Fredrik Rusek

Dept. of EIT, Lund University

Examination, Systems and Signals EITF75

Maximum grade is 3. For higher grades, you need to take an oral exam as well. Send your solutions (e.g. photos) by email to <u>fredrik.rusek@eit.lth.se</u> no later than 17.00 Thursday 16/4. If you are interested in an oral exam, then mention that in the email. Oral exams will be held via Zoom in the week starting with Monday 20/4.

If you don't pass the written exam, you cannot take the oral exam. Grading will be finished by Monday morning 19/4.

Passing score (tentatively): 15p.

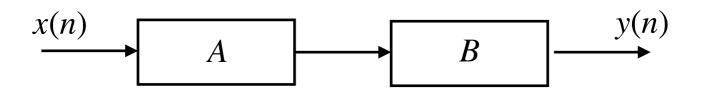
Problem 1 (10p)

For the difference equation $y(n) + \frac{2}{3}y(n-1) = 2x(n) + x(n-1)$, find

- 1. The system transfer function H(z)
- 2. The pole-zero diagram corresponding to the difference equation
- 3. The impulse response h(n)
- 4. The Discrete-time Fourier transform of the impulse response H(f)
- 5. The output for the input signal $x(n) = \begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix}$
- 6. The steady state response to the input x(n) = u(n) (a step)
- 7. The transient response to the input x(n) = u(n)

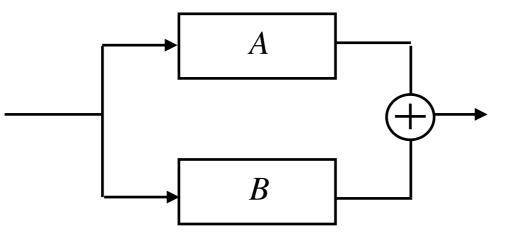
Problem 2 (5p)

Consider a system described by the difference equation $y(n) - \sum_{k=1}^{\infty} y(n-k) = x(n)$. Is the


system BIBO stable? You may assume that the system is at rest.

Hint: It is not meant that you should try to solve for all the poles/zeros.

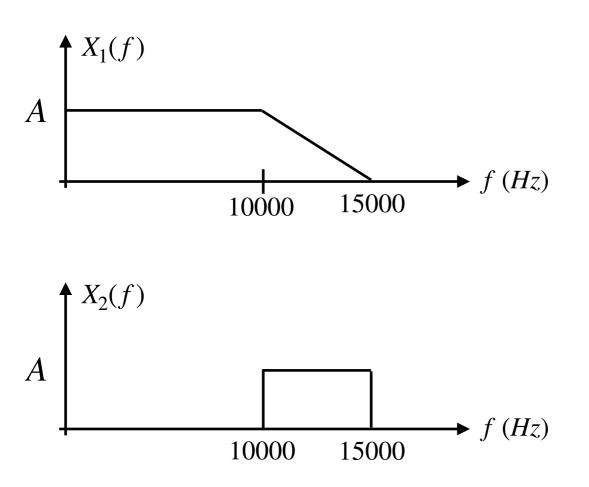
Problem 3 (5p)


For a general 4th order difference equation, we need to solve a fourth order equation to establish the pole/zero structure. This is in general hard to do without a computer.

Now consider the following serially cascaded system, where both A and B can be described by second order difference equations.

- 1. Can an arbitrary 4th order difference equation be described as a serially cascaded system of two 2nd order systems A and B? Explain.
- 2. Provided with the 2nd order difference equations describing A and B, how does one proceed to establish the pole-zero structure of the overall 4th order system?

Repeat subproblem 1 for the parallel cascaded system below.


Problem 4 (5p)

This problem deals with sampling of time-continuous signals with a sampling frequency of F_s samples per second.

For $X_1(f)$ and $X_2(f)$ shown below sketch the spectra of the signals after sampling for

- 1. $F_s = 10000 Hz$ 2. $F_s = 25000 Hz$ 3. $F_s = 50000 Hz$
- 4. For $X_1(f)$ and $F_s = 25000 Hz$, determine the output signal in the time-domain. 5. For $X_2(f)$ and $F_s = 10000 Hz$, determine the output signal in the time-domain.

Remark: Your solutions should take amplitude into account. (I.e., not only the shape of the spectra matters).

