

Background and motivation for yet another transform

For discrete-time systems, we have treated two transforms:

1. The z-transform

Good for solving difference equations Good for algebraic analysis of systems Limited insight from plotting

2. The discrete-time Fourier transform (DTFT) Excellent for understanding characteristics of systems Insights from plotting Relates to reality (bandwidth)



Consider the Processing module. It should process the signal according to the application at hand. (Can be more than a filter, for example an entire C/C++ program)



Consider the Processing module. It should process the signal according to the application at hand. (Can be more than a filter, for example an entire C/C++ program)

Question: Can the processing unit benefit from computing the DTFT ?



Consider the Processing module. It should process the signal according to the application at hand. (Can be more than a filter, for example an entire C/C++ program)

Question: Can the processing unit benefit from computing the DTFT ?

Hint: Why couldn't a digital processor use x(t) directly?



Consider the Processing module. It should process the signal according to the application at hand. (Can be more than a filter, for example an entire C/C++ program)

Question: Can the processing unit benefit from computing the DTFT ?

Hint: Why couldn't a digital processor use x(t) directly? Because it is continuous, and a processor is digital



Consider the Processing module. It should process the signal according to the application at hand. (Can be more than a filter, for example an entire C/C++ program)

Question: Can the processing unit benefit from computing the DTFT ? A DTFT is also continuous. The processor cannot even compute it!

Hint: Why couldn't a digital processor use x(t) directly? Because it is continuous, and a processor is digital



So, we have developed a transformation that we can only use to "look at on a piece of paper", not one that can be used by a computer.

Question: Can the processing unit benefit from computing the DTFT ? A DTFT is also continuous. The processor cannot even compute it!

Hint: Why couldn't a digital processor use x(t) directly? Because it is continuous, and a processor is digital



So, we have developed a transformation that we can only use to "look at on a piece of paper", not one that can be used by a computer.





These 6 numbers, are in the frequency domain represened by...





in the frequency domain represened by a continuous curve !



Background and motivation for yet another transform

The discrete Fourier Transform (DFT) in one sentence: A Fourier version of x(n) with 6 numbers

So, we have developed a transformation that we can only use to "look at on a piece of paper", not one that can be used by a computer.



Background and motivation for yet another transform

The discrete Fourier Transform (DFT) in one sentence: A Fourier version of x(n) with 6 numbers

Honey, I shrank the Discrete-time Fourier Transform

Easy to remember: Less words, less numbers

So, we have developed a transformation that we can only use to "look at on a piece of paper", not one that can be used by a computer.















Warning: This is not yet the DFT. It is only samples of the DTFT



If samples are representing X(f), then we should be able to get x(n) back from them

Warning: This is not yet the DFT. It is only samples of the DTFT



should be able to get x(n) back from them





If samples are representing X(f), then we should be able to get x(n) back from them



should be able to get x(n) back from them









Compact notation.



$$=\sum_{m=-\infty}^{\infty}x(n-mN)$$
























































| Obvious Question<br>Why would anybody want to compute a DFT of less<br>Result length than that of $x(n)$ ? |
|------------------------------------------------------------------------------------------------------------|
| if the length of $x(n)$ is N, then                                                                         |
| $x_{\text{IDFT}}(n) \equiv x(n)$ and $X_{\text{DFT}}(k) \equiv X(f \mid f = k/N)$                          |

Less obvious answer

Signals with infinite time-support requires this



#### **Obvious** Question

Why would anybody want to compute a DFT of less length than that of x(n)?

if the length of x(n) is N, then

 $x_{\text{IDFT}}(n) \equiv x(n)$  and  $X_{\text{DFT}}(k) \equiv X(f \mid f = k/N)$ 

Signals with infinite time-support requires this

 $x(n) = a^n \cdot u(n)$ 

We have two options, a computer has one 1. Compute the N-point DFT according to

 $X_{\rm DFT}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n} \qquad \text{for } k = 0, 1, \dots, N-1$ 

2. Compute X(f) , and sample it to obtain X(k)

(computer cannot do 2 if it just encounters a signal. 2 requires us to know its math formula)

Signals with infinite time-support requires this

$$x(n) = a^n \cdot u(n)$$



Signals with infinite time-support requires this

 $x(n) = a^n \cdot u(n)$ 

**Inversion of 1: we know the result**  $a^n \cdot u(n)$  n = 0, 1, ..., N-1

Let us invert 1&2, and compare 1. Compute the N-point DFT as

$$\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) \mathrm{e}^{\mathrm{j} 2\pi \cdot \frac{n}{N} \cdot k}$$

 $X_{\rm DFT}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n} \qquad \text{for } k = 0, 1, \dots, N-1$ 

2. Compute  ${\boldsymbol X}(f)$  , and sample it to obtain  ${\boldsymbol X}(k)$ 

Signals with infinite time-support requires this

$$x(n) = a^n \cdot u(n)$$

Inversion of 2: we know the result  $\sum x(n-mN) \quad n=0,1,\ldots,N-1$  $\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) \mathrm{e}^{\mathrm{j} 2\pi \cdot \frac{n}{N} \cdot k}$  $m \equiv -\infty$ Let us invert 1&2, and compare 1. Compute the N-point DFT as  $X_{\rm DFT}(k) = \sum x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$ for k = 0, 1, ..., N - 12. Compute X(f), and sample it to obtain X(k)

Less obvious answer

Signals with infinite time-support requires this

$$x(n) = a^n \cdot u(n)$$

#### Inversion of 2: we know the result

$$\sum_{m=-\infty} x(n-mN) \quad n=0,1,\ldots,N-1$$



Signals with infinite time-support requires this

$$x(n) = a^n \cdot u(n)$$



Computational complexity

DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for 
$$k = 0, 1, ..., N - 1$$

Number of operations needed:

Computational complexity

#### DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for 
$$k = 0, 1, ..., N - 1$$

#### Number of operations needed:

N values  $X_{
m DFT}(k)$  to be computed

Computational complexity

#### DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for k = 0, 1, ..., N - 1

#### Number of operations needed:

N values  $X_{
m DFT}(k)$  to be computed

Each value requires N multiplications x(

$$x(n) \cdot \mathrm{e}^{-j2\pi kn/N}$$

Computational complexity

#### DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for 
$$k = 0, 1, ..., N - 1$$

#### Number of operations needed:

N values  $X_{
m DFT}(k)$  to be computed

Each value requires N multiplications

$$x(n) \cdot \mathrm{e}^{-j2\pi kn/N}$$

Total complexity N<sup>2</sup>








Computational complexityFFT not included in course, but good to know aboutTest in MatlabFast Fourier transform (FFT)If N=2k , then N log2(N) complexity to compute $X_{DFT}(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi \cdot \frac{k}{N} \cdot n}$  for  $k = 0, 1, \dots, N-1$ 

Made possible by some algebraic manipulations and tricks.

Cooley and Tukey 1965

Method known to, and used by, Gauss in 1805

Computational complexity FFT not included in course, but good to know about

### Test in Matlab

Fast Fourier transform (FFT)

If  $N=2^k$ , then  $N \log_2(N)$  complexity to compute

$$X_{\rm DFT}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n} \qquad \text{for } k = 0, 1, \dots, N-1$$

Made possible by some algebraic manipulations and tricks.

The importance of the FFT cannot be underestimated. WIFI and 4G, etc could not been implemented without the FFT

For a computer,

- 1. It can avoid the continuous DTFT
- 2. It can compute the DFT extremely fast

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$
  
 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$ 

Still true ? I.e.

$$x(n) \star y(n) \leftrightarrow X(k)Y(k)$$
  
$$x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$$

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### Still true ? I.e. Assume length N sequences

$$\begin{aligned} x(n) \star y(n) &\leftrightarrow X(k)Y(k) \\ x(n) &\leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N} \end{aligned}$$

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$
  
 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$ 

# Still true ? I.e. Assume length N sequences. Follows that DFTs also length N $x(n) \star y(n) \leftrightarrow X(k)Y(k)$ $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k)e^{-i2\pi k n_0/N}$

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1

$$\begin{array}{ll} x(n) \star y(n) \leftrightarrow X(k)Y(k) \\ x(n) \leftrightarrow X(f) & x(n-n_0) \leftrightarrow X(k) \mathrm{e}^{-i2\pi k n_0/N} \end{array}$$

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

$$\begin{array}{c} -x(n) \leftrightarrow y(n) \leftrightarrow X(k)Y(k) \\ x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N} \end{array}$$

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4}

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$ 

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4}

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$ 

Also length N. Becomes {10 2+2i 2 2-2i}

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$
  
 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$ 

### Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4} Length N+n\_0. Ex {0 1 2 3 4}  $x(n) \leftrightarrow X(f)$   $x(n - n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$ 

Also length N. Becomes {10 2+2i 2 2-2i}

#### Properties

### For DTFTs, we have

$$\begin{array}{l} x(n) \star y(n) \leftrightarrow X(f)Y(f) \\ x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f) \mathrm{e}^{-i2\pi f n_0} \end{array}$$
Still true ? I.e.
Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1
Assume length N. Ex {1 2 3 4}
Length N+n\_0. Ex {0 1 2 3 4}

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$ 

Also length N. Becomes {10 2+2i 2 2-2i}

Still length No

Makes no sense...

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$
  
 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$ 

### Still true ? NO

#### Properties

### For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
  $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$ 

### For DFTs, we have

$$x_1(n) \otimes x_2(n) \leftrightarrow X(k)Y(k)$$
$$x(n - n_0 \mod N) \leftrightarrow X(k)e^{-i2\pi k n_0/N}$$
where  $x_1(n) \otimes x_2(n) = \sum_{k=0}^{N-1} x_1(k)x_2(n - k \mod N)$ 

### Circular convolution





In WIFI, 4G, 5G etc etc, we give up 5-10% of the possible data rate in order to turn channel convolution into a circular convolution. Then we can use the FFT and save complexity

### Example

### **Circular convolution**

 $x(n) = \{ \underline{1} \ 2 \ 3 \ 4 \}$  $h(n) = \{ \underline{2} \ 2 \ 1 \ 1 \}$  $y_C(n) = x(n) \otimes h(n)$ 

| Example                                              | Metl     | thod 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circular convolution                                 | h(k)     | $1  1  2  \underline{2}  \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x(n) = \{\underline{1} \ 2 \ 3 \ 4\}$               | x(k)     | <u>2 3 4 1</u> 2 3 4 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $h(n) = \{2 \ 2 \ 1 \ 1\}$                           | $y_C(k)$ | <u>15</u> 13 15 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $y_C(n) = x(n) \otimes h(n)$                         |          | Method 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |          | <u>2 3 4 1</u> 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                      |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Method 3                                             |          | 2 4 6 8 2 4 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 2 3    | $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ |
| $y_L(k)$ <u>2</u> 6 11 17 13 7 4 0                   |          | $\begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \\ - & - &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Example                                                | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circular convolution                                   | $h(k)$ 1 1 2 $\underline{2} \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mathad 1                                               | x(k) 2 3 4 <u>1</u> 2 3 4 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >> x = $[1 \ 2 \ 3 \ 4];$<br>>> h = $[2 \ 2 \ 1 \ 1];$ | $y_C(k)$ <u>15</u> 13 15 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >> yc = ifft(fft(x).*fft(h))<br>yc =<br>15 13 15 17    | Method 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | <u>2 3 4 1</u> 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                        | $\underline{2} \qquad 4 \qquad 6 \qquad 8 \qquad \underline{2} \qquad 4 \qquad 6 \qquad 8 \qquad \underline{3} \qquad $ |
| Method 3                                               | 2 4 6 8 2 4 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{y_L(k)}{2} = 6  11  17  13  7  4  0$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Example

Linear convolution computed via DFTs

- Given: Two length N sequences, x(n), y(n)
- Task: Compute their linear convolution by using DFT and its inverse IDFT

#### Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by using DFT and its inverse IDFT

This is the result, But not computed via DFT

#### Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by using DFT and its inverse IDFT

This is the result, But not computed via DFT

```
This fails
```

#### Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by using DFT and its inverse IDFT

>>  $x=[1 \ 2 \ 3 \ 4];$ This is the result, But >> y=[2 2 1 1]; >> vL=conv(x, y)not computed via DFT vL = 2 6 11 17 13 7 4 >> xp=[1 2 3 4 0 0 0 0]; >> yp=[2 2 1 1 0 0 0 0]; >> yL=ifft(fft(xp).\*fft(yp)) yL = 2.0000 6.0000 11.0000 17.0000 13.0000 7.0000 4.0000 -0.0000

Still a circular convolution carried out, but due to zero-padding, it behaves linear.

More examples

```
x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \}
```

Compute 16-point DFT (N=16)  $X(k), k = 0, 1, \dots, 15$ 

More examples

#### $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \}$

Compute 16-point DFT (N=16)  $X(k), k = 0, 1, \dots, 15$ 

Compute inverse transform

$$x_{\text{IDFT}}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^2(k) e^{i2\pi kn/N}$$

More examples

#### $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \}$

Compute 16-point DFT (N=16)  $X(k), k = 0, 1, \cdots, 15$ 

Compute inverse transform

• 
$$x_{\text{IDFT}}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^2(k) e^{i2\pi kn/N}$$

 $\Lambda T$ 



More examples

Repeat for  $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \}$ 

 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \}$ 

Compute 16-point DFT (N=16)  $X(k), k = 0, 1, \cdots, 15$ 

Compute inverse transform

• 
$$x_{\text{IDFT}}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^2(k) e^{i2\pi k n/N}$$



More examples

Repeat for  $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \}$ 

 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \}$ 

Compute 16-point DFT (N=16)  $X(k), \ k=0, \ 1, \cdots, 15$ 

Compute inverse transform  $x_{\text{IDFT}}(n) = \frac{1}{N} \sum_{k=1}^{N-1} X^2(k) e^{i2\pi k n/N}$ 





```
x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \}
```

Compute DFT (N=6)



#### More examples

#### $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0\}$

Compute DFT (N=8)



#### More examples

#### $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0\}$

Compute DFT (N=8)



#### More examples

 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \cdots \}$ 

Compute DFT (N=16)







 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \cdots \}$ 

Compute DFT (N=16)



What is this line?

```
DFT size larger-or-equal to the length of x(n)
```



As a matrix computation

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-i2\pi kn/N}$$

#### We can write a DFT as a matrix multiplication



 $\mathbf{X} = \mathbf{W}\mathbf{x}$
## **EITF75 Systems and Signals**

As a matrix computation

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-i2\pi kn/N}$$

We can write a DFT as a matrix multiplication

$$\begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{-i2\pi/N} & e^{-i2\pi 2/N} & \cdots & e^{-i2\pi(N-1)/N} \\ 1 & e^{-i2\pi 2/N} & e^{-i2\pi 2 \cdot 2/N} & \cdots & e^{-i2\pi 2 \cdot (N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{-i2\pi(N-1)/N} & e^{-i2\pi(N-1) \cdot 2/N} & \cdots & e^{-i2\pi(N-1) \cdot (N-1)/N} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$

 $\mathbf{X} = \mathbf{W}\mathbf{x}$ 

Therefore

$$\mathbf{x} = \mathbf{W}^{-1}\mathbf{X}$$

Easy to show that W is unitary (orthogonal, but for complex matrices)  ${f W}^H {f W} = {f I}$