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EITF75 Systems and Signals

Allowed tools:
Whatever you want to bring that does
Exam in not have internet access

Systems and signals

. Write clearly! If I cannot read what you write, I will consider it as not written at all.

My decision on this matter is final, you cannot argue that I should have been able to read .
i nter WO retaKe exams.
2. It is important to show the intermediate steps in arriving at an answer, otherwise you

April, August

. When generating problems of the True/False form, I use Matlabs random number generator.

. Providing two answers to a problem, where one of them is wrong, will result in points being
deducted. S;
point

Exam gives maximum 5.0 points

slides.




EITF75 Systems and Signals

Hand in assignement
Nbr 1 (of 2)

Deadling: Copploto the ta:k, and hand it in in the cours madlbox at the third floor no later than
Septambar 30, 23.58.

et are correct and which are false. (5 correct
anzwers out of § gives 0.1p).

2. The one-sided z-transform is only wsed when the sigmnal is cansal, since the normal z-

tramsform. Teduces to the one-sided.

b, The sigmal hiz) camnot be nniguely cbuined Srom Hiz) usless i ROC is specified
£ A cawsal FIR filter Bas poles at =0

d. Eveaif the sigmal hin) is sat BIBO stabls, i Fousier munsfomm may still exist.

s A=y Lnser system cas be repressased by an impulis responis

£ Ifthe Fourier spectram is discrats, it follows shat the comespeading sigmal is me-

cemtizmous.

b, Provide the cuput for the Eput x(r) = &(n). (0.1)

& Ferx(n) = (=) w(n). Snd the z-mansform ¥{z) of the signsl yin). (0.1}

d. Letthe ontput sigmal y{n) be the izput to a FIR filter with impalve respease {1,-1/5).

Find the cutpst sigmal of the FIR Sl (0.1)

Grades: 3.0-3.9: 3

Allowed tools:
Whatever you want to bring that does
not have internet access

Two retake exams:
April, August

Exam gives maximum 5.0 points

There are two hand in assignements,
these give 0.5p each

So, total points: 6.0

4.0-4.9: 4 5.0-6.0: 5




EITF75 Systems and Signals

Allowed tools:
Hand in assignement Whatever you want to bring that does
Nbr 1 (of 2) not have internet access

Deadling: Copploto the ta:k, and hand it in in the cours madlbox at the third floor no later than
Septambar 30, 23.58.

Dosarvec

Two retake exams:
ln?“;;::::—z:dﬂ::-‘;:;:::;.ilosi;;o:i:\'hsn'J:a sigmal is causal, since the normal z- A pr i | ' A UQUST

tramsform. Teduces to

1. Indicate whick of che following statements are correct and which are false. (5 correct

b, The sigmal hiz) camnot be nniguely cbuined Srom Hiz) usless i ROC is specified
£ A cawsal FIR filter Bas poles at =0
d. Eveaif the sigmal hin) is sat BIBO stabls, i Fousier munsfomm may still exist.

R — Exam gives maximum 5.0 points

£ Ifthe Fourier spectram is discrats, it follows shat the comespeading sigmal is me-

cemtizmous.

1
¥in) =—y(n— 1)+ min
z

There are two hand in assignements,
© e i 8 these give 0.5p each

d. Letthe ontput sigmal y{n) be the izput to a FIR filter with impalve respease {1,-1/5).
Find the cupst sigmal of the FIR Sl (0.0)

So, total points: 6.0

Points from hand-in assignements valid for 1 year,
i.e., the October, April, and August exams




EITF75 Systems and Signals

Hand in assignement
Nbr 1 (of 2)

Deadling: Copploto the ta:k, and hand it in in the cours madlbox at the third floor no later than
Septambar 30, 23.58.

et are correct and which are false. (5 correct
anzwers out of § gives 0.1p).

2. The one-sided z-transform is only wsed when the sigmnal is cansal, since the normal z-

tramsform. Teduces to the one-sided.

b, The sigmal hiz) camnot be nniguely cbuined Srom Hiz) usless i ROC is specified
£ A cawsal FIR filter Bas poles at =0

d. Eveaif the sigmal hin) is sat BIBO stabls, i Fousier munsfomm may still exist.

s A=y Lnser system cas be repressased by an impulis responis

£ Ifthe Fourier spectram is discrats, it follows shat the comespeading sigmal is me-

cemtizmous.

b, Provide the cuput for the Eput x(r) = &(n). (0.1)

& Ferx(n) = (=) w(n). Snd the z-mansform ¥{z) of the signsl yin). (0.1}

d. Letthe ontput sigmal y{n) be the izput to a FIR filter with impalve respease {1,-1/5).

Find the cutpst sigmal of the FIR Sl (0.1)

Allowed tools:
Whatever you want to bring that does
not have internet access

Two retake exams:
April, August
Exam gives maximum 5.0 points

There are two hand in assignements,
these give 0.5p each

So, total points: 6.0

Deadline for handing in: end of September, mid-October (see web)




EITF75, Introduction

Continuous time vs. Discrete time

Signal

Consider an electronic device, observing a signal

—>

Device




EITF75, Introduction

Continuous time vs. Discrete time

Consider an electronic device, observing a signal

Signal
xg(t) —>| Device Am(t)

In reality, a signal is continuous.




EITF75, Introduction

Continuous time vs. Discrete time

Consider an electronic device, observing a signal

Signal
:U(t) —>| Device [——> Output

The device has a task - it should output something




EITF75, Introduction

Continuous time vs. Discrete time

Consider an electronic device, observing a signal

Signal A
:;g(?;)l —> Device ——— Output y(t)

y(1)

Most general case is continuous output




EITF75, Introduction

Continuous time vs. Discrete time

Consider an electronic device, observing a signal

Signal ; Output
—>| Device |———
y(t)

fc—@Lel Continuous memory..??

Obvious questions:

1. How should the device store/represent the signal z(¢) ?
- Almost impossible...
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Continuous time vs. Discrete time

Consider an electronic device, observing a signal
Signal Output
y(t)

—> Device |——

x(t)

F |—=X(f)—| Continuous memory..?2? }—|pirther

Processing

Obvious questions:

2. Suppose a Fourier transform of x(t)is needed.
How to compute X (f) for every f ?

-Almost impossible.. | ety exp(-izn sy




EITF75, Introduction

Continuous time vs. Discrete time

Consider an electronic device, observing a signal

Signal ; Output
:U(t) —>| Device |———

y(1)

Summary

It is very hard for a computer to work with continuous signals

(Think for example of Matlab)
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Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Digital signals:

Continuous signals:

Discrete signals:
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Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Digital signals:

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals:
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Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Digital signals:

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals: time is discrete,
amplitude is continuous

“lL L1,
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Discrete time signals

) ) Digi'l'a| signals: time is discrete,
What is the difference between amplitude is discrete

 Continuous signals z(n) 4
 Discrete signals oo
- Digital signals

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals: time is discrete,
amplitude is continuous

“lL L1,




EITF75, Introduction

Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals: time is discrete,
amplitude is continuous

“lL L1,

Essentially not treated in course.
However, the class of digital signals
is a subset of the class of Discrete
signals, so everything we study
applies to digital signals as well




EITF75, Introduction

Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals: time is discrete,
amplitude is continuous

“lL L1,

Where does a discrete signal
appear in nature?
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Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Discrete signals: time is discrete,
amplitude is continuous

TIT.[iI?

' 12 3

Where does a discrete signal
appear in nature?

Nowehere (that I know). All natural
signals are continuous/analog.

Discrete signals are man-made.

Examples:
Read temperature at constant interval
Read stock-price once/sec
Read an audio signal 44100 times/sec
Let a cell-phone read an incoming
wave 10000000 times/sec

In all cases (except maybe stock price),
the underlying signal is continuous, not
discrete




EITF75, Introduction

Discrete time signals

What is the difference between
 Continuous signals

« Discrete signals

- Digital signals

Digital signals: time is discrete,
amplitude is discrete
z(n) 4 ®

®-@

1

E

Continuous signals: Simple...

iU(t) N
-/\_\ m /
\v/ \4

Digital signals come about since it is hard
for a computer to store all possible
values. So it quantizes them.

We will briefly touch upon the losses
involved in quantization

Discrete signals: time is discrete,
amplitude is continuous

"Il 1,

1 2 3
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Discrete time signals

We study the following system

Signal

—>{ Device

z(t) z(n)

sampl i ng > Processing
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Discrete time signals

We s'rudy the following sys‘l‘em Output can be either discrete or continuous

Signal Output
y(n)

—> Device |——

z(t) z(n)

sampl i ng > Processing




EITF75, Introduction

Discrete time signals

We study the following system Output can be either discrete or continuous

Signal D' Output
> evice —> Y (t)

z(t) z(n)

sampl i ng > Processing Reconstruction




EITF75, Introduction

Discrete time signals

We s'rudy the following sys‘l‘em Output can be either discrete or continuous

Signal : Output
—>| Device |——— y(t)

z(t) z(n)

sampling > RAM Processing ———>| Reconstruction

The target is to carry out the same task as an anolog device would

j Output
Signal I Device yu(tsu

a0 —0

x(t)

Continuous RAM > Processing
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Discrete time signals

Signal

We study the following system Output can be either discrete or continuous

—>

) Output
Device —— y(t)

x(t)

sampling

z(n)

~
7

RAM Processing ——>| Reconstruction

Signal

x(t)

The target is to carry out the same task as an anolog device would

b
Cd

Device

Output
> y(t)

Example: “The output should be the mean of the input during the last
8 second plus the mean outputs during the last 5 seconds”
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Discrete time signals

We study the following system Output can be either discrete or continuous

Signal : Output
—>| Device |——— y(t)

z(t) z(n)

sampl i ng > RAM Processing Reconstruction

Thus, we need to understand how

« Sampling should be done so that nothing is lost

« How to process a discrete signal

* How to convert a discrete signal into a continuous one so that it behaves well

Example: “The output should be the mean of the input during the last
8 second plus the mean outputs during the last 5 seconds”
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Discrete time signals

We study the following system Output can be either discrete or continuous

Signal ; Output
—>| Device |——— y(t)

z(n)

sampl i ng > Processing Reconstruction

DIGITAL Chapters

SIGNAL

F"’,R,OICEISS_J:‘G 1 Introduction

and Applications 2 Discrete-Time Signals And Systems

S T T P 3 The Z-Transform And Its Application To The Analysis Of LTI Systems
‘ 7 4 Frequency Analysis Of Signals And Systems

5 Frequency Domain Analysis Of Lti Systems

6 Sampling And Reconstruction Of Signals
7 The DISCI"GTC Four'ler Transform I‘rs Pr'oper"nes And Appllca’rlons

9 Implemem‘ahon Of D:scre‘re Tume SysTems




EITF75, Introduction

Discrete time signals

We study the following system Output can be either discrete or continuous

Signal ; Output
—>| Device |——— y(t)

z(n)

sampl i ng Processing Reconstruction

DIGITAL Chapters

SIGNAL
EROCES NS 1 Introduction
and Applications 2 Discrete-Time Signals And Systems
S T T P 3 The Z-Transform And Its Application To The Analysis Of LTI Systems
‘ Z 4 Frequency Analysis Of Signals And Systems
5 Frequency Domain Analysis Of Lti Systems
6 Sampling And Reconstruction Of Signals

7 The Dlscre'l'e Four'ler' Transfor'm I'I's Pr‘operhes And Appllccmons

9 Implemenfahon Of Dlscre'l'e Tlme Systems




EITF75, Introduction

Some recap, hotation and other basics

How we express a discrete signal

1
x(n):sin(%'gn)%{... -1 —-07007107 ...}

The bar below “"0” marks that this is at time n=0
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Some recap, hotation and other basics

How we express a discrete signal

1
x(n):sin(%'gn)%{... -1 —-07007107 ...}

The bar below “"0” marks that this is at time n=0

Examples of systems

r(n)— system |—— y(n)

y(n) = ém(n) + éaz(n —1)+ ém(n —2)+ éﬂn —3) + %m(n —4)

Easily understood as average of 5 last samples




EITF75, Introduction

Some recap, hotation and other basics

How we express a discrete signal

1

x(n):sin(%’gn)%{... -1 —-07007107 ...}

The bar below “"0” marks that this is at time n=0

Examples of systems

r(n)— system |—— y(n)

y(n) = ém(n) + éaz(n —1)+ ém(n —2)+ éﬂn —3) + %m(n —4)

Easily understood as average of 5 last samples

y(n) = ém(n)—%w(n — 1)+ éw(n - 2)—%:1;(71 —3) + %a:(n —4)

But what does this system do? We'll understand how to find out...




EITF75, Introduction

Some recap, hotation and other basics

How we express a discrete signal

1
x(n):sin(Qﬂ' n)m{ -1 —-07007107 ...}

The bar below “"0” marks that this is at time n=0

Examples of systems Important class:
Feedback systems

y( )—09yn—1 + x(n)

r(n)— system |—— y(n)

y(n) = gm(n) + éaz(n —1)+ ém(n —2)+ l$(n —3) + lm(n —4)

5) 5)
Easily understood as average of 5 last samples

y(n) = ém(n)—%w(n — 1)+ éw(n - 2)—%:1;(71 —3) + %a:(n —4)

But what does this system do? We'll understand how to find out... What will happen ?




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 —{...0100 ...}={1}

0 otherwise

1 n>0
0 otherwise

={111 ..}




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

n=>_0
otherwise

={..0100 ...}={1}

n >0

otherwise 111 ...

Signal is causal if it is zero
for all negative indices

z(n) =0,n <0 <= z(n) causal




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

n=>_0
otherwise

—{...0100 ..}={1}

n >0

otherwise 111 ...

Signal is causal if it is zero
for all negative indices

z(n) =0,n <0 <= z(n) causal




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 —{...0100 ...}={1}

0 otherwise

n >0

0 otherwise ={111..}

Impulses and steps are key later, but for now we just mention that
they can be used to mathematically represent a signal.

Examples:
zn)={14 1} =1-6(n)+4-6(n—1)+1-d(n—2)
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

1 n=0
6(72,){ 0 otherwise ={... 0100 ...} ={1}

1 n>0 .
0 otherwise ={111..}

Impulses and steps are key later, but for now we just mention that

they can be used to mathematically represent a signal.
Examples:

zn)={14 1} =1-6(n)+4-6(n—1)+1-d(n—2) Zaz




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 " ¢ 0100 .)={1)

0 otherwise

1 n>0
0 otherwise

={111 ..}

An expression of such form is important and is named convolution

zn)={141}=1-6(n)+4-5(n—1)+1-0(n—2) :Z:C(k)é(n—k:)
k
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 " ¢ 0100 .)={1)

0 otherwise

1 n>0

0 otherwise ={111..}

Note that the below equality is obvious and only means
“a convolution with an impulse changes nothing”

37(71) — Z ﬂf(k)(S(TL — k') However, this form will turn out to be useful later
k
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 —{...0100 ...}={1}

0 otherwise

0 otherwise

Another example:
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 —{...0100 ...}={1}

0 otherwise

0 otherwise

Another example:
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 " ¢ 0100 .)={1)

0 otherwise

1 n>0

0 otherwise ={111..}
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

1 n=0

otherwise = oo LU0 ooy =k

n >0

otherwise 111 ...

This is not correct,
since such signal is not causal

r(n)#0.5-n
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Some recap, hotation and other basics

Some important discrete signals and concepts

Impulse

5(n)—{1 n=0 " ¢ 0100 .)={1)

0 otherwise

1 n>0

0 otherwise ={111..}

Like this
z(n) = 0.5 - nu(n)




EITF75, Introduction

Some recap, hotation and other basics

Some important discrete signals and concepts
Systems: delay

Expression Circuit

y(n) ==z(n—1) ||[z(n)=z | —=u(n)
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Some recap, hotation and other basics

Some important discrete signals and concepts
Systems: delay

Expression Circuit

y(n) ==z(n—1) ||[z(n)=z | —=u(n)

What is the expression?

Circuit

93(”)_>T—> z1

Expression

Multiplication from now and on
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Some recap, hotation and other basics

Some important discrete signals and concepts

Systems: delay

Expression

y(n) =z(n—1)

Circuit

z(nj—

Z

—1

—y(n)

What is the expression?

Expression

Circuit

z

—
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Some recap, hotation and other basics

Some important discrete signals and concepts
Systems: delay

Expression Circuit

y(n) =z(n—1) |z(n)—{z"

What is the expression?

Circuit

Z_l

Expression
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Some recap, hotation and other basics

Some important discrete signals and concepts

Systems: delay

Expression

y(n) =z(n—1)

Circuit

z(nj—

Z

—1

—y(n)

What is the expression?

Expression

yn)=05-yn—1)+xz(n—1)

Circuit

—

z(n) =x(n) +0.5-y(n)
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Some recap, hotation and other basics

In general, a signal y(n) generated

from (1) via @ ~—1 +

can be mathematically described by
> alk)y(n—k) =Y b(f)z(n—0)
k 12

We will study this type of
systems in detail




EITF75, Introduction

Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) lz(n)
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Some recap, hotation and other basics

Energy of signal  Average power of signal

U=R-1I
Power of signal:
P=U-I

T — Z z(n)|? Ohm's law:




EITF75, Introduction

Some recap, hotation and other basics

Energy of signal  Average power of signg!——

) N-1 A
E—Zn:kv(n) P:%Z 2(n)|?

Ohm's law:
U=R-1I
Power of signal:
P=U-I
So: ‘/_\

P=U?/R

One measures the voltage using some equipment. Said equipment has
a resistance, I?, which does not change when the voltage changes.

Therefore, the power of two signals can be fairly compared using

the square law.
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Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) |e(n)

Even symmetry Odd symmetry

z(n) = x(—n) z(n) = —x(—n)
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Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) |e(n)

Even symmetry Odd symmetry

z(n) = x(—n) z(n) = —x(—n)

Finite Memory
y(n)depends on x(n), x(n—1), ..., x(n— L)
but noton x(n— L —1),z(n—L —2), ...
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Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) |e(n)

In words:
The output at time 109

does not depend on the
z(n) = x(—n) z(n) = —z(—n) input at time O

Even symmetry Odd symmetry

Finite Memory
y(n)depends on x(n), x(n—1), ..., x(n— L)
but noton x(n— L —1),z(n—L —2), ...
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Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) |e(n)

In words:
The output at time 109

depends on the input at
z(n) = z(=n) z(n) = —2(=n) | time 0

Even symmetry Odd symmetry

Finite Memory Infinite Memory
y(n)depends on z(n), x(n —1), ..., z(n— L)|| y(n)depends on
but noton z(n — L —1), x(n — L —2), ... x(n), ...,x(—o0)
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Some recap, hotation and other basics

Energy of signal  Average power of signal

E=) |e(n)

Even symmetry Odd symmetry

z(n) = x(—n) z(n) = —x(—n)

Finite Memory y(n) = x(n) + x(n —1) Infinite Memory
y(n)depends on z(n), x(n —1), ..., z(n— L)|| y(n)depends on
but noton z(n — L —1), x(n — L —2), ... x(n), ...,x(—o0)

y(n) =0.5-y(n —1) +z(n)

We will study why later....
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Some recap, hotation and other basics

Linear system

x(n) = axy(n) + Bra(n)
——
y(n) = ayi(n) + Bya(n)
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Some recap, hotation and other basics

Linear system

x(n) = axy(n) + Bra(n)
——
y(n) = ayi(n) + Bya(n)
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Some recap, hotation and other basics

0 —] system |—>0

Linear system

Holds for all linear systems

arxi(n) + Bxa(n)
<

y(n) = ayi(n) + Byz(n)




EITF75, Introduction

Some recap, hotation and other basics

z(n) —{ system [— y(n)

Linear system
Time invariant system

z(n) = ari(n) + Bzz(n) x(n) replaced by z(n — D)

= =
y(n) = ayi(n) + Bya(n) y(n) replaced by y(n — D)
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Some recap, hotation and other basics

z(n) —{ system [— y(n)

Linear system

Time invariant system

arxi(n) + Bxa(n)
<

y(n) = ayi(n) + Byz(n)

x(n) replaced by z(n — D)
—
y(n) replaced by y(n — D)

system
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Some recap, hotation and other basics

z(n) —{ system [— y(n)

Linear system

Time invariant system

arxi(n) + Bxa(n)
<

y(n) = ayi(n) + Byz(n)

x(n) replaced by z(n — D)
—
y(n) replaced by y(n — D)

system
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Some recap, hotation and other basics

z(n) —{ system [— y(n)

Linear system
Time invariant system

r(n) = axi(n) + Bra(n) x(n) replaced by z(n — D)

< <
y(n) = ayi(n) + By2(n) y(n) replaced by y(n — D)

BIBO-stability

BIBO = Bounded input,
2(n)] <Mz = ly(n)] < My < oo bounded output
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Sll’l 27TFt — <I>

ﬂ ANANTAS
VoA

v

A
F
o

Amplitude
Frequency [Hz]
Phase [Rad]
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Sll’l 27TFt — <I>

ﬂ ANTAN A
VoA

v

A
F
b

T =

Amplitude
Frequency [Hz]
Phase [Rad]

F~1 Period [s]
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Preliminaries of Sinusoids

x(t = A-sin(2nFt — ®) = A - sin(Qt — D)

A Amplitude
/\ /\ /\ I A . | 7 Frequency [HZ]

® Phase [Rad]
v v v \ T = ! Period [s]

) = 27 F Freq [Rad/s]
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Preliminaries of Sinusoids

x(t =A-sin(2nft —®) = A-sin(Qt — P) = A -sin (Q (t—?>>

ﬂ [\ /\M

VAR

Q
A Amplitude

F' Frequency [HZz]
® Phase [Rad]

T = F~! Period [s]
) = 27 F Freq [Rad/s]

T = Delay [s]

0
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Preliminaries of Sinusoids

z(t) =A-sin(2nFt —P) = A-sin(QU — P) = A -sin (Q (

S ST IA

z(n) = A-sin(2rfn — ®)
17 Digital Freq [-]

0.51

0

.51

Mt
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z(t) =A-sin(2nFt —P) = A-sin(QU — P) = A -sin (Q (

A-sin(2mfn —

IS
T
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z(t) =A-sin(2nFt —P) = A-sin(QU — P) = A -sin (Q (

| \ T 7\ A .
iy \ / 4 / A / \
1 ! \ / \ / \
1 \ f / \ ! 1
/ \ / \ { \
f \ / \ i
| / \ / \ / me [sec]
/ \ / \ /
L L L I L \ L L
P2 7 04 \ 0s { o8 wr of 09
\ / \ /
\ { \ /
/ \ / \ /
\ / \ /
/ \ / \ / \

r(n) = A-sin(2rfn—®) = A.sin(wn —

1

Dﬂﬂﬂﬂﬂﬂ 20 S P
LT
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Preliminaries of Sinusoids Examples

x(t) = A-sin(2nFt)
F =

x(n) =A-sin(2wfn)

f=0.1
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Preliminaries of Sinusoids Examples

x(t) = A-sin(2nFt)

i | A
RVAYRYALY

x(n) = A -sin(2rwfn)
f=02
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Preliminaries of Sinusoids

Examples

x(t) = A-sin(2nFt)
F =10

AL

st

x(n) = A -sin(2rwfn)
f=04
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Examples

x(t) = A-sin(2nFt)
F =20

ALAMAAMAA AL

x(n) =A-sin(2wfn)
f=1.4

TRV IR

-

At
No change




EITF75, Introduction

Preliminaries of Sinusoids

Examples

x(t) = A-sin(2nFt)
F =20

ALAMAAMAA AL

x(n) = A -sin(2rwfn)
f=84

TRV IR

-

At
No change




EITF75, Introduction

Preliminaries of Sinusoids Explanation

x(n) = A-sin(27 fn)

x(n) =A-sin(2wfn)

f=84

Lo

No change
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Preliminaries of Sinusoids

Explanation

2

r(n) = A-sin(2rnfn) = A-sin(2x(f’ + k)n)

f=(f +h), 5 <J <5 kel

x(n) = A -sin(2rwfn)
f=84

gL

No change

-
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Preliminaries of Sinusoids Explanation

z(n) = A-sin(2rfn) = A-sin(2n(f' + k)n) = A-sin(27f'n)

1 1
f=(f+k), —ng’<§, kel

x(n) = A -sin(2rwfn)
f=84

Lo

No change
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Preliminaries of Sinusoids

Important

Discrete sinusoid defined with a frequency
of at most % (or « rad) iN magnitude

(Since higher frequencies than this don't make any sense)

x(n) = A -sin(2rwfn)
f=84

gL

No change

-
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sampling >

x(t) = sin(27w440¢)
Sample with 1000 samples/sec
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Preliminaries of Sampling

sampling >

_>E

x(t) = sin(27w440¢)
Sample with 1000 samples/sec

x(n) = x(t|t = nTs = n/Fy)

symbol ,

meaning

Ex. value

Fy

15

# Samples/sec [Hz]

Time between samples [s]

10°

1/F,=10"°
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Preliminaries of Sampling
sampling > —>E

x(t) = Sln(27f440t) symbol , meaning 1 Ex. value
Sample with 1000 samples/sec F, | # samples/sec [Hz] 10

x(n) = x(t|t = nTs = n/Fy)

) 440
=sin | 2r——n
1000

T, | Time between samples [s] | 1/Fs = 107"
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Preliminaries of Sampling

t
“{) sampling x(n)> RAM —>E

x(t) = Sln(27f440t) symbol , meaning 1 Ex. value
Sample with 1000 samples/sec F, | # samples/sec [Hz] 10

x(n) = x(t|t = nTs = n/Fy)

) 440
=sin | 2r——n
1000

= sin (27 - 0.44n)

T, | Time between samples [s] | 1/Fs = 107"

f=f =044
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Preliminaries of Sampling

t
“{) sampling x(n)> RAM —>E

z(t) = sin(27440¢) z(t) = sin(27440t) — sin(271440t)
Sample with 1000 samples/sec Sample with 1000 samples/sec
x(n) = x(t|t = nls = n/Fy) x(n) =

) 440
=sin | 2r——n
1000

= sin (27 - 0.44n)

f=f =044
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Preliminaries of Sampling

t
“{) sampling x(n)> RAM —>E

z(t) = sin(27440¢) z(t) = sin(27440t) — sin(271440t)
Sample with 1000 samples/sec Sample with 1000 samples/sec
x(n) = x(t|t = nls = n/Fy) z(n) = sin (27 - 0.44n)

— sin (27 - 1.44n)
, 440
=sin | 2r——n
1000

= sin (27 - 0.44n)

f=f =044
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Preliminaries of Sampling
sampling > —>E

z(t) = sin(274407) x(t) = sin(27440t) — sin(2w1440t)

Sample with 1000 samples/sec Sample with 1000 samples/sec

z(n) = x(t|t = nTs = n/Fy) x(n) = sin (27 - 0.44n)

— sin (27 - 1.44n)

= sin (27‘('@%> = sin (27 - 0.44n)
1000 — sin (27 - 0.44n)

= sin (27 - 0.44n) =0

f=f =044 Sampling rate too low
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Preliminaries of Sampling
sampling > —>E

Conclusion (verify this at home)

If Qﬁ(t) = ZSiD(zﬂ'th), |FE‘ S Fmax

£ :
and we want a sampling Frequency such that we can
reconstruct x(t) from xz(n), then I3 must satisfy

Fs > ...
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Preliminaries of Sampling
sampling > —>E

Conclusion (verify this at home)

If Qﬁ(t) = ZSiD(zﬂ'th), |FE‘ S Fmax

£ :
and we want a sampling Frequency such that we can
reconstruct x(t) from xz(n), then I3 must satisfy

FSZ2FII’1&X




