2
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Convolutions ;) —f 1) —— y(n) =

Overlap-add

Partion the input in blocks of length L

T (n) T2 (n) | efc

. . . . |
Visualization of impulse response

h(0) h(M-1) |

|

1

1

1

I

: |

. |

Convolution Z1(n) * h(n}) (length L+M-1) ,
Block 1, body 1 B1, fail :
| Convolution xa(n) * (1'2) (length L+M-1)

+ B2,b2 | B2,T

Convolution of etc

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add

Partion the input in blocks of length L
I (n) o (n) I efc

. . . . |
Visualization of impulse response

h(0) h(M-1) |

I
I
Convolution x1(n) * h(n:) (length L+M-1)

I

|

|

[

I

|

|

[

: [
B ez e o :
|

(G

| Convolution xa(n) x h(f) (length L+M-1)

B2,b2 B2, T

Convolution of etc

|
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Convolutions () —

Overlap-add

h(n)

— y(n) =

Partion the input in blocks of length L

x1(n)

xa(n)

| efc

. . . . |
Visualization of impulse response

h(0)  h(M-1)| |

Convolution x1(n) * h(n:) (length L+M-1)

B1, tail

If we can compute this

FAST, we can get the output _ B2,b2 : B2, T
I

efficiently

Convolution To(n

(n) *

i
I
I
I
I
I
I
I
I
I
I
I
(€

h(f) (length L+M-1)

Convolution of etc
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1 1

z1(n) l zo(n) i efc

Visualization of impulse response

h(0)  h(M-1)|

Convolution £1(n) * h(n) (length L+M-1)

Zero-pad Block 1 to length N=L+M-1
z1(n) 0000..0
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1 1

z1(n) l zo(n) i efc

Visualization of impulse response

h(0)  h(M-1)|

Convolution £1(n) * h(n) (length L+M-1)

Zero-pad Block 1 to length N=L+M-1

r1(n) 0000.0
Zero-pad h(n) to length N=L+M-1

h(n) 0000 .. 0
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COﬂVO'Utions a?(n) — h(n)

Overlap-add

Partion the input in blocks of length L

X1 (n) I Xo (n) I etc

Visualization of impulse response

h(0)  h(M-1)|

Convolution £1(n) * h(n) (length L+M-1)

Zero-pad Block 1 to length N=L+M-1

r1(n) 0000.0

Zero-pad h(n) to length N=L+M-1

h(n) 0000 .. 0

Compute DFTs
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1 1

z1(n) l T2 (n) i efc

Visualization of impulse response

h(0)  h(M-1)|

Convolution £1(n) * h(n) (length L+M-1) Multiply

Zero-pad Block 1 to length N=L+M-1

x1(n) 0000.0
Zero-pad h(n) to length N=L+M-1

h(n) 0000 .. 0

Compute DFTs
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1 1

z1(n) l T2 (n) i efc

Visualization of impulse response

h(0)  h(M-1)|

IDFT
Convolution x1(n) * h(n) — — Multiply
y1(n) = x1(n) ® h(n)
Zero-pad Block 1 to length N=L+M-1
z1(n) 0000..0
Zero-pad h(n) to length N=L+M-1
h(n) 0000 .. 0

Compute DFTs
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Convolutions ;) —f 1) —— y(n) =

Overlap-add
Partion the input in blocks of length L
1 1

z1(n) l T2 (n) i efc

Visualization of impulse response

h(0)  h(M-1)|

IDFT
Convolution x1(n) * h(n) — Multiply
y1(n) = x1(n) * h(n)
Zero-pad Block 1 to length N=L+M-1
z1(n) 0000.0
Zero-pad h(n) to length N=L+M-1
h(n) 0000 .0

zero-padding

Compute DFTs
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Convolutions () —

Overlap-add. n SUMMARY

h(0)  h(M-1)|

Compute DFTs



EITF75 Systems and Signals

CO“VO'UtionS az(n) — h(n)

Overlap-add. ¥ SUMMARY STEP 1

X1 (n) ! o (n)

Partion in blocks of size L

h(0)  h(M-1)|
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CO“VO'UtionS az(n) — h(n)

Overlap-add. ¥ SUMMARY STEP 2

331(77,) ! o (n)

Partion in blocks of size L

h(0)  h(M-1)|

Zero-pad to length N=L+M-1
h(n) 0000 .. 0

Compute DFT (pre-processing)
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CO“VO'UtionS az(n) — h(n)

Overlap-add. ¥ SUMMARY STEP 2

z1(n) | z2(n)

Partion in blocks of size L
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 3 For block 1

X1 (n) ! X9 (n) efc

Partion in blocks of size L

Multiply

y1(n) = z1(n) x h(n)
Zero-pad Block 1 to length N=L+M-1
z1(n) 0000..0

DFT
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. @ SUMMARY STEP 4  For block 1

X2 (n) etc

Partion in blocks of size L
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. @ SUMMARY STEP 4  For block 1

X2 (n) etc

Partion in blocks of size L

Block 1, body Bl, tail
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. @ SUMMARY STEP 4  For block 1

X2 (n) etc

Partion in blocks of size L
Memory
B1, tail

T Save
Block 1, body Bl, tail

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. @ SUMMARY STEP 4  For block 1

X2 (n) etc

Partion in blocks of size L

Memory
B1, tail

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 5 For block 2

X2 (n) etc

Partion in blocks of size L

Memory
B1, tail

yr gl Multiply

ya(n) = x2(n) x h(n)
Zero-pad Block 2 to length N=L+M-1

x1(n) 0000.0

~——
DFT

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 5 For block 2

efc

Partion in blocks of size L

Memory
B1, tail

ya(n) = x3(n) x h(n)

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 5 For block 2

efc

Partion in blocks of size L

Memory
B1, tail

Ya(n) =

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 6 For block 2

efc

Partion in blocks of size L

Memory
B1, tail

Output
Block 1, body
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 6 For block 2

efc

Partion in blocks of size L

Memory
B1, tail
Add |

Copy

Output
Block 1, body




EITF75 Systems and Signals

Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 6 For block 2

efc

Partion in blocks of size L

Memory
B2, T
T Save

Output

Block 1, body  B1,T + B2,b1 B2,b2
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Convolutions ;) —f 1) —— y(n) =

Overlap-add. ¥ SUMMARY STEP 6 For block 2

efc

Partion in blocks of size L

Memory
B2, T

Output

Block 1, body  B1,T + B2,b1 B2,b2
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Convolutions () — h(n) F— y(n)=z(n)*h(n)

Overlap-add. ¥ SUMMARY Repeat 5&6 For blocks >2

efc

Partion in blocks of size L

Memory
B2, T

Output

Block 1, body  B1,T + B2,b1 B2,b2
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Convolutions ;) —f 1) —— y(n) =

Overlap-add.  Computational Complexity
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Convolutions r(n) —> h(n)

— y(n) = x(n) x h(n)

Overlap-add.  Computational Complexity =~ What is below needs

to be done for every

xa(n)

block

Memory
B1, tail

Vi
ya(n) = x2(n) x h(n)
Zero-pad Block 2 to length N=L+M-1

Multiply

x1(n) 0000.0

~_ ¥
DFT

Output
Block 1, body
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Convolutions r(n) —> h(n)

— y(n) = x(n) x h(n)

Overlap-add.  Computational Complexity =~ What is below needs

to be done for every

xa(n)

block

Memory
B1, tail

Vi
ya(n) = x2(n) x h(n)
Zero-pad Block 2 to length N=L+M-1

Multiply

x1(n) 0000.0

N log,(N)

Output
Block 1, body
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Convolutions z(n) —s

h(n)

— y(n) = x(n) x h(n)

Overlap-add.  Computational Complexity =~ What is below needs

to be done for every

5132(

n)

block

Memory

B1, tail

N

A

ya(n) = x3(n) x h(n)

Zero-pad Block 2 to length N=L+M-1

IDFT :
T i Multiply")

x1(n) 0000.0

N log,(N)

Output
Block 1, body
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Convolutions 2(n) ——s

h(n) F— y(n) =z(n)*h(n)

Overlap-add.  Computational Complexity =~ What is below needs

to be done for every

Total # multiplications

xa(n)

block

N [2logy(N) + 1]

Memory

B1, tail

N log,y(N)

A

ya(n) = x3(n) x h(n)

Zero-pad Block 2 to length N=L+M-1

N
IDFT
Q i Multiply")

x1(n) 0000.0

N log,(N)

Output
Block 1, body
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Convolutions

r(n) — h(n) F— y(n)=

Overlap-add.  Computational Complexity

Total # multiplications
N [2logy(N) + 1]

For these multiplications,
we get L = N-M outputs
#multiplications/output

N
N —M

121logy(N) + 1]
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Convolutions

r(n) — h(n) F— y(n)=

Overlap-add.  Computational Complexity

Total # multiplications
N [2logy(N) + 1]

Easy to solve numerically (o closed form)

For these multiplications, O N
we get L = N-M outputs NN — I [2log,(N) +1] =0

#multiplications/output

N N
N_M[ZlogQ(N)Jrl] N

~1, L>M
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Convolutions

r(n) — h(n) F— y(n)=

Overlap-add.  Computational Complexity

Total # multiplications
N [2logy(N) + 1]

Easy to solve numerically (o closed form)

For these multiplications, O N
we get L = N-M outputs NN — I [2log,(N) +1] =0

#multiplications/output

N N
N_M[ZlogQ(N)Jrl] N

~1, L>M
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Convolutions

In real life, the input signal is very long, does not
start/stop. Previous method fails

r(n) —— h(n) [ y(n)=2z(n)*h(n)

Three common methods
Overlap-add to be described
Overlap-save to be briefly described
Overlap-discard not to be described
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Convolutions

Overlap-save
Partion the input in blocks of length L

z1(n) : z2(n) l etc

Visualization of impulse response
h(0)  h(M-1)|

Zero-pad Block 1 to length N=L+M-1
0000..0 x1(n)
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Convolutions

Overlap-save
Partion the input in blocks of length L

z1(n) : z2(n) l etc

Visualization of impulse response
h(0)  h(M-1)|

Zero-pad Block 1 to length N=L+M-1
0000..0 x1(n)

Circular Convolution of zero-padded signal and h(n)
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Convolutions

z(n) ——{ h(n) pF— yn)=

Overlap-save
Partion the input in blocks of length L

z1(n) : zo(n) l etc

Visualization of impulse response
h(0)  h(M-1)|

Zero-pad Block 1 to length N=L+M-1
0000..0 x1(n)

Circular Convolution of zero-padded signal and h(n)

Coincides with true output y(n) in the blue region
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Convolutions

z(n) ——{ h(n) pF— yn)=

Overlap-save
Partion the input in blocks of length L

z1(n) : zo(n) l etc

Visualization of impulse response
h(0)  h(M-1)|

Zero-pad Block 1 to length N=L+M-1
0000..0 x1(n)

Circular Convolution of zero-padded signal and h(n)

Coincides with true output y(n)/n the blue region
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Convolutions ;) —f 1) —— y(n) =

Overlap-save
Partion the input in blocks of length L
1 1

x1(n) l xo(n) i efc

Visualization of impulse response

h(0)  h(M-1)|

Block 2: Borrow a bit from block 1
z2(n)




EITF75 Systems and Signals

Convolutions ;) —f 1) —— y(n) =

Overlap-save
Partion the input in blocks of length L

10 s R N N

Visualization of impulse response
h(0)  h(M-1)|
Block 2: Borrow a bit from block 1

B -0
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Convolutions ;) —f 1) —— y(n) =

Overlap-save
Partion the input in blocks of length L

10 s R N N

Visualization of impulse response
h(0)  h(M-1)|
Block 2: Borrow a bit from block 1

B -0

Circular Convolution of above signal and h(n)
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Convolutions ;) —f 1) —— y(n) =

Overlap-save
Partion the input in blocks of length L

10 s R N N

Visualization of impulse response
h(0)  h(M-1)|
Block 2: Borrow a bit from block 1

B -0

Circular Convolution of above signal and h(n)

Coincides with true output y(n) in the blue region
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Convolutions ;) — 1 1) F—— y(n) =

Overlap-save
Partion the input in blocks of length L

10 s R N N

Visualization of impulse response
h(0)  h(M-1)|
Block 2: Borrow a bit from block 1

B -0

Circular Convolution of above signal and h(n)

Coincides with true output y(n) in the blue region
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Convolutions z(n) —s

Assume an IIR filter

Implications for overlap-add/save ?
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Convolutions r(n) —> h(n)

Assume an IIR filter

Implications for overlap-add/save ? Does not work, since L>M for overlap to work
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Convolutions z(n) — h(n)

Assume an IIR filter

Implications for overlap-add/save ? Does not work, since L>M for overlap to work

However, an IIR filter is implemented via a difference equation

L K

y(n) =3 agy(n — 0+ bya(n — k)

/=1 k=0

L+K+1 multiplications to get 1 output
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Convolutions ;) —f 1) —— y(n) =

IR
Case study: Low pass filter implemented as {;IR
[H(f)

Target
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Convolutions ;) —f 1) —— y(n) =

IR
Case study: Low pass filter implemented as {;IR

Target
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Convolutions ) h(n) y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

f.=.1 0.5

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0
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Convolutions ;) —f 1) —— y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

0.5

N-1
= Z bpe” 2T Error E(f r Z b, e 2min
n=0

0.5
7o b Gl 6= / E(f)[2df

—0.5
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Convolutions ) h(n) y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

f.=.1 0.5

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) ;ﬁ“m — Z P
n=0 n=0

0.5 0.5
U6 =/ IH(f)IQdf+/ T(f)df
To be minimized: 0 = / \E(f)|2df —0.5 - —0.5

~0.5 270
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Convolutions ;) —f 1) —— y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

f=.1 05

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

Parseval

0.5

7o b Gl 6= / E(f)[2df
—0.5
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Convolutions ;) —f 1) —— y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

fe1 05

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

Parseval
N-—1
0.5 = D> I + 02
To be minimized: 0 = / |E(f)|*df " s N
L —2R{ / > b T( f)e—mf”df}
—0.5 .
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Convolutions ;) —f 1) —— y(n)

FIR
Case study: Low pass filter implemented as {IIR

Target

fe1 05

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

N-—-1
0.5 > > 4+ 02
To be minimized: 0 = / |E(f)|?df " s N—1
—0.5 _2/ S BT (e 2 Imd f
—0.5 "

From symmetry: real




EITF75 Systems and Signals

Convolutions ;) —f 1) —— y(n)

FIR
Case study: Low pass filter implemented as {IIR

Target

f=.1 05

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

0.5

7o b Gl 6= / E(f)[2df

—0.5 . T(f)e—i27rfndf

Change order
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CO“VO'Utions x(n) —p h(n)

— y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

fe1

0.5

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

0.5

7o b Gl 6= / E(f)[2df
—0.5

sin(7n/5)

0.1
_ —i27wfn — ... =
T, / (e

N—-1
_ Y b+

Integral independent of b,



EITF75 Systems and Signals

Convolutions ;) —f 1) —— y(n) =

FIR
Case study: Low pass filter implemented as {IIR

Target

fe1 05

N—-1 | N-—1
FIR: H(f) = Z bye”2mim Error E(f) W — Z P
n=0 n=0

N-—1
N-—-1 N—-1
bal*>  + 0.2
min | S -2 bl 402 2
n=0

N—1
{bn}n:O n=0

Optimization problem
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Convolutions ;) —f 1) —— y(n) =

IR
Case study: Low pass filter implemented as {;IR

Target

fe1 05

N—-1 | N-—1
FIR: H(f) = Z b,e 2TIn Error E(f) ——\‘T(f) — Z b, e 2min
n=0 n=0

N—1 N—1
min [ Y [ba* =2 ) 5,7, +0.2
n=0

N—1
{bn}n:O n=0

Optimization problem

sin(7n/5)

0.1
_ —i27wfn — ... =
T, /_ (e
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Convolutions () —

h(n)

— y(n) =

IR
Case study: Low pass filter implemented as «[F

FIR, N=10

H(f)I

0 . . . . . \ h | n 1
0 0.05 01 015 02 025 03 035 04 0.45 05

IIR

-0.1

T
T

-5

0

5 10 15 20 25 30 35 40 45 50
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Convolutions () —

h(n)

— y(n) =

IR
Case study: Low pass filter implemented as «[F

FIR, N=10, N=30

0 0.05 01 0.15 02 025 03 035 04 0.45 0.5

IIR
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Convolutions ;) —f 1) —— y(n) =

. : FIR
Case study: Low pass filter implemented as {IIR
FIR, N=10, N=30, N=50

08y

0ovr

06T

0aT

0.4

0.3F

0.2rf

01F

0 o5 01 015 02 025 03 035 04 045 05

5 10 15 20 25 30 35 40 45 50
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Convolutions ;) —f 1) —— y(n) =

. : FIR
Case study: Low pass filter implemented as {IIR
FIR, N=10, N=30, N=50, N=1000

3

H()P

1]

o 0.05 0.1 0.15 0.2 025 03 0.35 04 0.45 0.5 5 10 15 20 25 30 15 40 45 50
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Convolutions ;) —f 1) —— y(n) =

. : FIR
Case study: Low pass filter implemented as {IIR
FIR, N=10, N=30, N=50, N=1000

3

H()P

1]

o 0.05 0.1 0.15 0.2 025 03 0.35 04 0.45 0.5 5 10 15 20 25 30 15 40 45 50
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Convolutions ;) —f 1) —— y(n) =

IR
Case study: Low pass filter implemented as «[F

IIR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>> [B,Al=butter(4,2%,1)
3:

0.0048 0.0193
A:

1.0000  -2.389%

0.0285

2.3140

0.0193  o.oo4s | Numerator polynomial

—1.0547 0.1874 Denominator pOIYﬂO"\iGI
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Convolutions ;) —f 1) —— y(n) =

. : FIR
Case study: Low pass filter implemented as {IIR
TIR, Butterworth filter, P poles, cutoff f.=0.1

>> [B,Al=butter (&,2%.1)
B =

0.0048 0.0123 0.0289 0.0123 0.o0az | Numerator polynomial
A =

1.0000 -2.3695 2.3140 -1.0547 0.127¢| Denominator polynomial

Pole-zero diagram

-
-
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Convolutions ;) —f 1) —— y(n) =

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>> [B,Al=butter (&,2%.1)
B =

0.0048 0.0123 0.0289 0.0123 0.o0az | Numerator polynomial
A =
1.0000 -2.3695 2.3140  -1.0547 0.1a74| Denominator polynomial

Pole-zero diagram

-
-

Much better results |
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Convolutions ;) —f 1) —— y(n) =

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>> [B,Al=butter (&,2%.1)
B =

0.0048  0.0123 .02 .oo4e | Numerator polynomial
A =

1.0000 -2.3695 _ 187 Denominator polynomial

Pole-zero diagram

0.25

Much better results | Truncated to 50 taps
. WORSE in MSE sense 1

0.15

1.5

0.5

0.1

0

0.05

T i,

s

0 . . . . . . .
0 005 01 015 02 025 03 035 04 045 0 5 10 15 20 25 30 35 40 45 50

»» h=filter(B,4, [1 zeros(1,1000)]) -

o
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Convolutions () — h(n) F— y(n)=z(n)*h(n)

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>» [B,A]=butter (8,2%.1)
B =

0.0000 0.0002 0.0007 0.0013 0.0017 0.0013 0.0007 0.0002
L =

1.0000 -4.7845  10.4450 -13.4577 11.1293 -6.0253 2.0793  -0.4172

12 0.25

Much better results | Truncated to 50 taps

i o2 WORSE in MSE sense 1 f

1.5

0.4 1 0.05 o5

T i,

02 1 o | itﬁ 4

0 0.05 .,
0 005 01 015 02 025 03 035 04 045 0

5
-1.5 -1 -0.5 0 0.5 1 1.5

Pole-zero diagram

5 10 15 20 25 30 35 40 45 50
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Convolutions ;) —f 1) —— y(n) =

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>» [B,A]=butter (8,2%.1)
=2 =

0.0000 0.0002 0.0007 0.0013 0.0017 0.0013 0.0007 0.0002 0.0000
L=
1.0000 -4.7845 10.4450 -13.4377 11.1293 -6.0253 2.0753 -0.4172 0.0372

{
B

Pole-zero diagram
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Convolutions ;) —f 1) —— y(n) =

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>» [B,A]=butter (8,2%.1)
=2 =

0.0000 0.0002 0.0007 0.0013 0.0017 0.0013 0.0007 0.0002
L=
1.0000 -4.7845 10.4450 -13.4377 11.1293 -6.0253 2.0753 -0.4172

10°%

o

&

{
B

Log scale Pole-zero diagram
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Convolutions ;) —f 1) —— y(n) =

FIR

Case study: Low pass filter implemented as IR

TIR, Butterworth filter, P poles, cutoff f.=0.1

>> [B,Al=butter(8,2%.1)

BE =

0.0000 0.0002 0.0007 0.0013 0.0017 0.0013 0.0007 0.0002
L=
1.0000 -4.7845 10.4450 -13.4377 11.1293 -6.0253 2.0753 -0.4172

0.25

I 15

0.2
1

0.15 05

0.05

\
0.1 0 g
%
s £

o]

0 WJ;(L(L&) 08 :Cw""m

0% ¢

o &
0.05 .
0 005 01 015 02 025 03 035 04 045 05 0 5 0 15 20 25 30 35 40 45 50 - E 05 0 0.5 1 15

Log scale Pole-zero diagram

Lesson learded: IIR filters superior. Simple implementation, good results
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DFT of sinusoids

x(n) = cos (27?@71) Find DFT Note, for k, an integer,
N an integer number of periods




EITF75 Systems and Signals
DFT of sinusoids

k :
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
N an integer number of periods

By definition
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DFT of sinusoids

x(n) = cos (277@71) Find DFT Note, for k, an integer,
N an integer number of periods
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DFT of sinusoids

k :
x(n) = cos (27r—0n) Find DFT Note, for k, an integer,
N an integer number of periods

Preparation for geometric series




EITF75 Systems and Signals
DFT of sinusoids

x(n) = cos (277@71) Find DFT Note, for k, an integer,
N an integer number of periods

otk —ko mod N)+o(k + kg

We have seen this before (lecture 10)
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DFT of sinusoids

k :
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
N an integer number of periods

\'\
|
|
|
Frleq l:lency [K] |

|
16 26 32 48

hd .
one period

|otk—ky mod N)+o(k+ky modN)]

N
X(k)=5
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DFT of sinusoids

k :
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
N an integer number of periods

1 ¢ ?

Oz/\ A L] H

60 B
Frequency |
anE
0 10 20 30 40 50 60
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT Note, for k, an integer,

an integer number of periods
1
0.5
0 'Tl e[n

Q Q

60
Frequency |
anE
10 20 30 40 50 60

This IS an even number of periods
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DFT of sinusoids

k L d
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
an integer number of periods

1

SANIWimiS)

AL

What would happen if k, not an integer




x(n) = cos (2%%71) Find DFT

EITF75 Systems and Signals
DFT of sinusoids

1

05

0

—05 |

-1t

AL

Note, for k, an integer,

an integer number of periods

VY

Essentially, we get a delta
at k,, but this is not an
integer, so not computed
by the DFT

What would happen if k, not an integer
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DFT of sinusoids

k :
x(n) = cos (27r—0n> Find DFT Note, for k, an integer,
N an integer number of periods

1,
Essentially, we get a delta
05 at ko, but this is not an
. Timi [n] integer, so not computed

by the DFT
~05 | Spectral leakage: We get
n something around k,

For the above case, 4<k,<5
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT Note, for k, an integer,

an integer number of periods
1
NN NS
0 Timg [n]

Magnitude (complex DFT)

AL

For the above case, 4<k,<5 Observe something around 4-5

0

0 10 20 30 40
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT Note, for k, an integer,

an integer number of periods
1
sAuAWA
. Time [n]

A

DFT of integer k,, but with
zero-padding
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

1
0 Tlme [n]

A

DFT of integer k,, but with
zero-padding

Note, for k, an integer,
an integer number of periods

We cannot get a delta at
k=4, since that is what we
obtain without zero-padding

Convolution theorem duality |[edit] P
e
It can also be shown that: 1\‘; V,‘jﬂ
N-1 o WIK;I;E’DIA

J—_{x . }r}* é Z mn . y“ . p__f#k” The Free Encyclopedia

n=0

1
= ¥(X * Y1), whichis the circular convolution of X and Y.
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

1
0 Tlme [n]

Note, for k, an integer,
an integer number of periods

TV

ANiwiwie

We cannot get a delta at
k=4, since that is what we
obtain without zero-padding

VY

Convolution theorem duality |[edit] P
e
Fa
It can also be shown that: ‘\Sm V,‘}
N-1 a0 ;W;IKIEI.JEPIj’-“x
C.amy e re Bncyopedia
f{x'y}k £ E Ty " Yo " € T‘\-k”

n=0

1
= ¥(X * Y1), whichis the circular convolution of X and Y.
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DFT of sinusoids

k :
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
N an integer number of periods

tr DFT of zero-padded signal
0.5 will be circular convolution
Time [n] of DFTs of the two bottom

’ \/ \j \/ pictures

Convolution theorem duality [ =dit]

L 1 :/’*;,\‘\ U:.I

: It can also be shown that: ;\‘ 4
T [ N-1 o WIKIPEDIA

50 60 . —iZ kn The Free Encyclopedia

F{x‘}’}k:Zﬂ’-n'yu'-‘? N
n=0
1 o . .
= ?(X * Y1), whichis the circular convolution of X and Y.
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DFT of sinusoids

k :
x(n) = cos (QW—On) Find DFT Note, for k, an integer,
N an integer number of periods

i DFT of zero-padded signal
will be circular convolution
IU 2|D

of DFTs of the two bottom
pictures

Convolution theorem duality [ =dit]

It can also be shown that:
N-1 o ;W;IKIEI.JEPIj’-“x
n LY e Free Encyrlopedia
J‘—{X‘ y}i. = E Ty Yp-€ N

. Frequency [ n=0

1
40 5060 = —(X * Yn)i, whichis the circular convolution of X and Y.

N

Magnitude (complex DFT)



Magnitude (complex DFT)

EITF75 Systems and Signals

DFT of sinusoids

x(n) = cos (2%%71) Find DFT

A\

. Frequency [
40 50 60

Magnitude (complex DFT)

Note, for k, an integer,
an integer number of periods

Convolution theorem duality [=dit]

g
It can also be shown that: o ‘Q/})

Mg
N-1 o y(/PIKIEPEPIfx
N PLLA™ e Free Encyclopedia
J‘—{X‘ y};‘ = E Ty Yo v € N
n=0

1
= — (X % Yy ), whichisthe circular convolution of X and Y.

N
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

VAN -

Magnitude (complex DFT)

TV

Convolution theorem duality [ =dit]

: /\ /\ /\ A It can also be shown that: :f; V,‘}
Time {p) N-1 o WIK;I.JE’DIA
n\/ \j v Yo/ Fixoyh 2N g
n=0
1 o . .
= E(X * Y1), whichis the circular convolution of X and Y.

Can we see the peak at n=4 sharper if we window with something else ?
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

NAN
A

Magnitude (complex DFT)

N\ pe
SV

| N -1
Hﬂmming window u"hamming(”} =0.54+ 0.46COS(2H N_o1 (” I ))
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

1

0.5

0

o N i N -1
Hﬂmmlng window u"hamming(”} =0.54+ 0.46(:05(2?{ N_o1 (” I ))
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

1

0.5

0

"

A P
200 [0 | 40/ 5k /60
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DFT of sinusoids

x(n) = cos (2%%71) Find DFT

1

0.5

0

A P
200 [0 | 40/ 5k /60

"
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Summary of windowing:

1. If we encounter an unknown signal x(n)
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Summary of windowing:

1. If we encounter an unknown signal x(n)
2. There may be edge effects (since we likely removed the tails)

x(n)
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Summary of windowing:

1. If we encounter an unknown signal x(n)
2. There may be edge effects (since we likely removed the tails)
3. We can reduce the effects of edge effects on DFT
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Summary of windowing:

1. If we encounter an unknown signal x(n)

2. There may be edge effects (since we likely removed the tails)
3. We can reduce the effects of edge effects on DFT

4. By windowing with a Hamming window

1~
05 [

0

NN\ e
SV
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)
Channel h(ﬂ) = h(O) h(l) h(Z) h(M-l) (quite long, say 50 taps)

Observation Y(ﬂ) = x(n) * h(n) + w(n) (w(n) noise, Gaussian distributed)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)
Channel h(ﬂ) = h(O) h(l) h(Z) h(M-l) (quite long, say 50 taps)
Observation Y(ﬂ) = x(n) * h(n) + w(n) (w(n) noise, Gaussian distributed)

Problem: get back x(n) from y(n)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)

Channel h(n) = h(0) h(1) h(2) h(M-1) (quite long, say 50 taps)
Observation y(n) = x(n) = h(n) + w(n) (w(n) noise, Gaussian distributed)
Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f) DTFT
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)
Channel h(n) = h(0) h(1) h(2) h(M-1) (quite long, say 50 taps)
Observation y(n) = x(n) = h(n) + w(n) (w(n) noise, Gaussian distributed)
Problem: get back x(n) from y(n)
Naive solution: Y(f) = X(f)H(f) + W(f) DTFT

Z(f) = Y(f)/H(f) = X(f) + W(f)/H(f)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)
Channel h(n) = h(0) h(1) h(2) h(M-1) (quite long, say 50 taps)
Observation y(n) = x(n) = h(n) + w(n) (w(n) noise, Gaussian distributed)
Problem: get back x(n) from y(n)
Naive solution: Y(f) = X(f)H(f) + W(f) DTFT
Z(f) = Y(f)/H(f) = X(f) + W(f)/H(f) = X(f) + E(f)
z(n) = x(n) + e(n) IDTFT
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _  (very long)
Channel h(n) = h(0) h(1) h(2) h(M-1) (quite long, say 50 taps)
Observation y(n) = x(n) = h(n) + w(n) (w(n) noise, Gaussian distributed)
Problem: get back x(n) from y(n)
Naive solution: Y(f) = X(f)H(f) + W(f) DTFT

Z(f) = Y(f)/H(f) = X(f) + W(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n) IDTFT
x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]

Problems

DTFT hard to use
Remedy: use overlap-add
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]

Problems

DTFT hard to use
Remedy: use overlap-add

H(f)

AWaN
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Application of DFT in 56: Orthogonal Frequency division

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

pultiplexing

Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]

1/H(f)
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Application of DFT in 56: Orthogonal Frequency division

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

ultiplexing

Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)
Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

pultiplexing

Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)
z(n) = x(n) + e(n)

x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division mul.'riplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

z(n) = x(n) + e(n)
x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division rnul.'riplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

random — z(n) = x(n) + e(n)
?((n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division rnul.'riplexing

Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _
Channel h(n) = h(0) h(1) h(2) h(M-1)
Observation y(n) = x(n) = h(n) + w(n)

Problem: get back x(n) from y(n)

Naive solution: Y(f) = X(f)H(f) + W(f)
Z(f) = Y(f)/H(f) = X(f) + E(f)

random — z(n) = x(n) + e(n)

50% error —  x(n) = Threshold[ z(n) ]
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x4(n) | X,(n) | x3(n)
Block the data signal. Block size L
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x4(n) | X,(n) | x3(n)
Block the data signal. Block size L

Apply IDFT to each block

a,(n) ! ax(n)
a;(n) = IDFT(x,(n))
ax(n) = IDFT(x,(n))
az(n) = IDFT(x5(n))
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x4(n) | X,(n) | x3(n)
Block the data signal. Block size L

Apply IDFT to each block

a;(n) : az(n)

ai(n) = IDFT(x,(n))

f Copy tail and append at front (cyclic prefix)

Cp; a;(n)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

a;(n) : az(n)

ai(n) = IDFT(x,(n))

Repeat for all blocks

cp; a,(n) a,(n)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

a;(n) : az(n)

ai(n) = IDFT(x,(n))

Transmit over channel |h(n)

CP, a;(n) Cp2




EITF75 Systems and Signals

Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
CpPy a;(n) Cp2 a,(n) CP3 as(n)
YCP: y1(n) YCP2 y2(n) YCPs ys(n)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
CpPy a;(n) Cp2 a,(n) CP3 as(n)
1 y1(n) y2(n) 3 ys(n)

Throw away
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
- a;(n) cp2 az(n) - az(n)
y1(n) y2(n) ys(n)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
- a;(n) cp2 az(n) - az(n)
y1(n) y2(n) ys(n)

Math formula for y,(n) ?
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
- a;(n) cp2 az(n) - az(n)
y1(n) y2(n) ys(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)

Due to CP
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X1(n) : X2(n)
Block the data signal. Block size L

Apply IDFT to each block

a,(n) ! a,(n) as(n)
a(n) = IDFT(x,(n))

x3(n)

Transmit over channel |h(n)
CP1 a;(n) Cp2 a,(n) Cp3 az(n)
y;(n) y2(n) y3(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Yi(k) = x4(k) H(k) + W,(k)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

x;(n) i xg(") i x3(n)
Block the data signal. Block size L

Apply IDFT to each block

ay(n) i ax(n) i as(n)
a,(n) = IDFT(x(n))
Transmit over channel |h(n)
- a;(n) cp2 az(n) - az(n)
y1(n) y2(n) ys(n)

Math formula for y,(n) ?

y1(n) = a;(n) @ h(n) + wy(n)
Apply DFT

Z,(k) = x;(k) + W,(k)/H(k)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X1 (n)
W, (k)
Transmit over channel |h(n)
CP1 a;(n) cp2 a,(n) CP3 as(n)
y1(n) y2(n) y3(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Z,(K) = x,(k) + W,(k)/H(K)



EITF75 Systems and Signals

Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X,(n)
W, (k)/H(k)
m—
Transmit over channel |h(n) e
CP1 a;(n) cp2 a,(n) CP3 as(n)
y;(n) y2(n) y3(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Z,(k) = x,(K) + W,(k)/H(K)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X,(n)
W, (k)/H(K)
00 O
©o0 -—: x(n)
Transmit over channel |h(n) e
CP1 a;(n) cp2 a,(n) CP3 as(n)
y;(n) y2(n) y3(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Z,(k) = x,(k) + W (k)/H(k)



EITF75 Systems and Signals

Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X,(n)
W, (k)/H(k) | Correct
x(n)
Transmit over channel |h(n) e
CP1 a;(n) cp2 a,(n) CP3 as(n)
y1(n) y2(n) ys(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Z,(k) = x,(k) + W (k)/H(k)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution
Data signal x(n) = .. +1 -1 -1 +1 +1 -1 _

X,(n)
W, (k)/H(k) Correct
Lost, 50%
x(n)
Transmit over channel | h(n) °
CP1 a,(n) cp2 a,(n) CPs3 as(n)
y1(n) y2(n) y3(n)

Math formula for y;(n) ?  y;(n) = a;(n) ® h(n) + wy(n)
Apply DFT Z,(k) = x,(k) + W (k)/H(k)
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Application of DFT in 56: Orthogonal Frequency division multiplexing

Orthogonal Frequency division multiplexing solution

Summary:

By inserting the CP (of length M = channel duration)

and using DFT/IDFT, we can recover the data where the channel
is good

The transmitter can avoid sending data at bad channel
frequencies

FFT can be used for efficient implementation. 1024 - 4096 in 56

CP is pure rate and power loss, but needed




