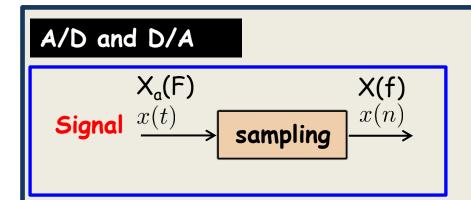


Key step is to understand what X(f) looks like in terms of $X_a(F)$

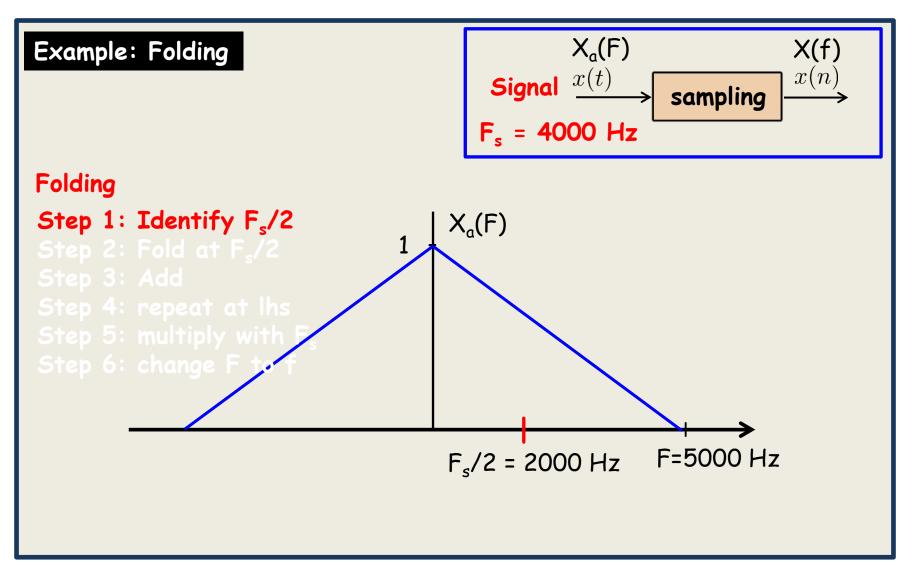
$$X(f) = F_{\rm s} \sum_{k=-\infty}^{\infty} X_a((f-k)F_{\rm s})$$

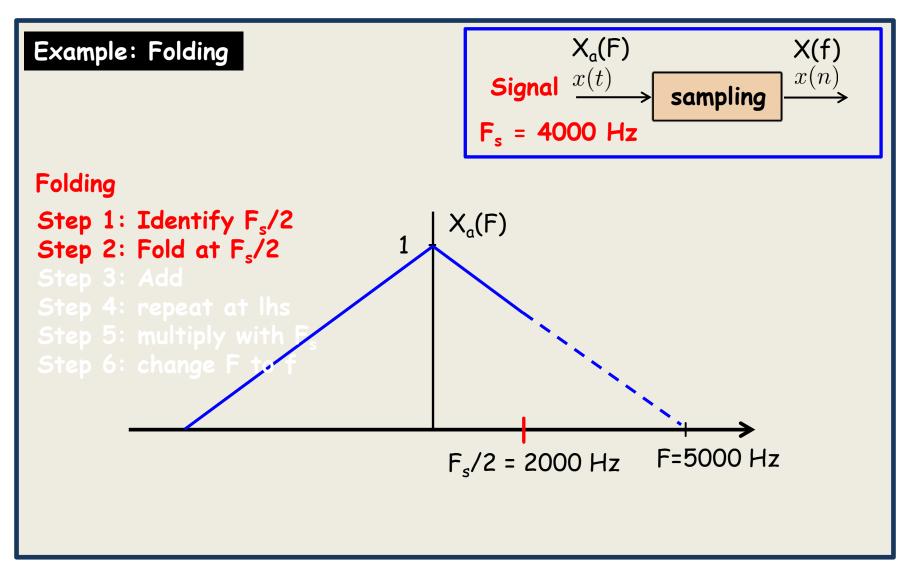


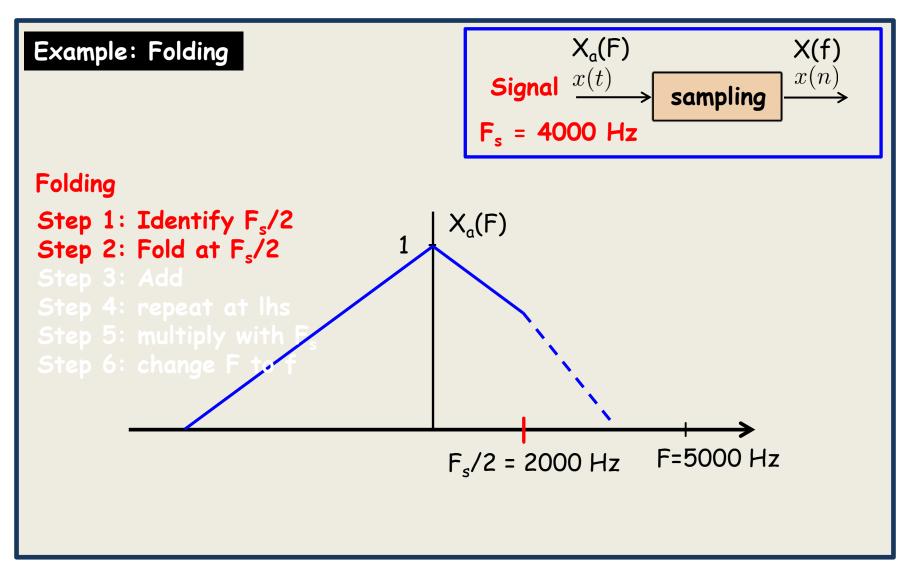
Key step is to understand what X(f) looks like in terms of $X_{a}(F)$

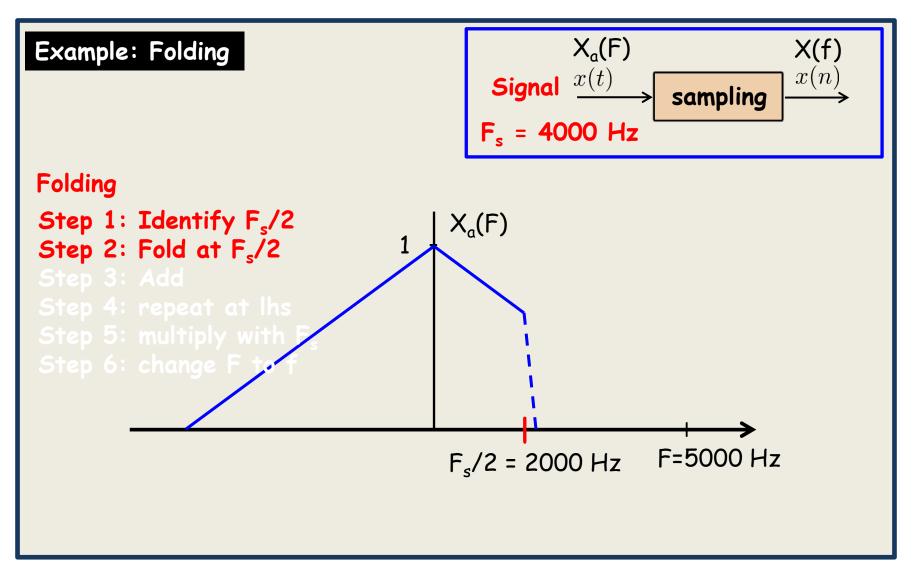
$$X(f) = F_{\rm s} \sum_{k=-\infty}^{\infty} X_a((f-k)F_{\rm s})$$

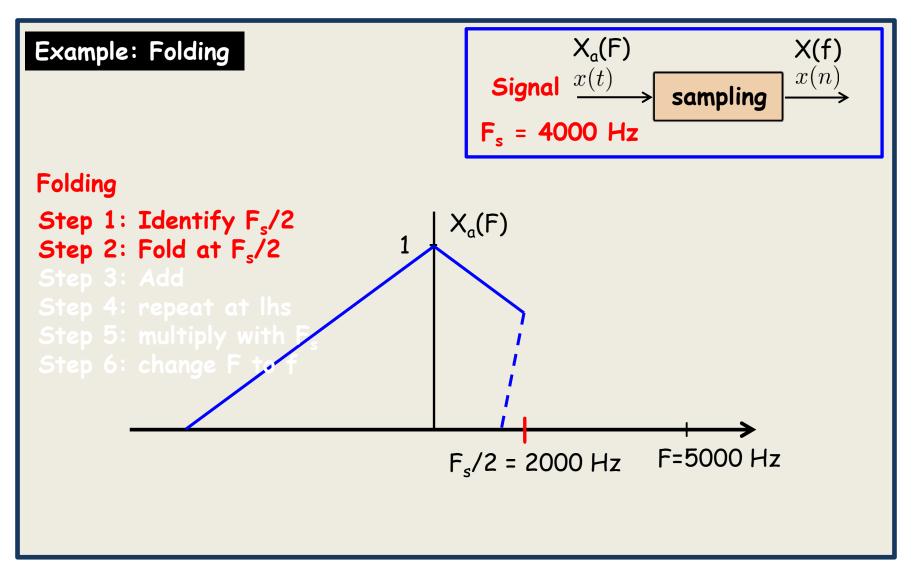
If sampling is to sparse, there is aliasing. We find X(f) by the "folding technique"

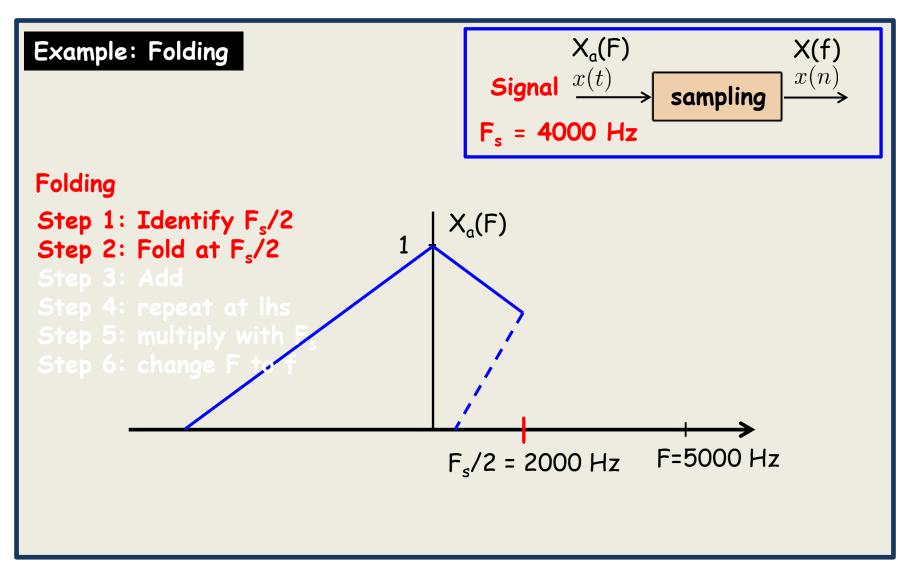


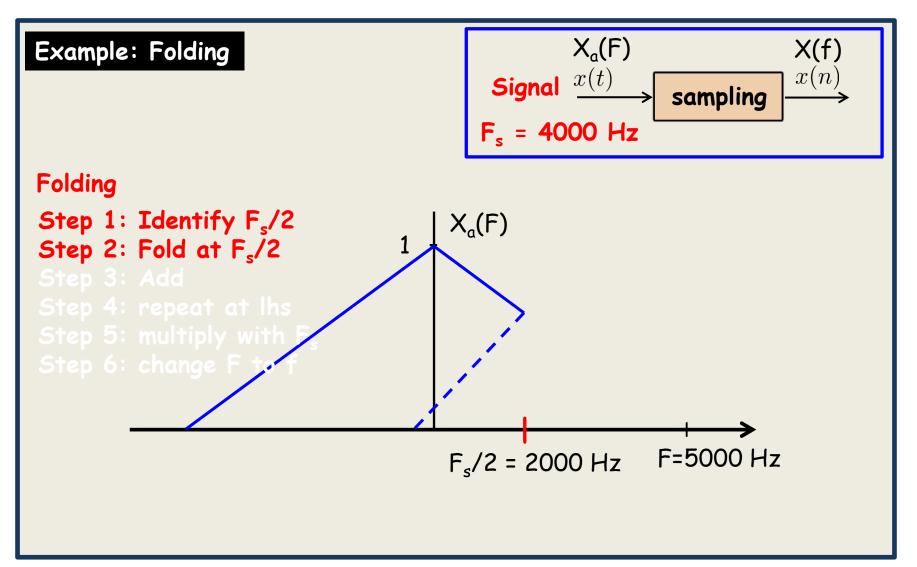


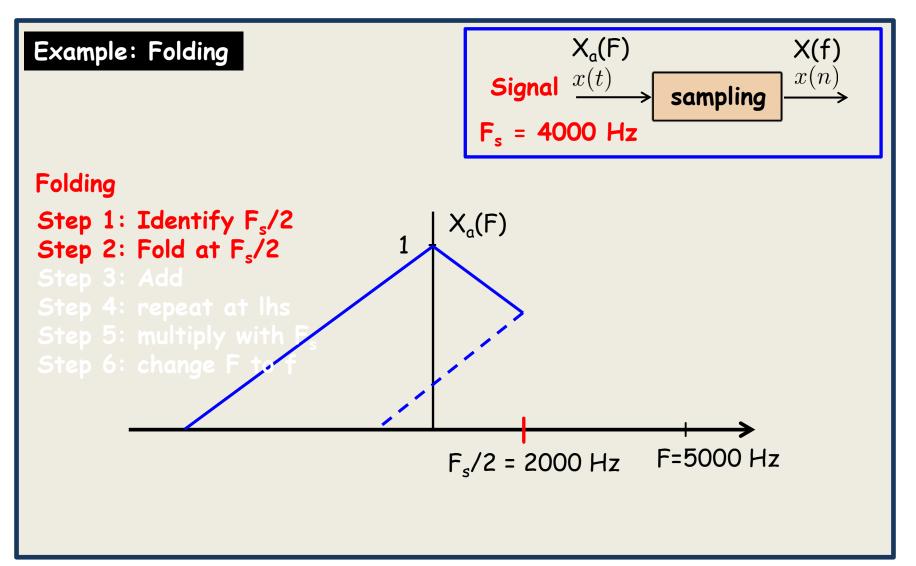


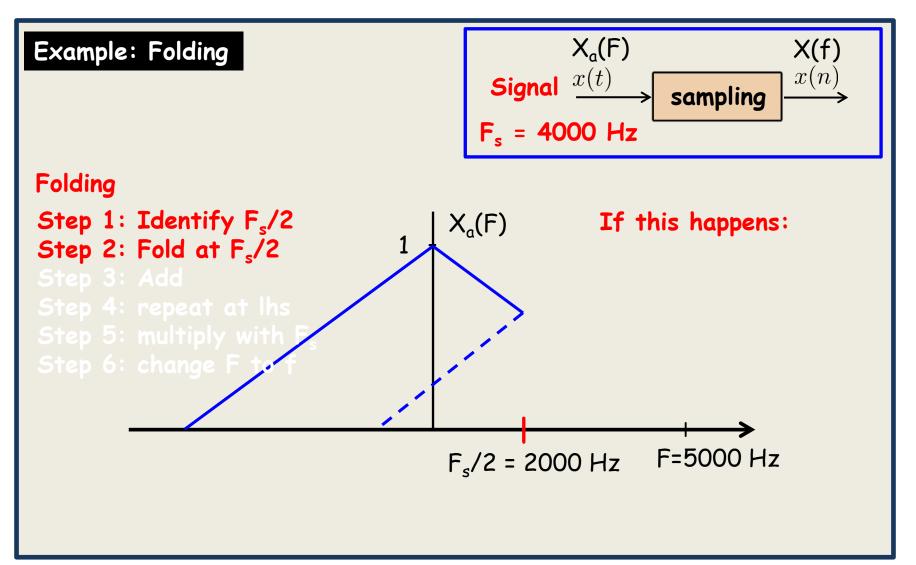


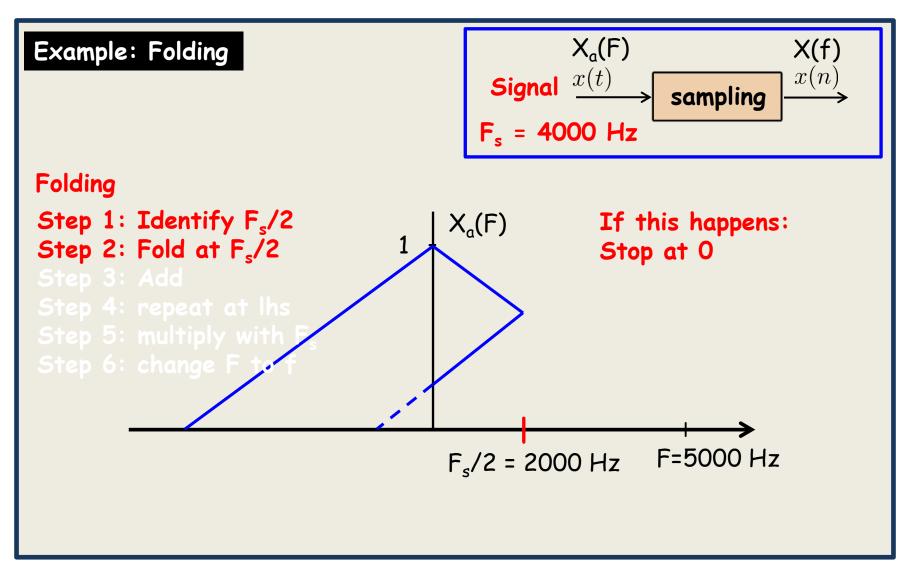


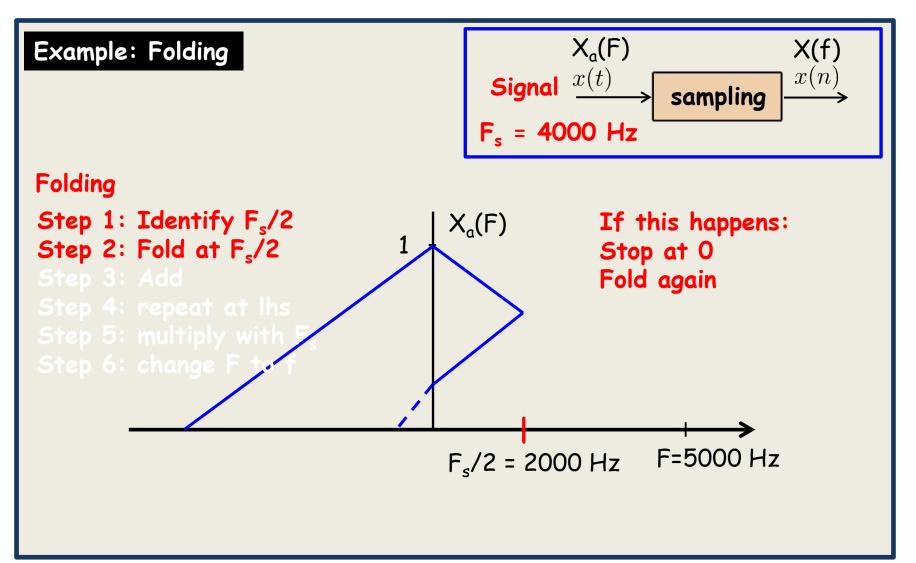


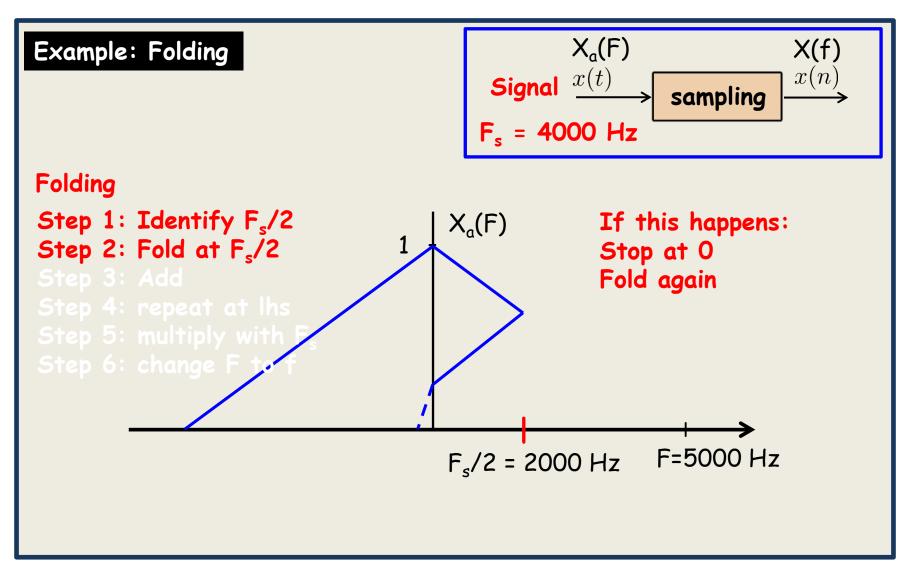


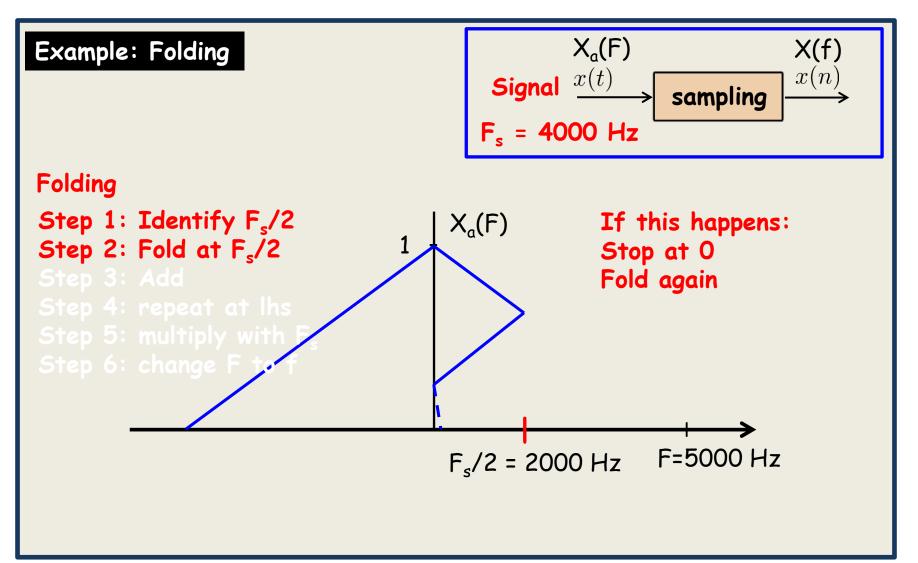


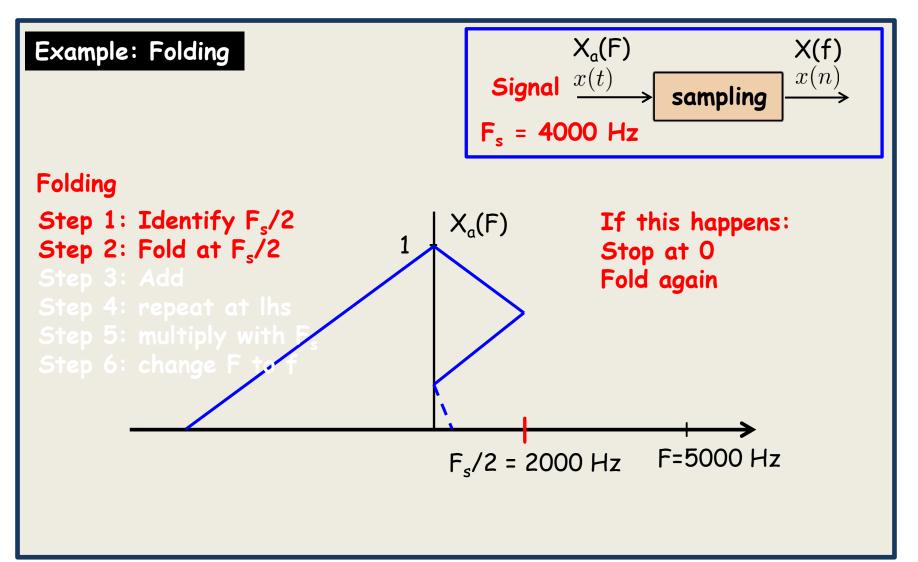


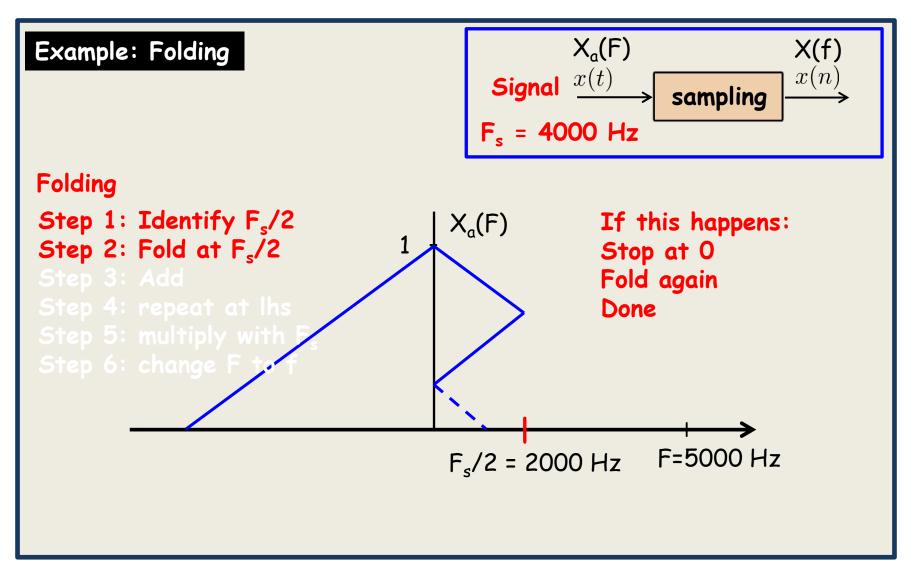


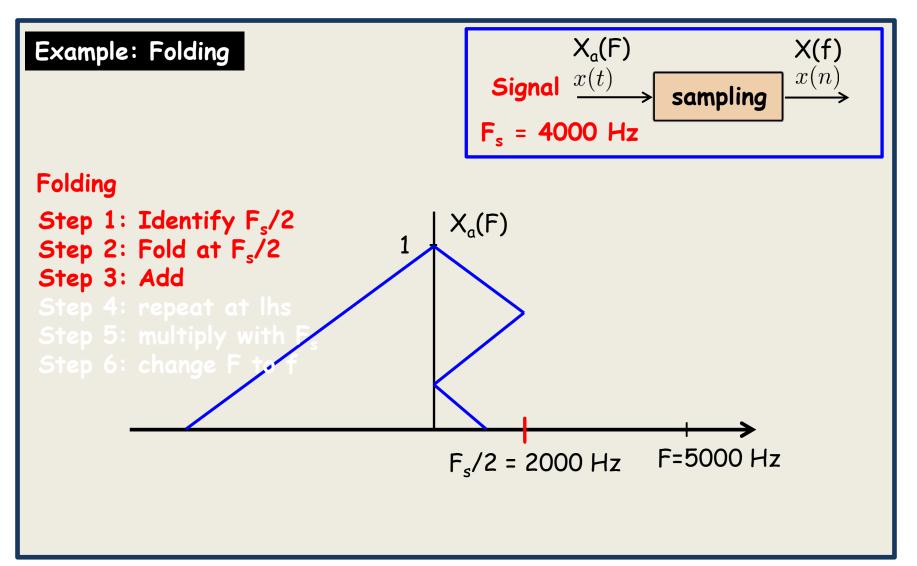


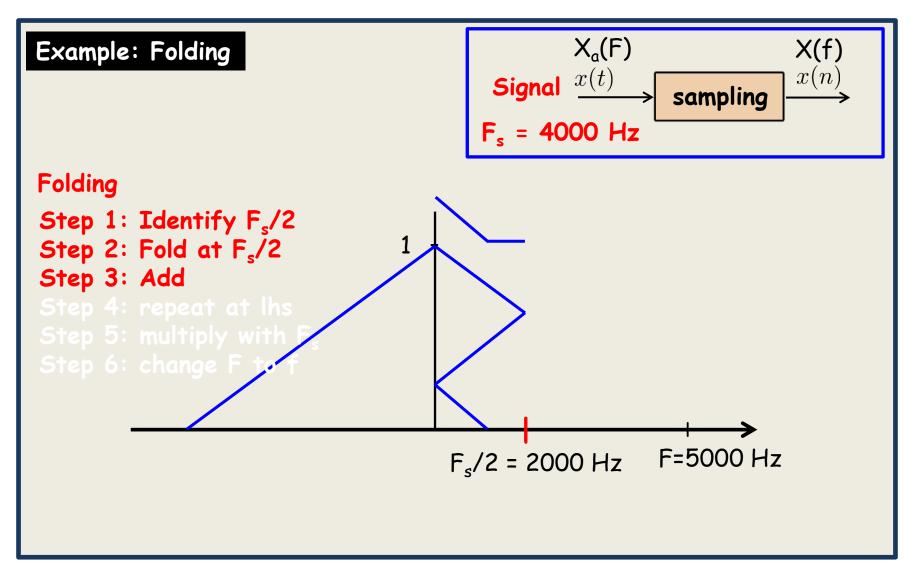


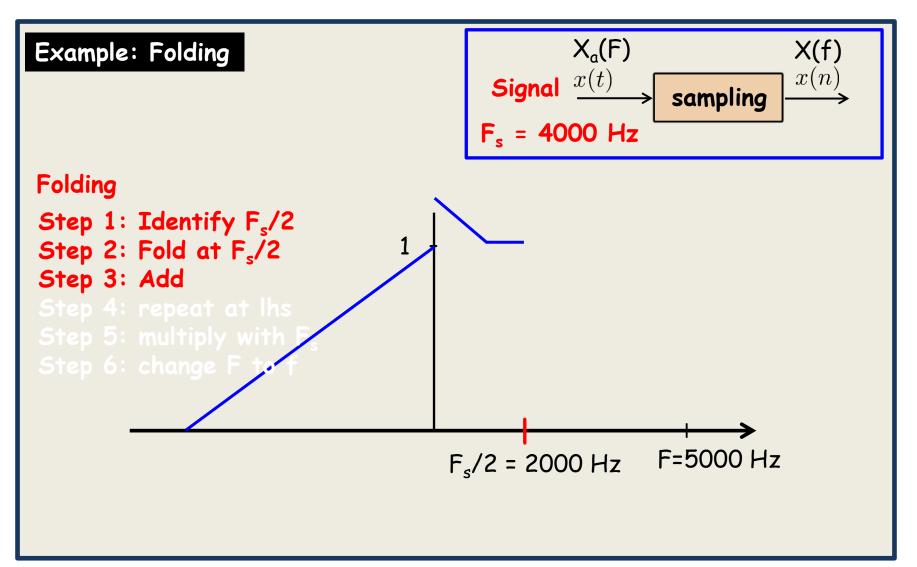


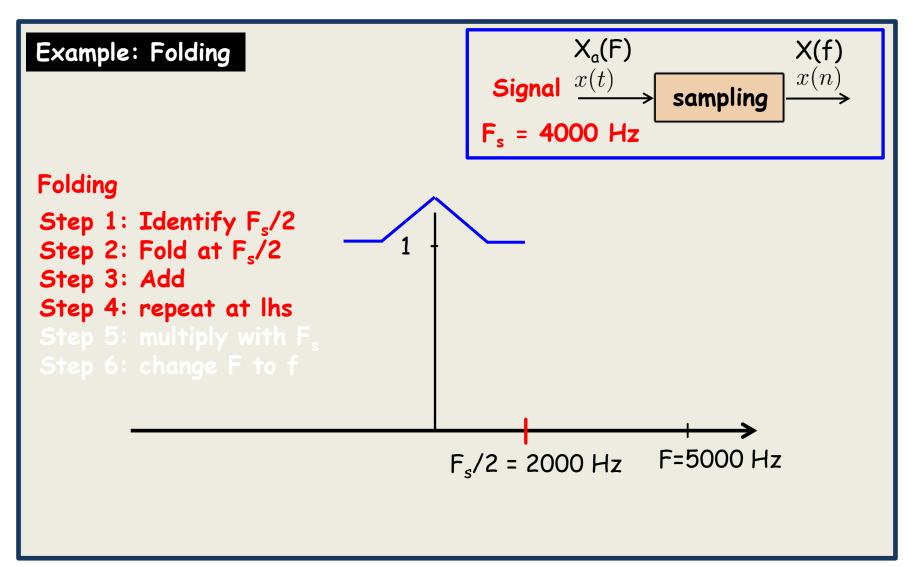


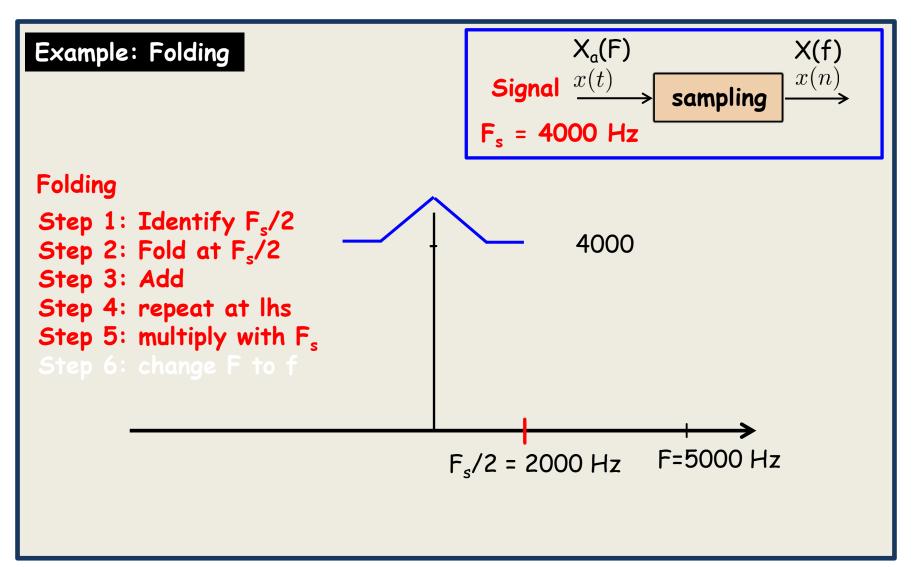


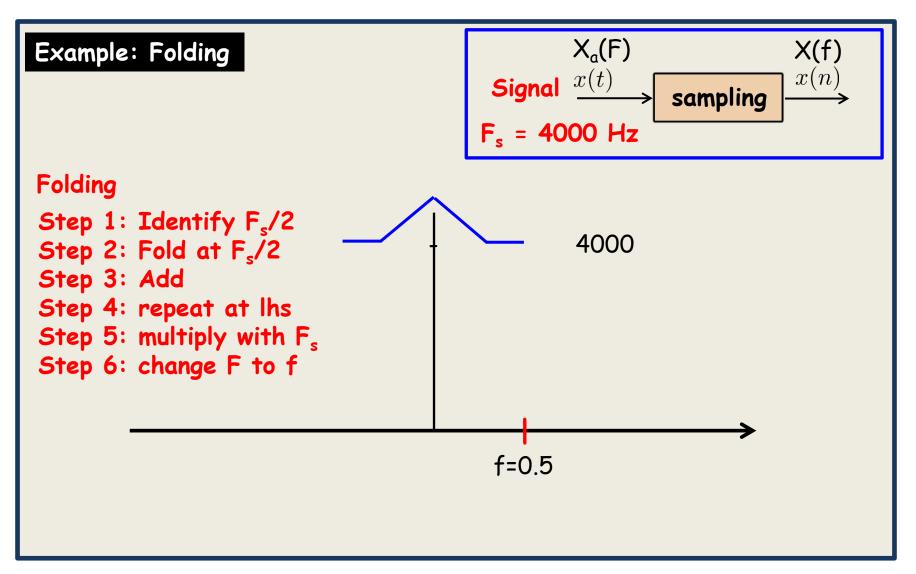


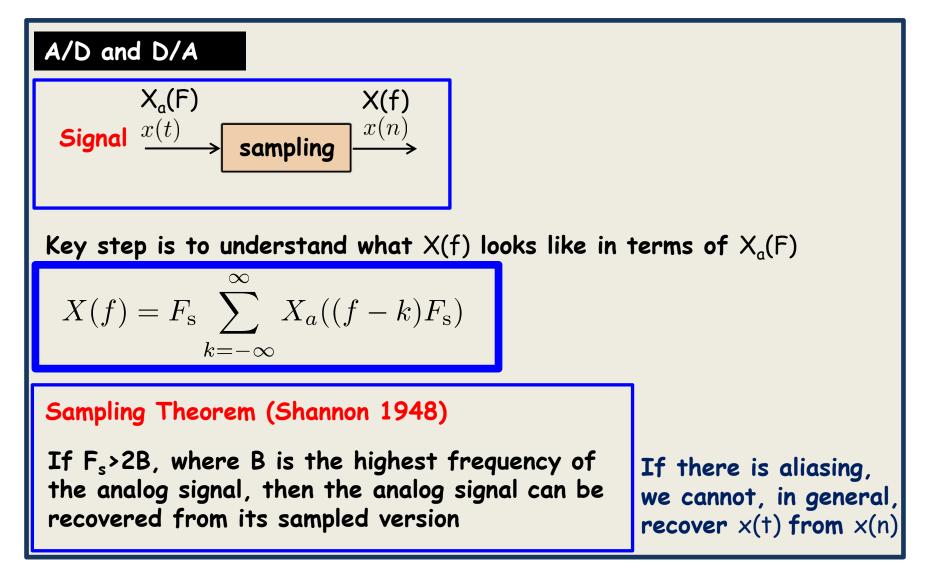


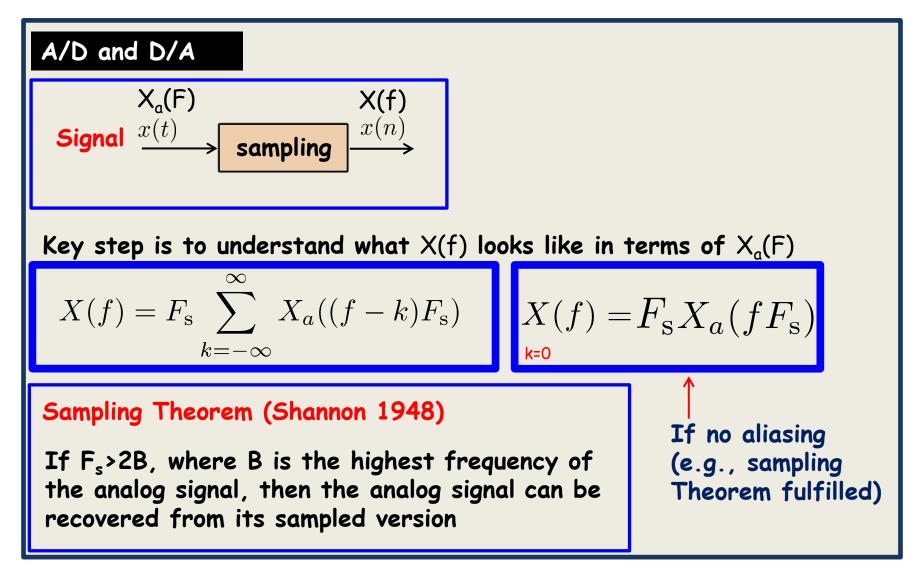


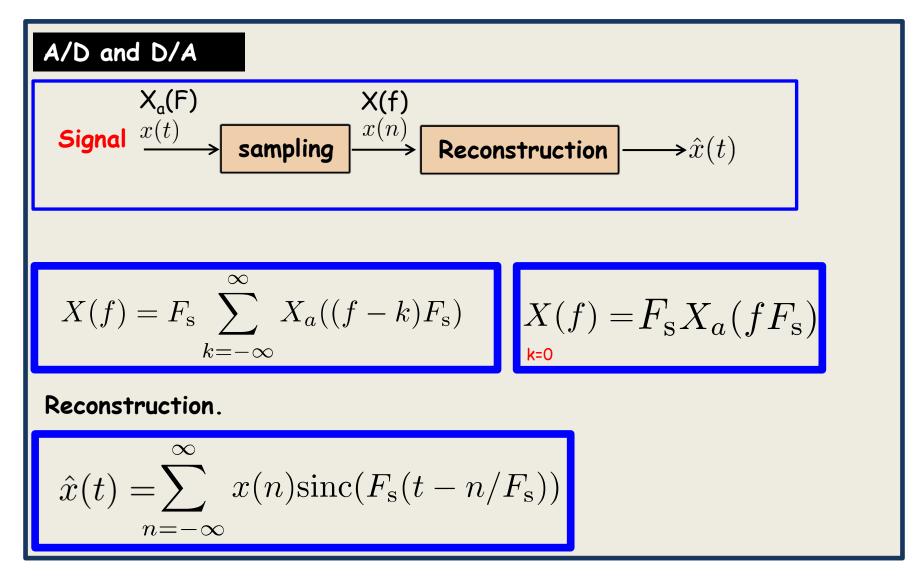


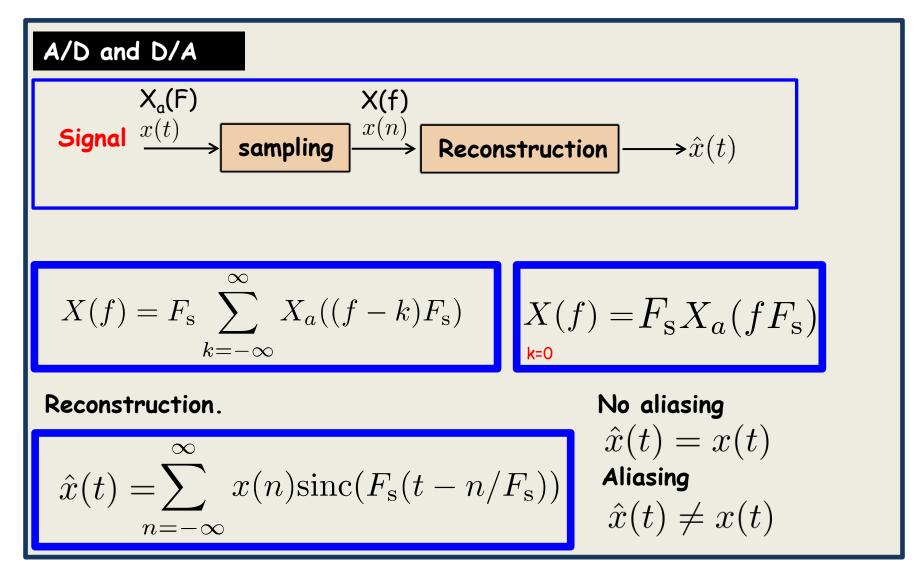


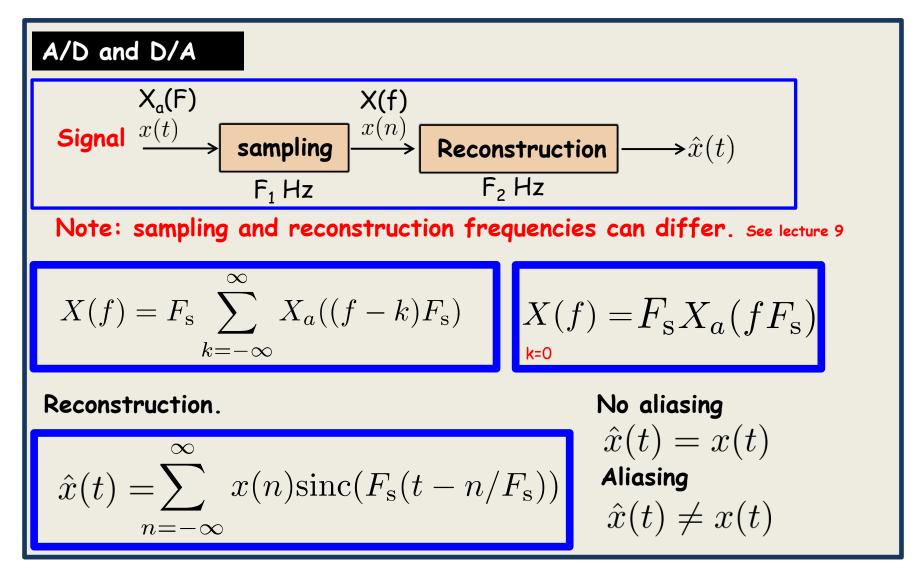


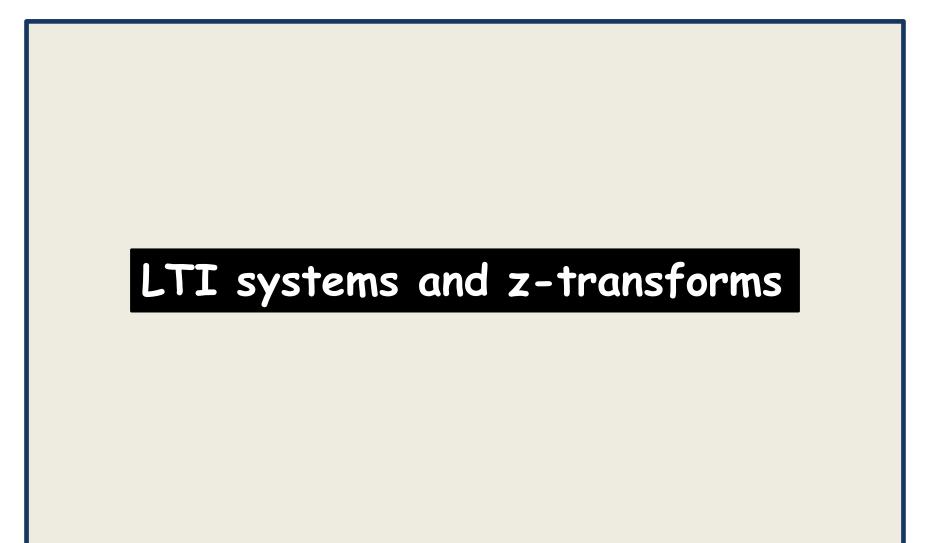


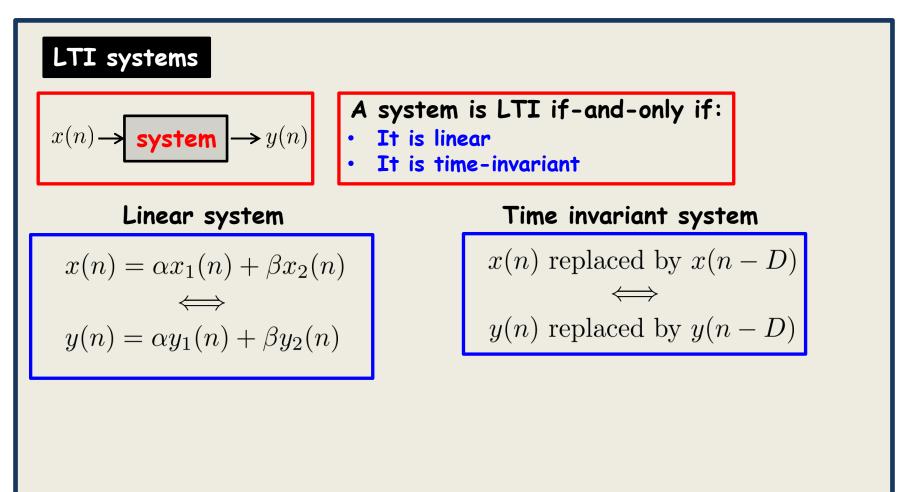


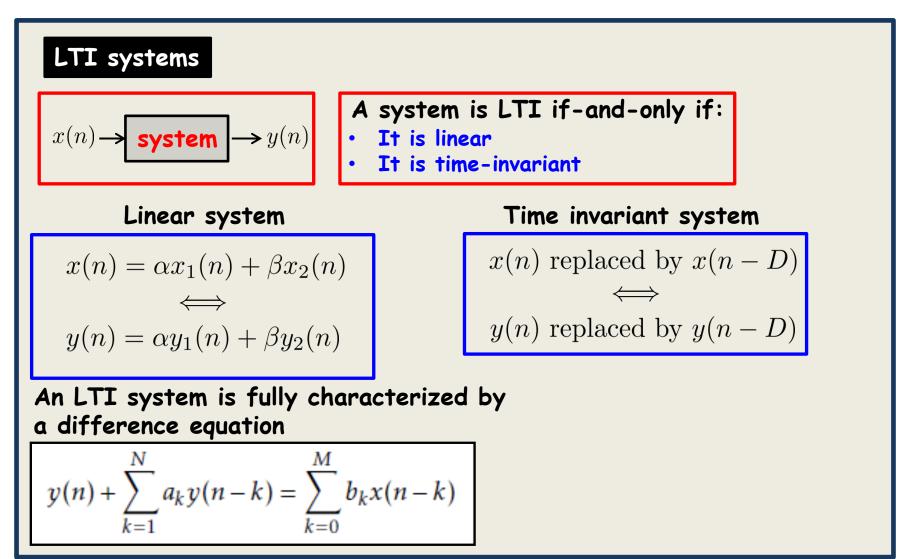


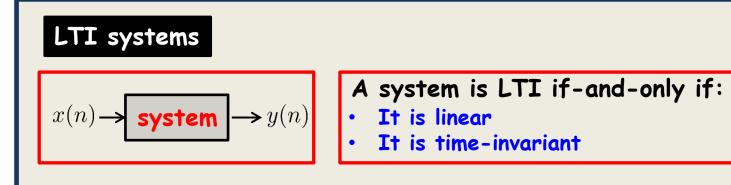












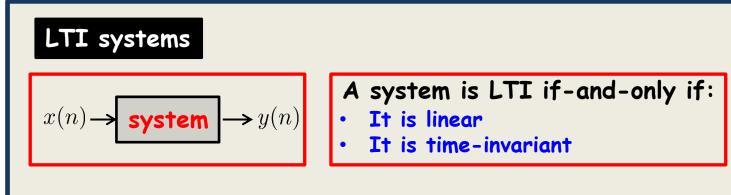
Assume that we turn on the circuit at n=0

System at rest if $y(-k) = 0, \ 1 \le k \le N$

Not at rest if (has initial conditions) $\exists k, 1 \leq k \leq N, : y(-k) \neq 0$

An LTI system is fully characterized by a difference equation

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$



Assume that we turn on the circuit at n=0

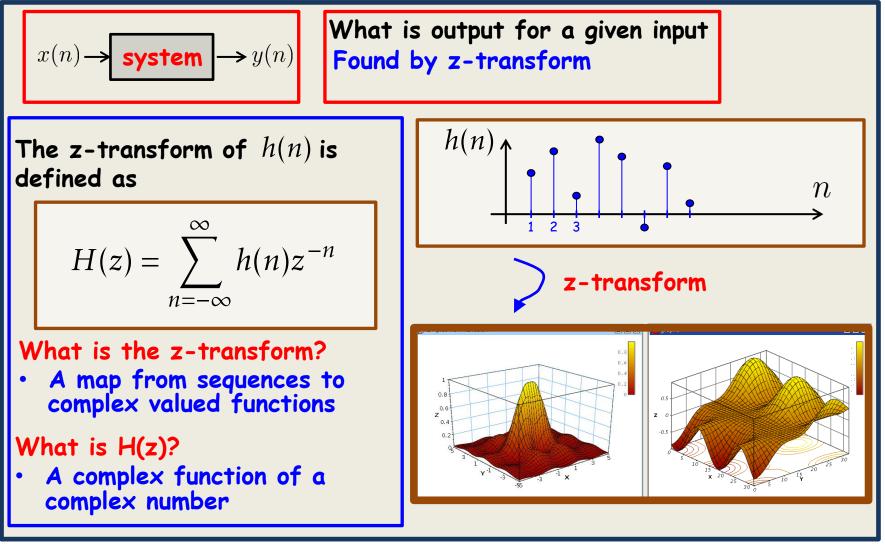
System at rest if $y(-k) = 0, \ 1 \le k \le N$

Not at rest if (has initial conditions) $\exists k, 1 \leq k \leq N, : y(-k) \neq 0$

An LTI system is fully characterized by
a difference equationImpulse response h(n) $y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$ Output if input is
 $x(n) = \delta(n) = [1 \ 0 \ 0 \ \cdots]$
and system at rest

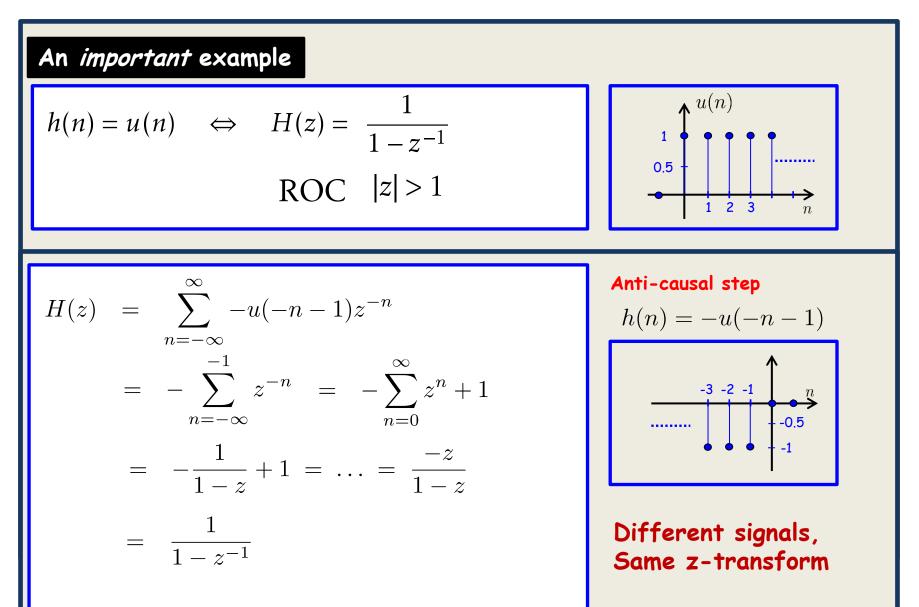
$$x(n) \rightarrow \text{system} \rightarrow y(n)$$

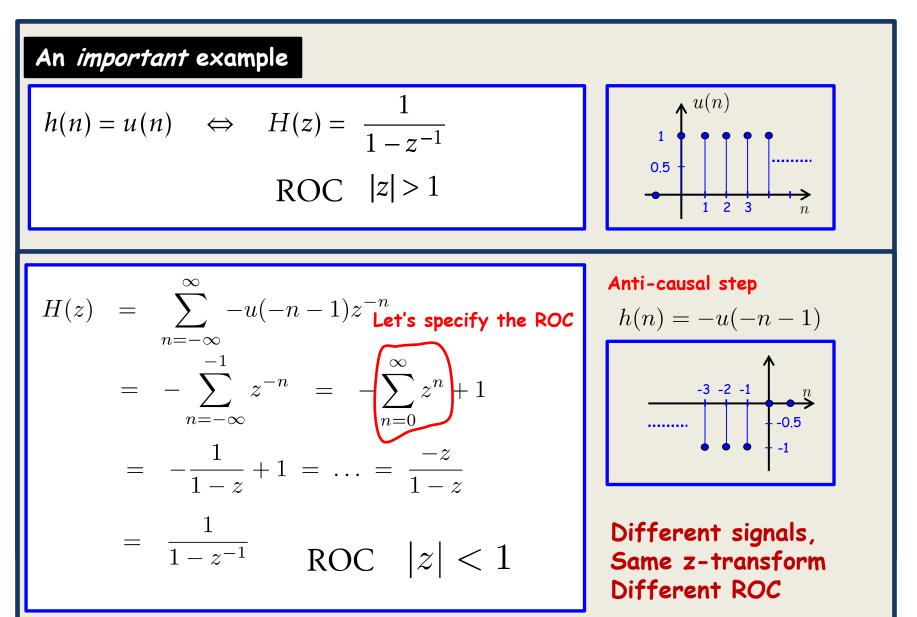
What is output for a given input Found by z-transform



If we want to plot H(z), we need 2 plots, one for the real part, one for the imaginary

Z-transforms are not meant for "plotting and obtaining insights"



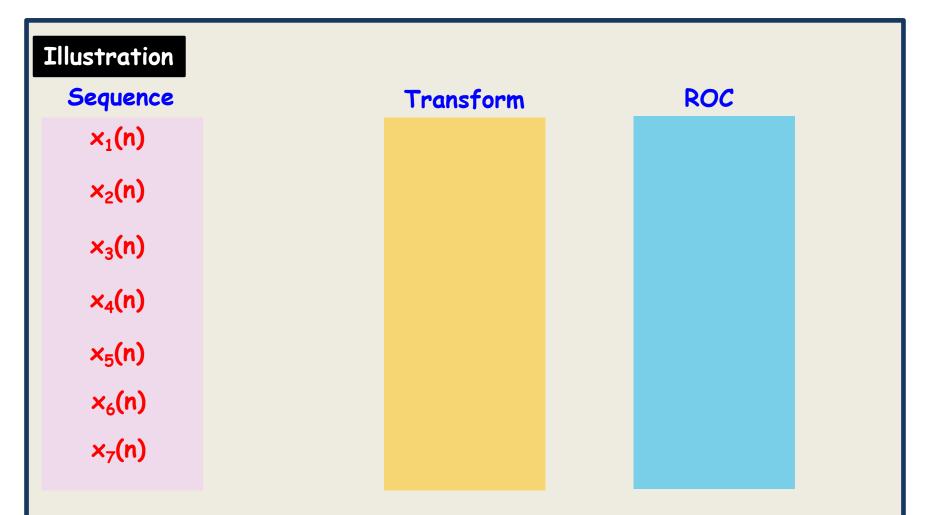


Convention

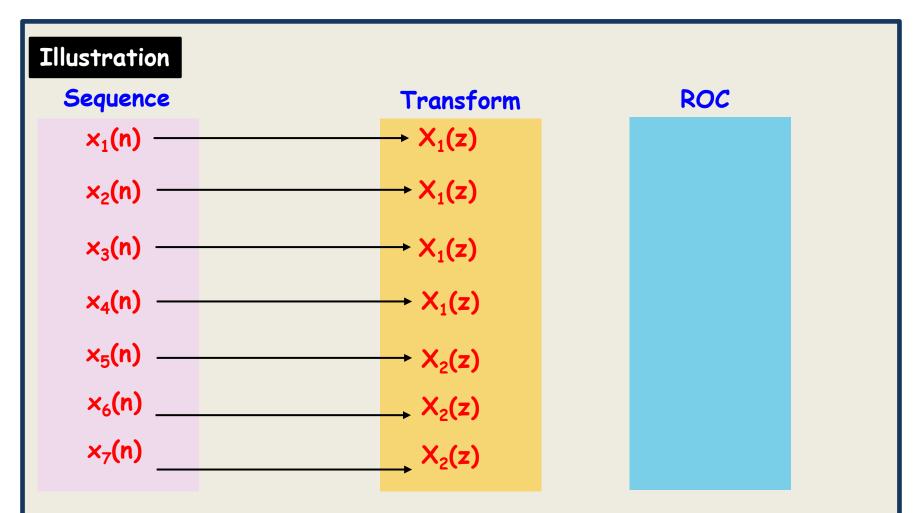
If we are given an X(z), and assume that the signal x(n) is causal, then we can be a bit sloppy with the ROC

This is what we do in this (most) of this course

In other words. There are many x(n) for the same X(z), and the ROC specifies the particular one. However, there is only one that is causal.

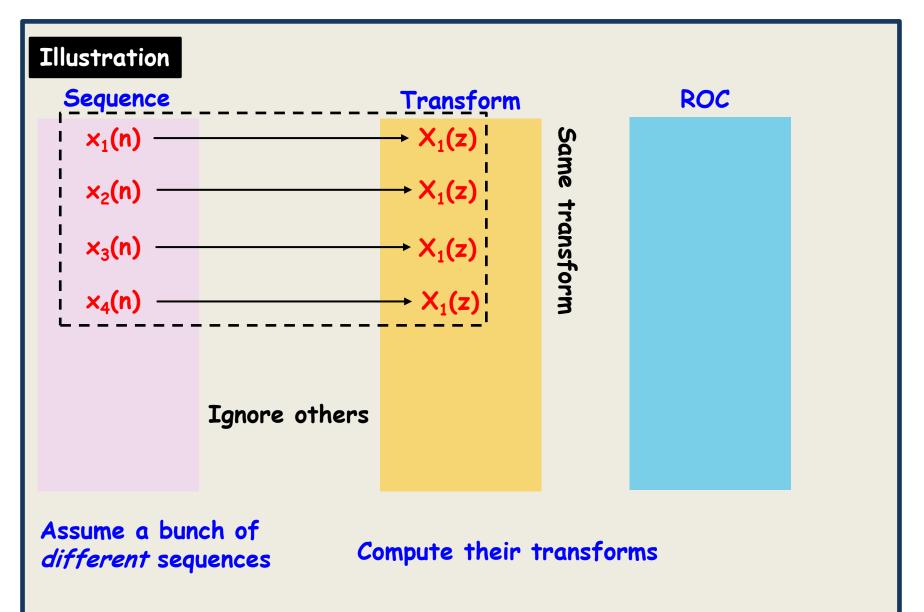


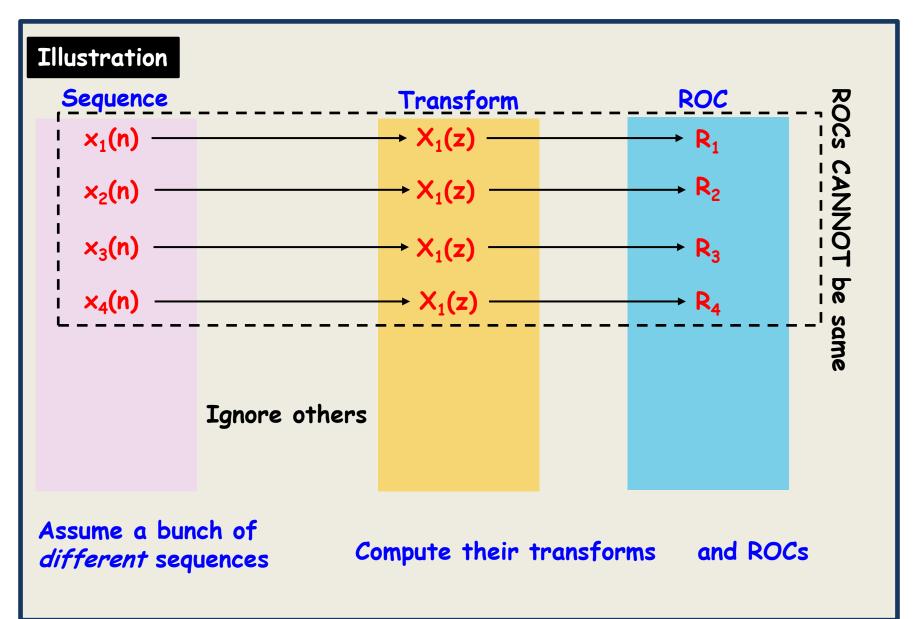
Assume a bunch of different sequences

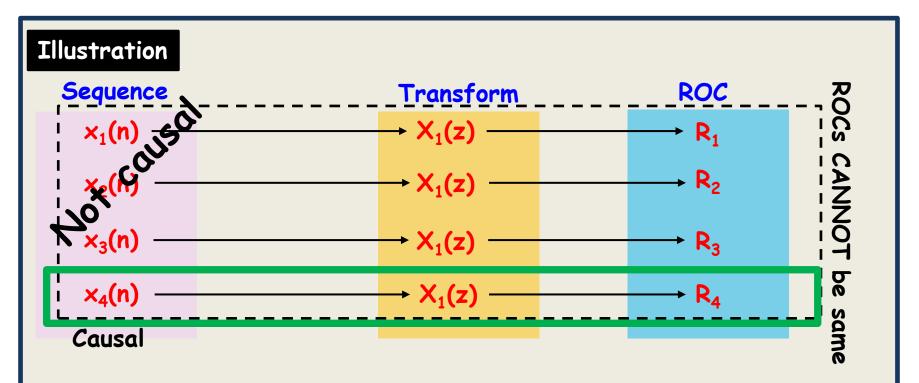


Assume a bunch of *different* sequences

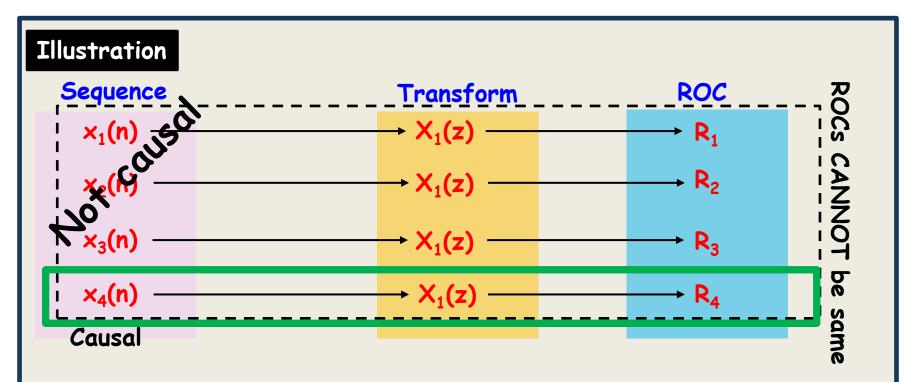
Compute their transforms







Exactly one of the ROCs corresponds to a causal signal



Exactly one of the ROCs corresponds to a causal signal

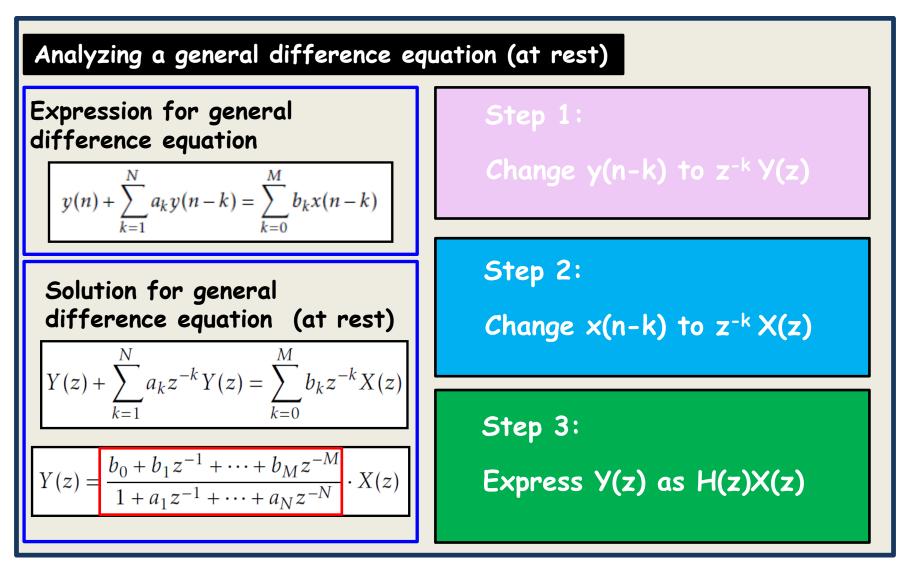
So, if we know $X_1(z)$ and that we work with causal x(n), we can establish $x_4(n)$ without knowing the ROC

LTI systems

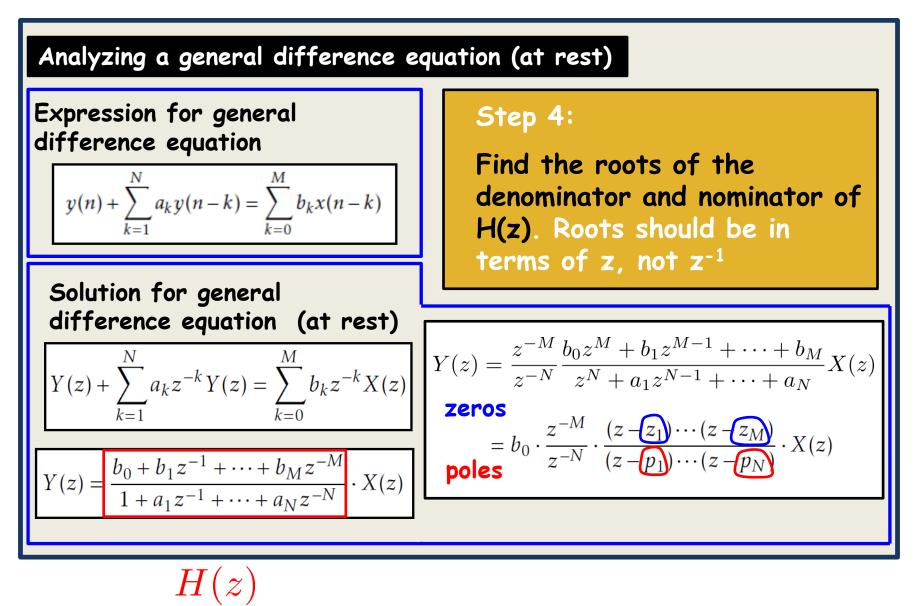
$$x(n) \rightarrow \text{system} \rightarrow y(n)$$

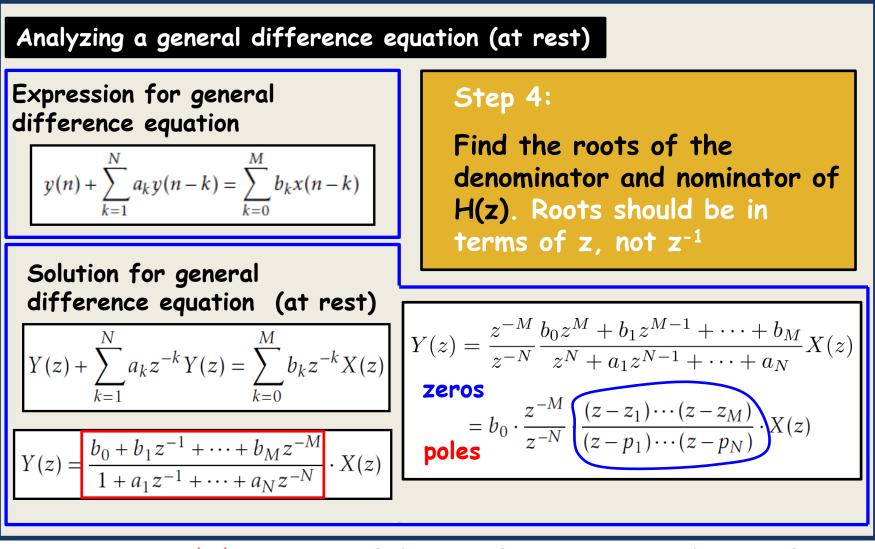
What is output for a given input Found by z-transform

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$



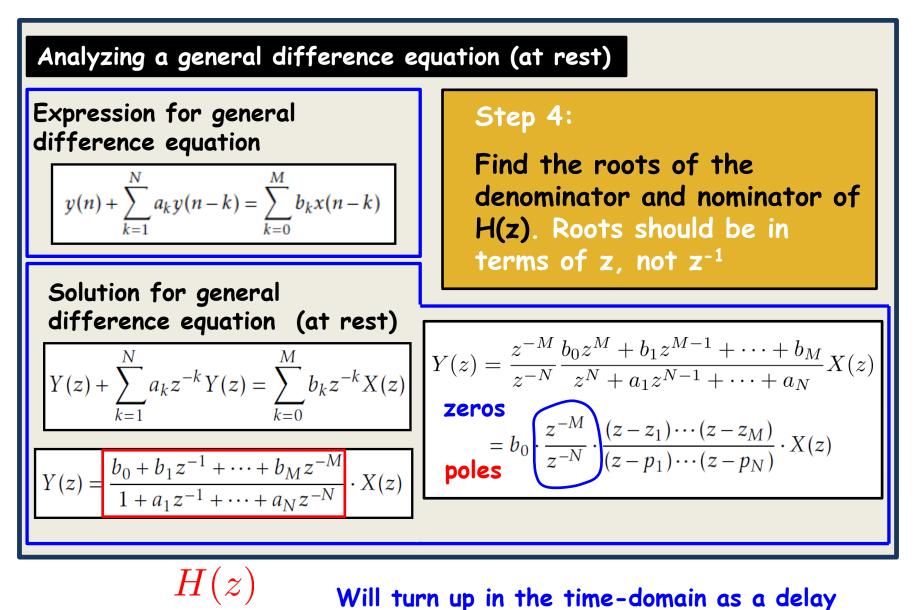
H(z)



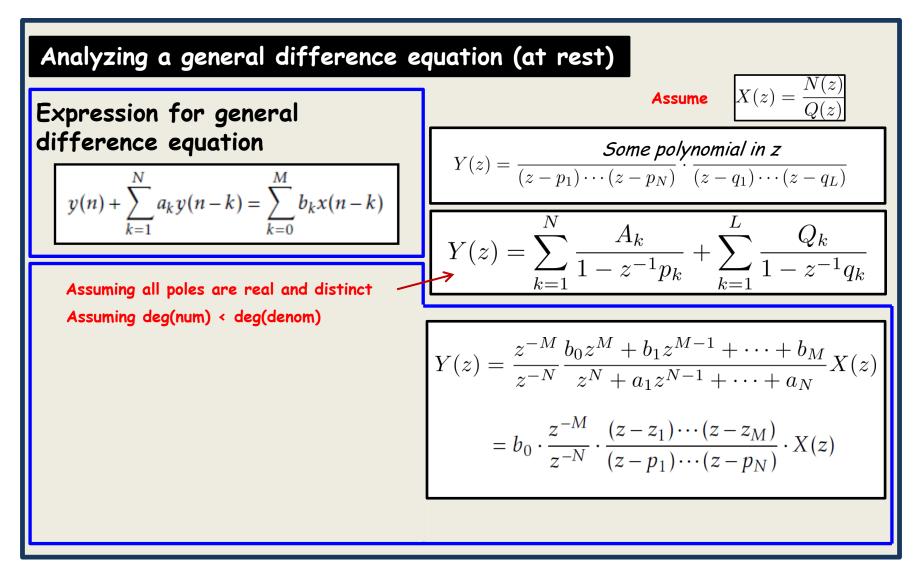


H(z)

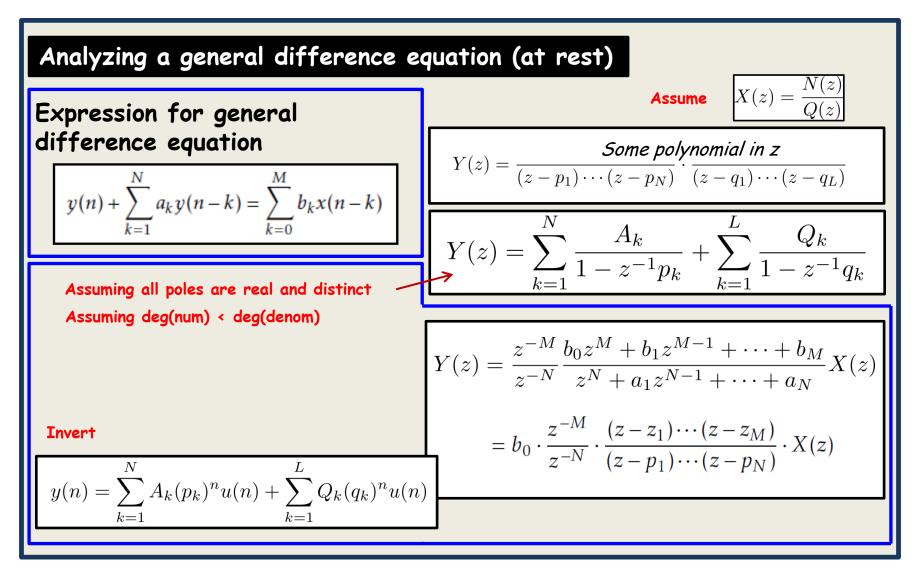
If degree of numerator >= degree of denominator. Perform polynomial division



(can be negative delay)

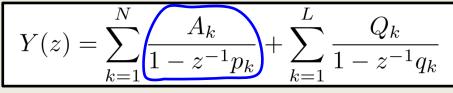


Perform partial fraction expansion



Analyzing a general difference equation (at rest)

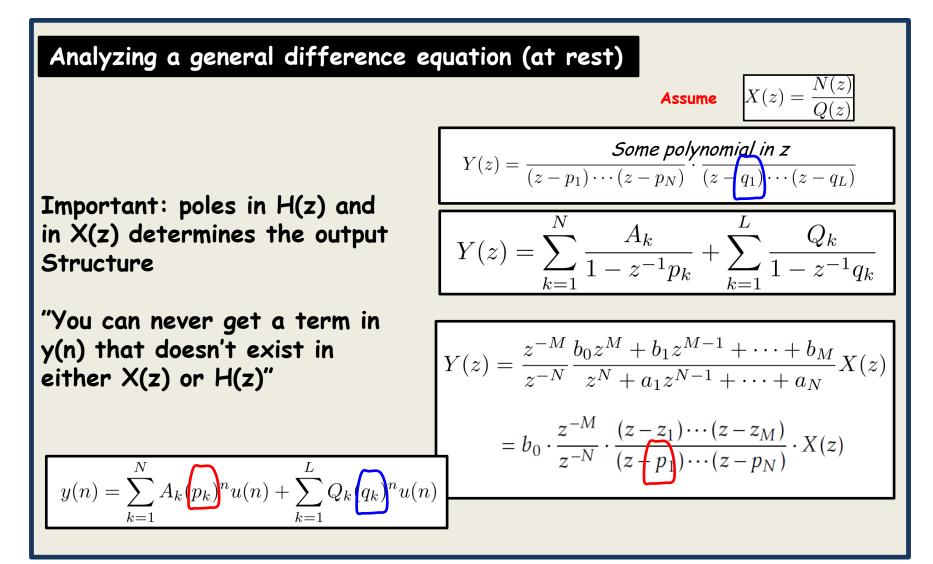
Expression for general difference equation

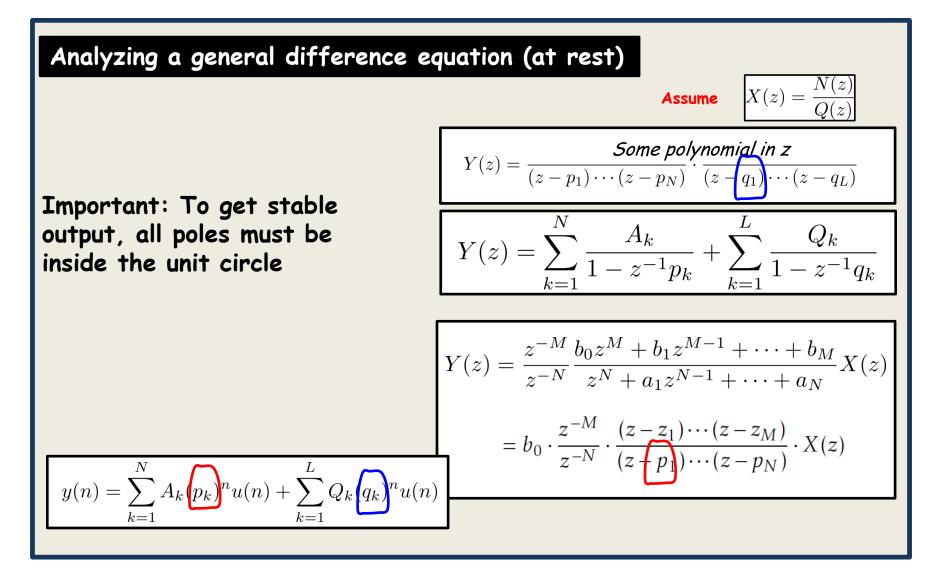


This...

...generates that

$$y(n) = \sum_{k=1}^{N} A_k(p_k)^n u(n) + \sum_{k=1}^{L} Q_k(q_k)^n u(n)$$





A complex conjugated pair of poles

 $h(n) = r^n \cdot \sin(\omega n) u(n)$

$$h(n) = r^n \cdot \cos(\omega n) u(n)$$

$$H(z) = \frac{r\sin(\omega)z^{-1}}{1 - 2r\cos(\omega)z^{-1} + r^2 z^{-2}} \qquad H(z) = \frac{1 - r\cos(\omega)z^{-1}}{1 - 2r\cos(\omega)z^{-1} + r^2 z^{-2}}$$

A complex conjugated pair of poles

$$h(n) = r^n \cdot \sin(\omega n)u(n)$$
 $h(n) = r^n \cdot \cos(\omega n)u(n)$

$$H(z) = \frac{r\sin(\omega)z^{-1}}{1 - 2r\cos(\omega)z^{-1} + r^2 z^{-2}} \qquad H(z) = \frac{1 - r\cos(\omega)z^{-1}}{1 - 2r\cos(\omega)z^{-1} + r^2 z^{-2}}$$

Polar coordinates: r is "length" and w is angle of the pole. To get stable output: r<1 (poles inside the unit circle)

Example

Quite messy to invert a mixture of the two above: Make sure you know how to do that.

Invert
$$H(z) = z^{-1} \cdot \frac{1 - z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Systems not at rest

Use the one-sided z-transform

$$X^+(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

Systems not at rest

Use the one-sided z-transform $X^+(z) = \sum_{n=0} x(n) z^{-n}$

End result: The solution at rest + contribution from initial conditions

Systems not at rest

Use the one-sided z-transform $X^+(z) = \sum_{n=0} x(n) z^{-n}$

End result: The solution at rest + contribution from initial conditions

$$Y(z) = H(z)X(z) \qquad \qquad = \frac{B(z)}{A(z)}X(z)$$

 ∞

Systems not at rest

Use the one-sided z-transform
$$X^+(z) = \sum_{n=0} x(n) z^{-n}$$

End result: The solution at rest + contribution from initial conditions

$$Y(z) = H(z)X(z) + \frac{N_0(z)}{A(z)} = \frac{B(z)}{A(z)}X(z) + \frac{N_0(z)}{A(z)}$$

$$N_0(z) = -\sum_{k=1}^N a_k z^{-k} \sum_{n=1}^k y(-n) z^n$$

N: highest power of z^{-1} in A(z)

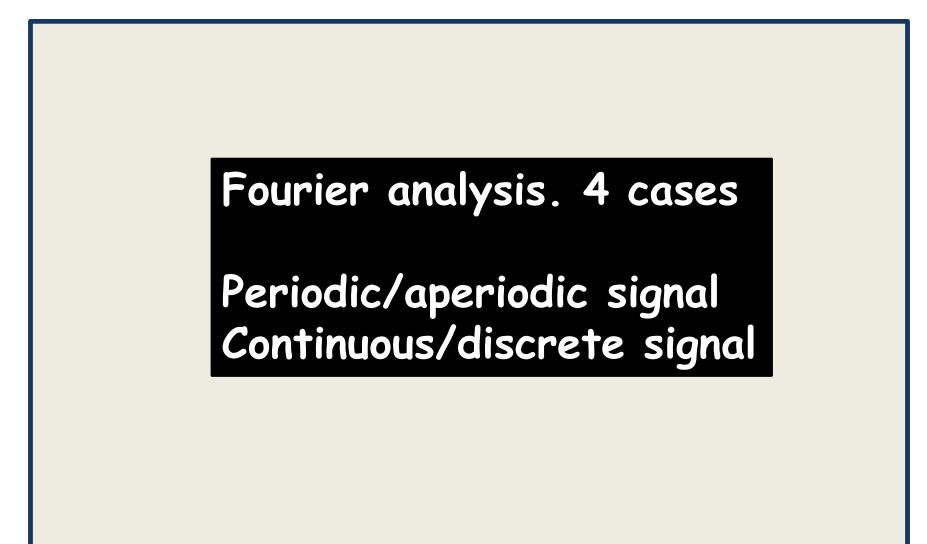
 ∞

Systems not at rest

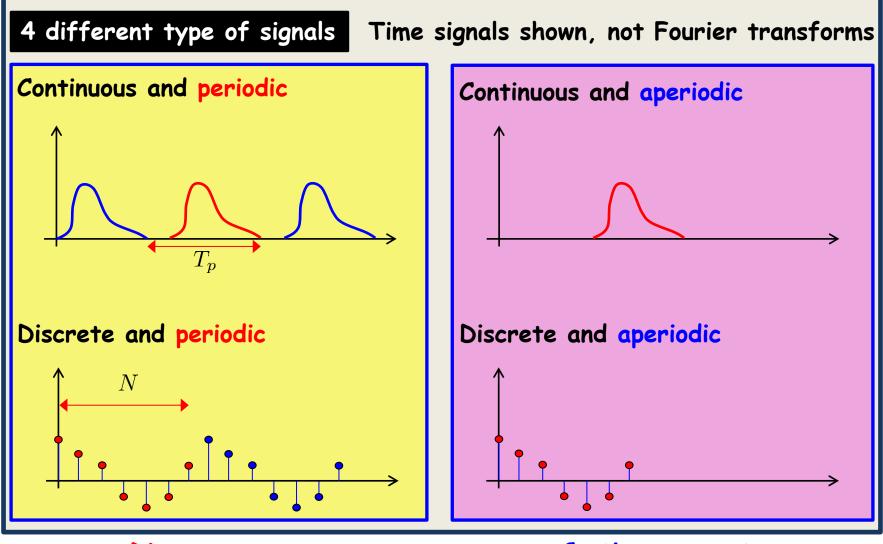
Use the one-sided z-transform
$$X^+(z) = \sum_{n=0} x(n) z^{-n}$$

End result: The solution at rest + contribution from initial conditions

$$Y(z) = H(z)X(z) + \frac{N_0(z)}{A(z)} = \frac{B(z)}{A(z)}X(z) + \frac{N_0(z)}{A(z)}$$



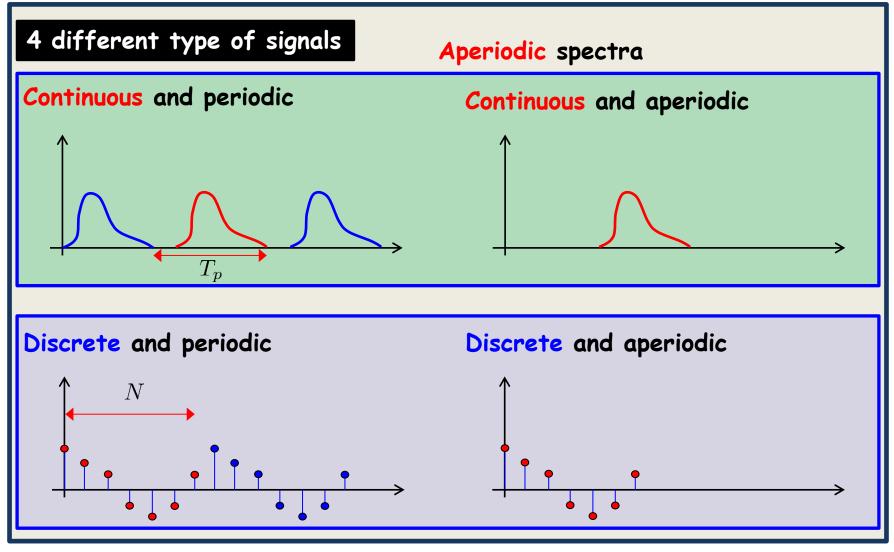
EITF75, Fourier transforms



Discrete spectra

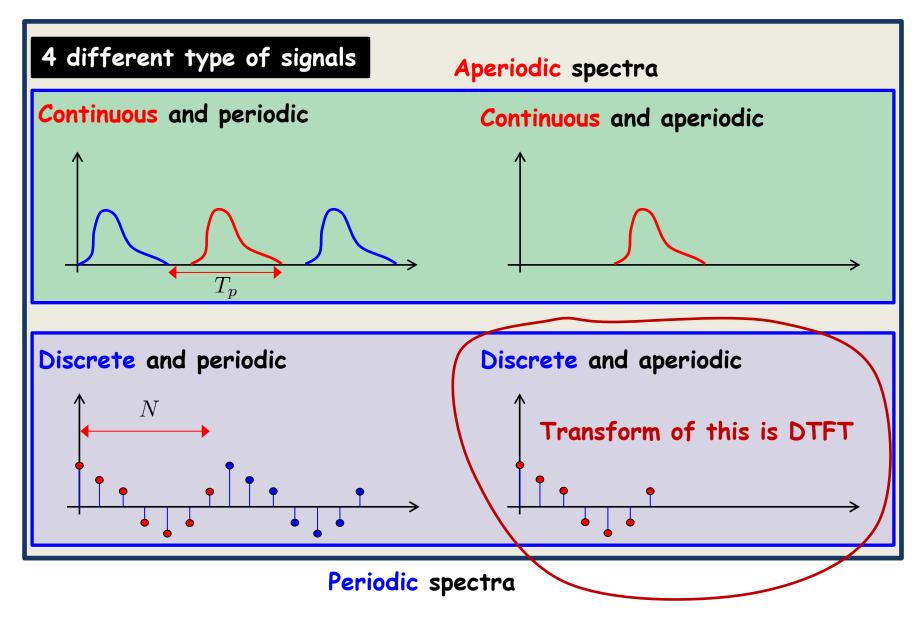
Continuous spectra

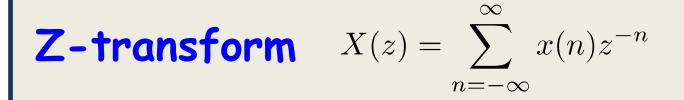
EITF75, Fourier transforms



Periodic spectra

EITF75, Fourier transforms



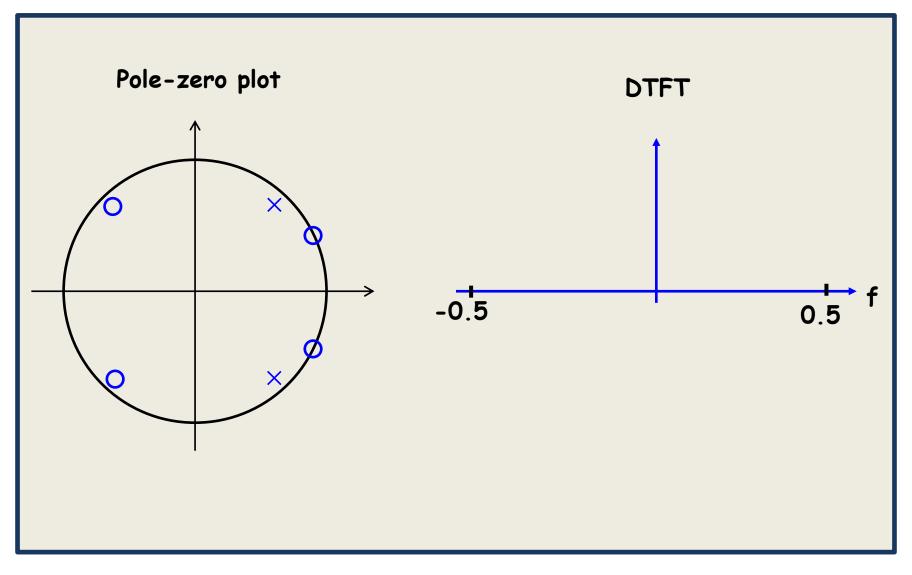


DTFT (discrete time Fourier transform)

$$X(f) = \sum_{n=-\infty}^{\infty} x(n) \exp(-i2\pi nf)$$
$$= X(z|z) = \exp(i2\pi f)$$

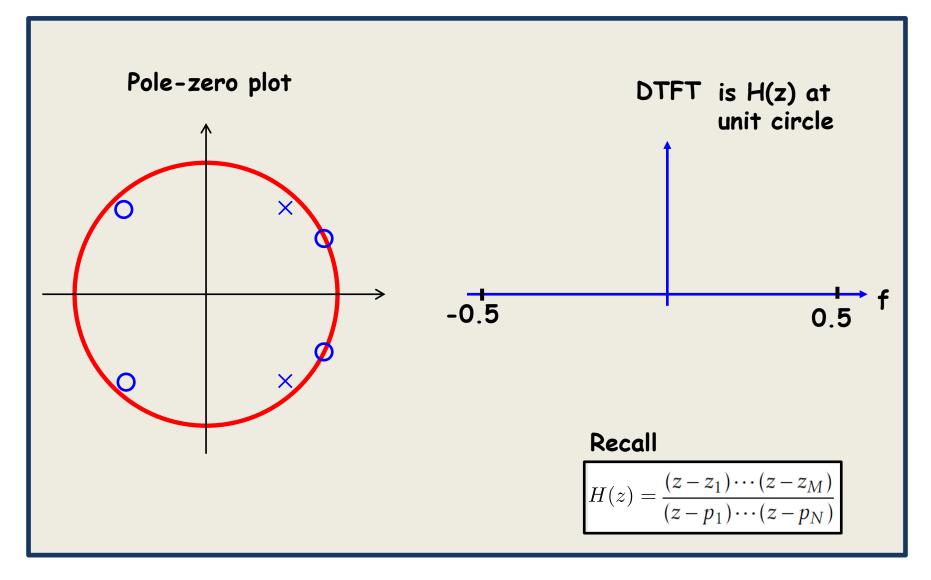
Important: DTFT is z-transform evaluated at unit circle

EITF75, DTFT

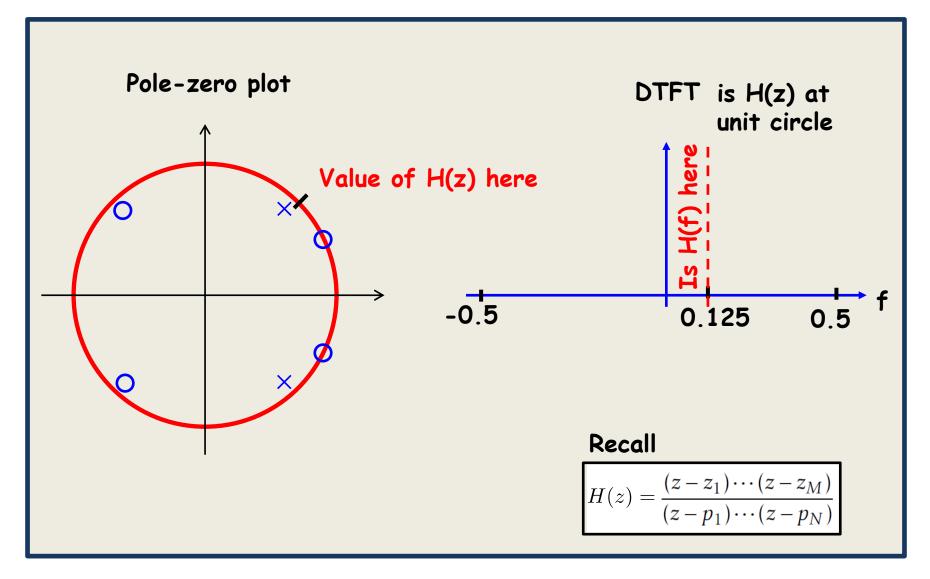


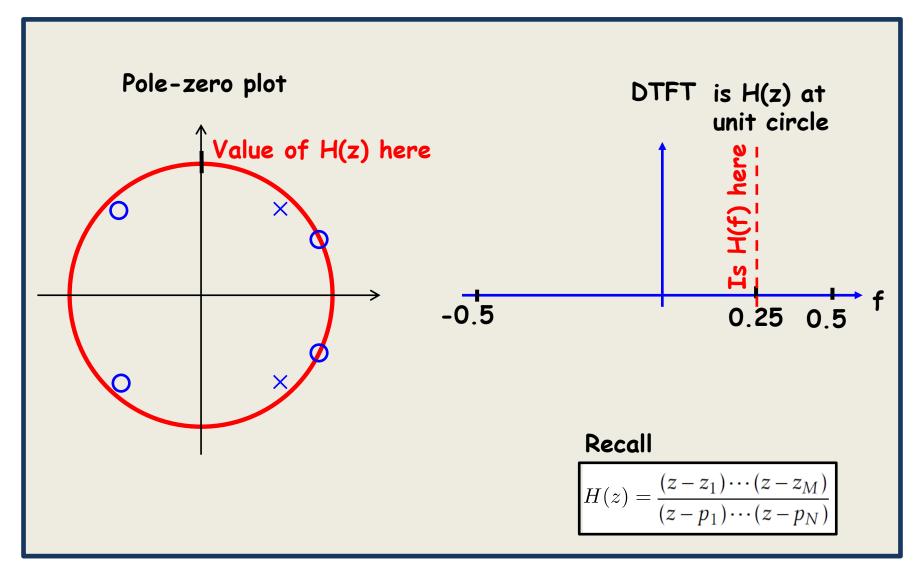
Book makes a big deal out of this. But quite easy....

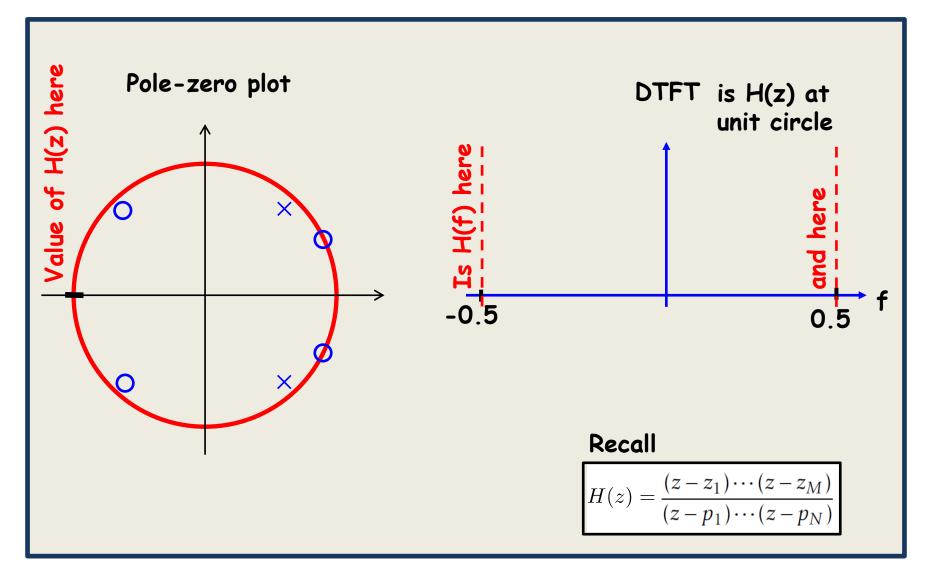
EITF75, DTFT

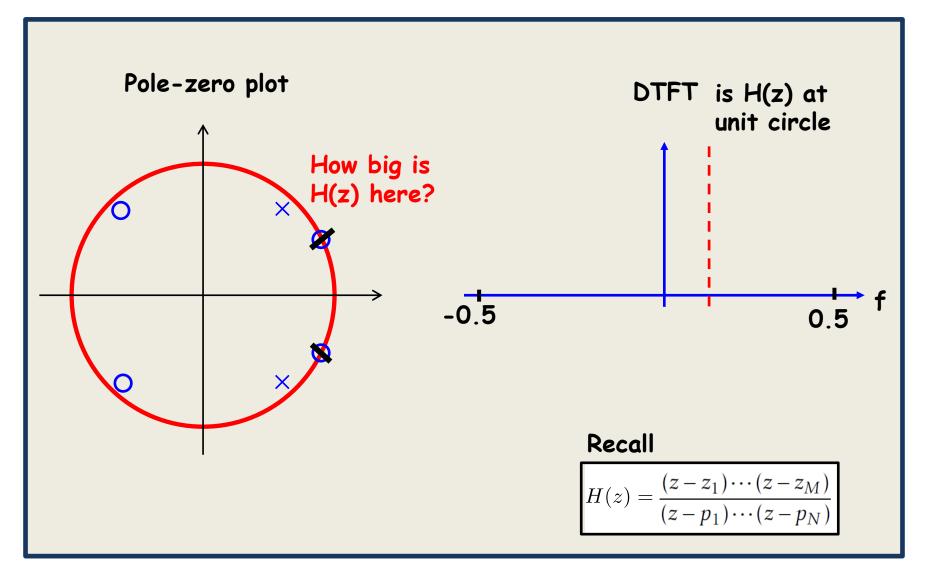


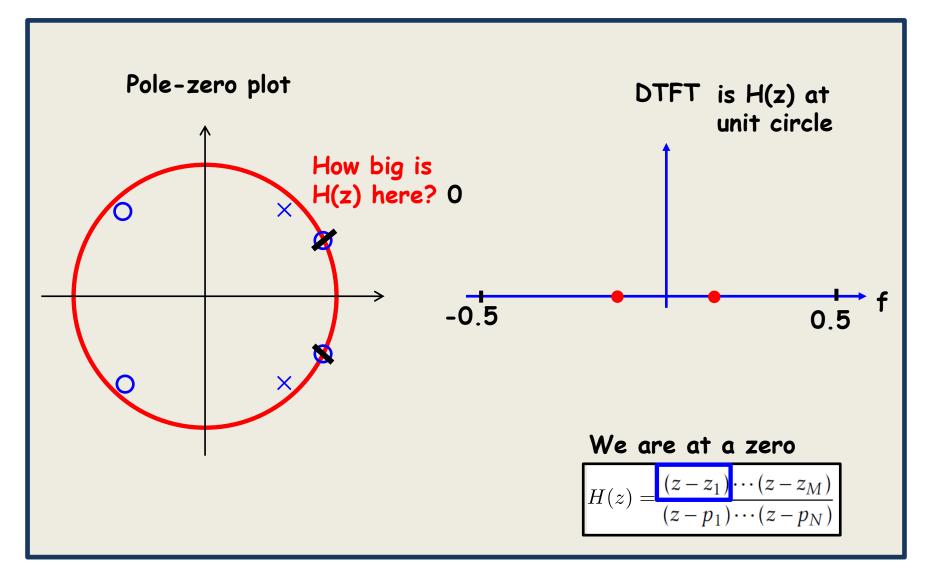
EITF75, DTFT

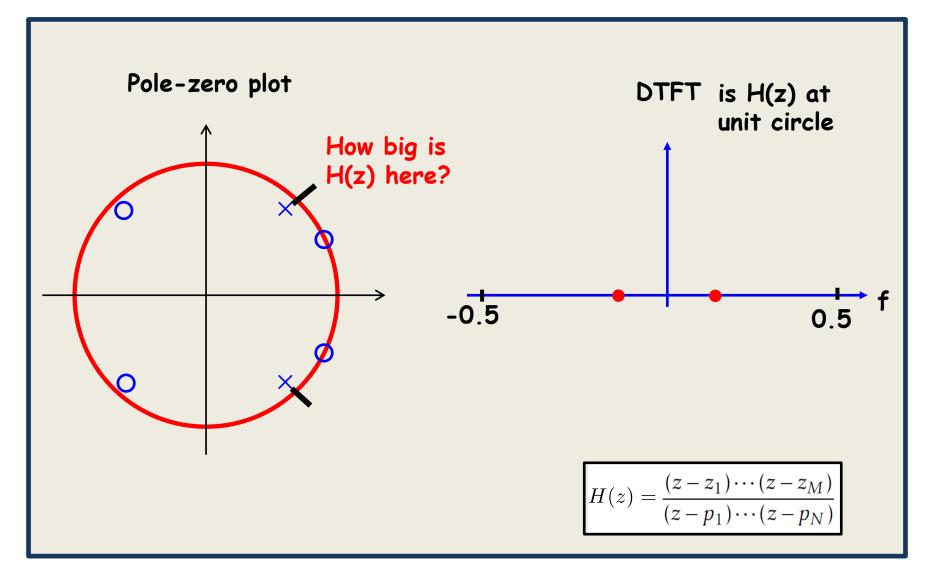


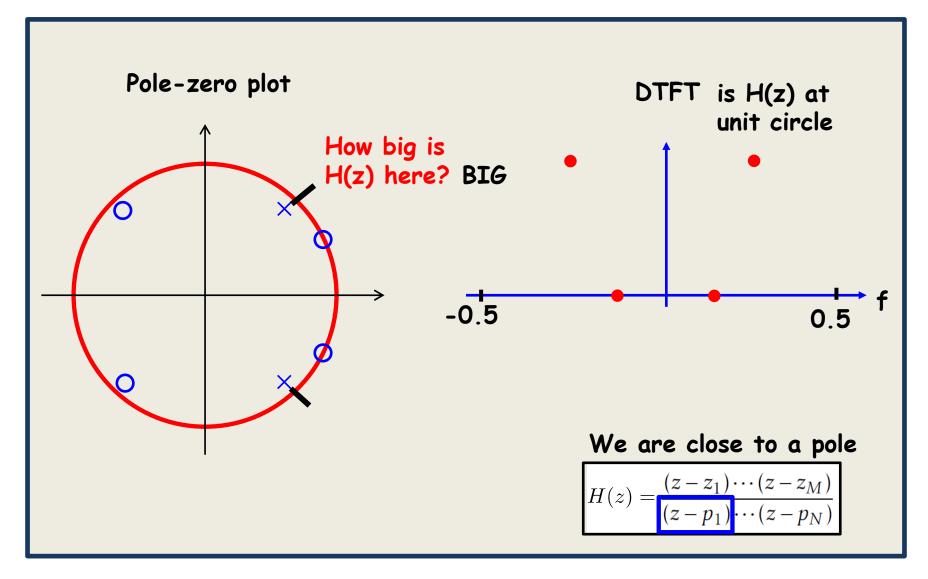


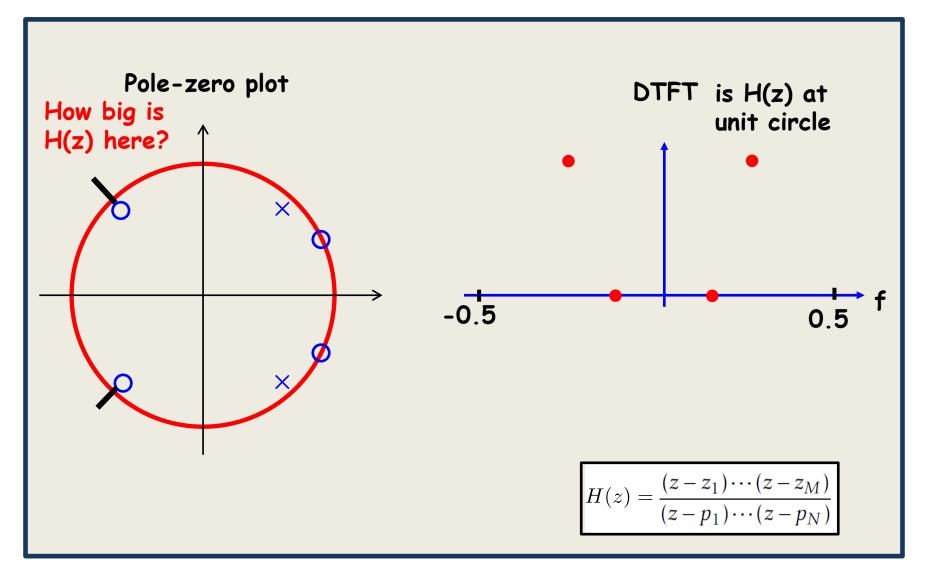


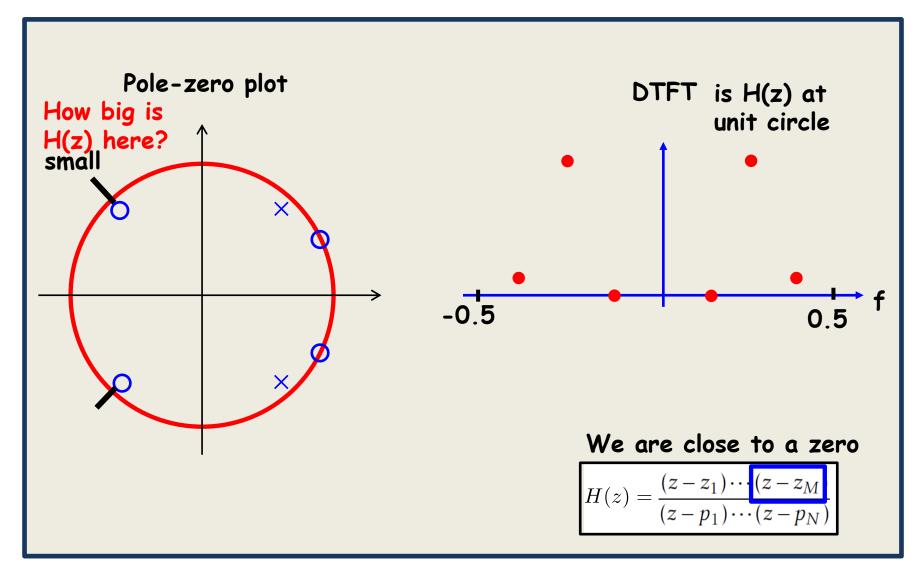


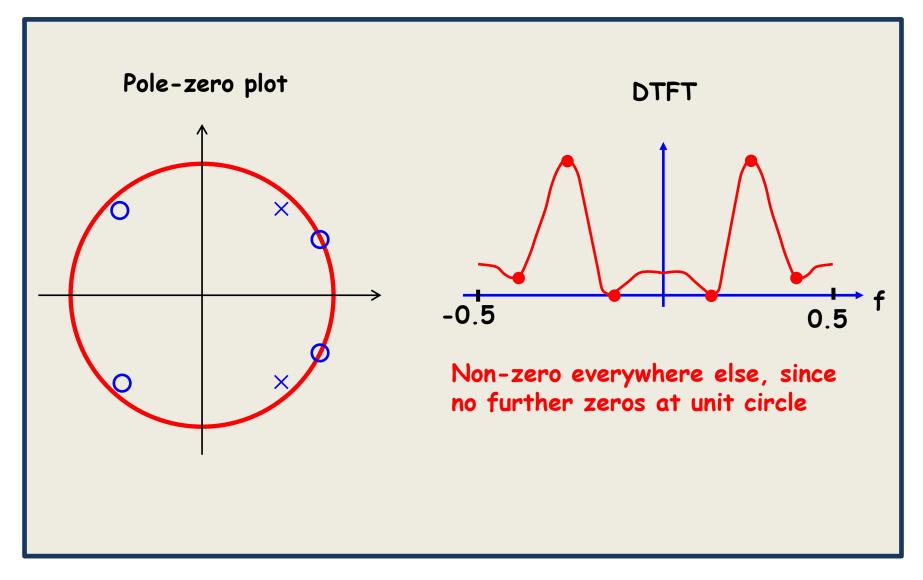


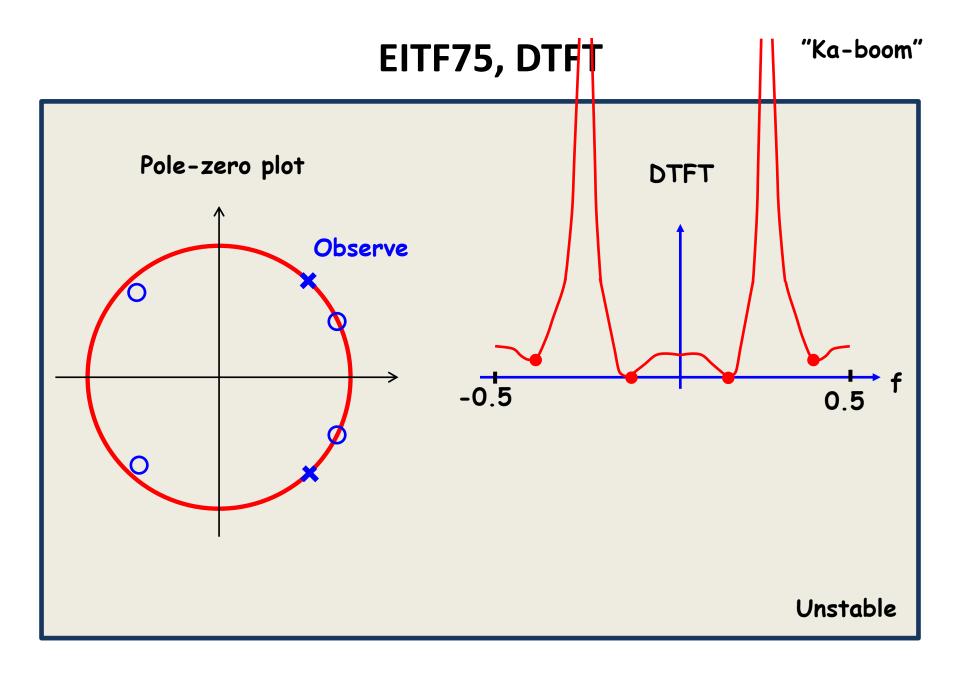


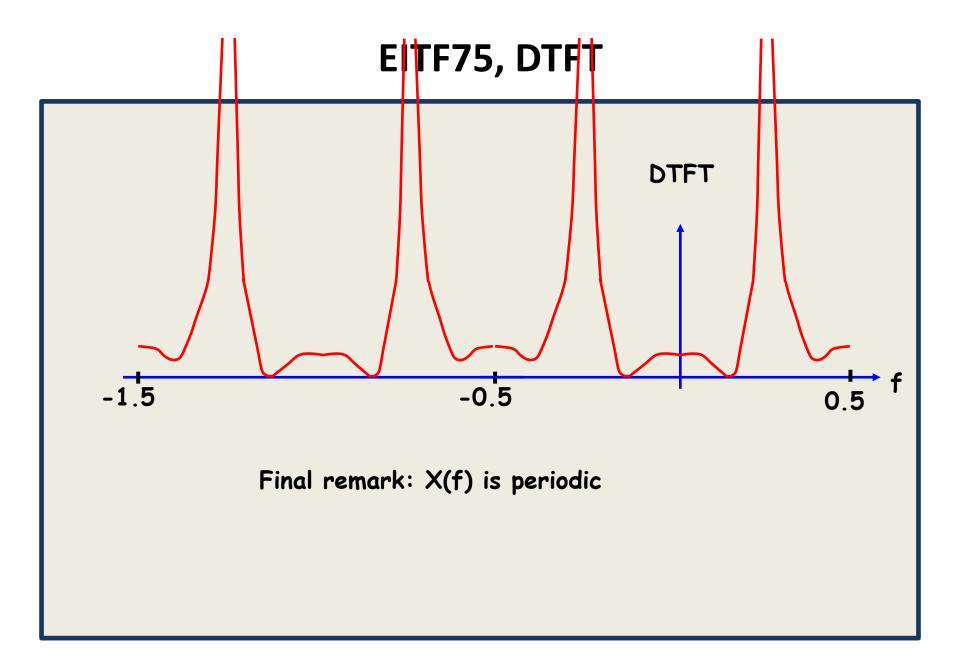










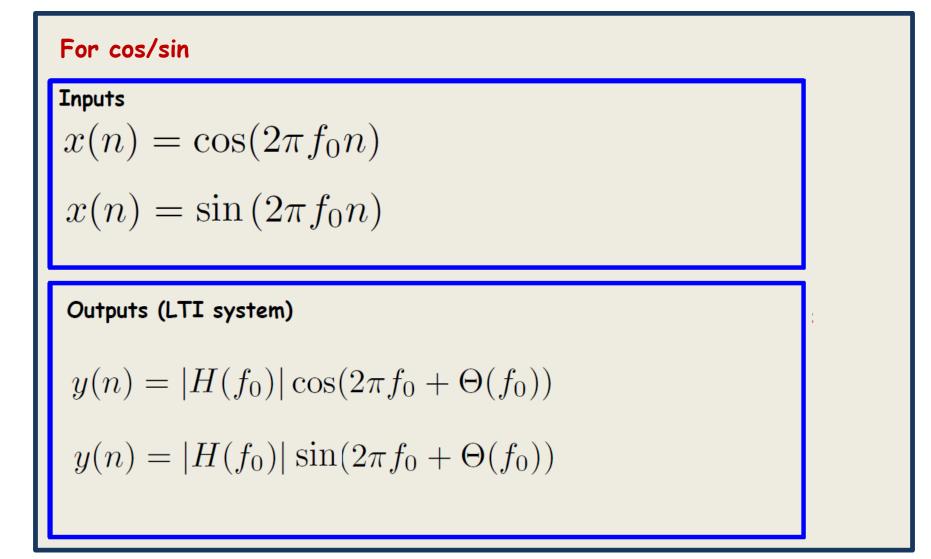


For stable h(n) $H(f) = H(e^{i2\pi f})$

For input $x(n) = \exp(i2\pi f_0 n)$

We get the output $y(n) = H(f_0) \exp(i2\pi f_0 n)$

Important: An LTI system cannot create frequencies not present in the input signal



Assume oscillating input, but turned on at n=0

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$

Steady state solution (i.e., y(n) at big n) is the same as before. At small n, there is a transient behavior.

$$Y(z) = H(z)X(z) = \frac{B(z)}{A(z)}X(z)$$
$$= \frac{B(z)}{A(z)}\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Assume oscillating input, but turned on at n=0

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$

Steady state solution (i.e., y(n) at big n) is the same as before. At small n, there is a transient behavior.

$$Y(z) = H(z)X(z) = \frac{B(z)}{A(z)}X(z)$$

= $\frac{B(z)}{A(z)} \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$
= $\sum_{n=1}^{N} \frac{A_n}{1 - p_n z^{-1}} + \frac{X_1 + X_2 z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$

Assume oscillating input, but turned on at n=0

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$

Steady state solution (i.e., y(n) at big n) is the same as before. At small n, there is a transient behavior.

$$Y(z) = H(z)X(z) = \frac{B(z)}{A(z)}X(z)$$

= $\frac{B(z)}{A(z)}\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$
= $\sum_{n=1}^{N}\frac{A_n}{1 - p_n z^{-1}} + \frac{X_1 + X_2 z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$

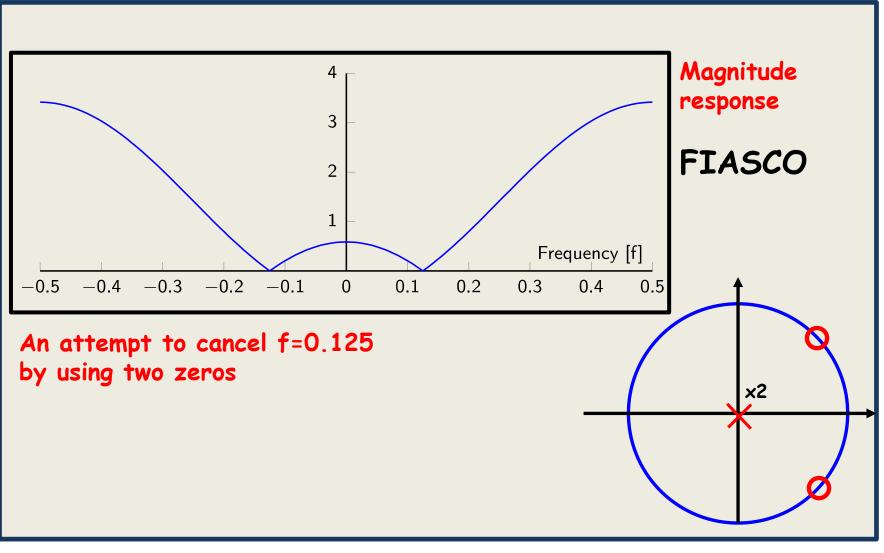
Transient (if all poles inside unit circle) Steady state (same as for infinite cos)

Parseval's formula

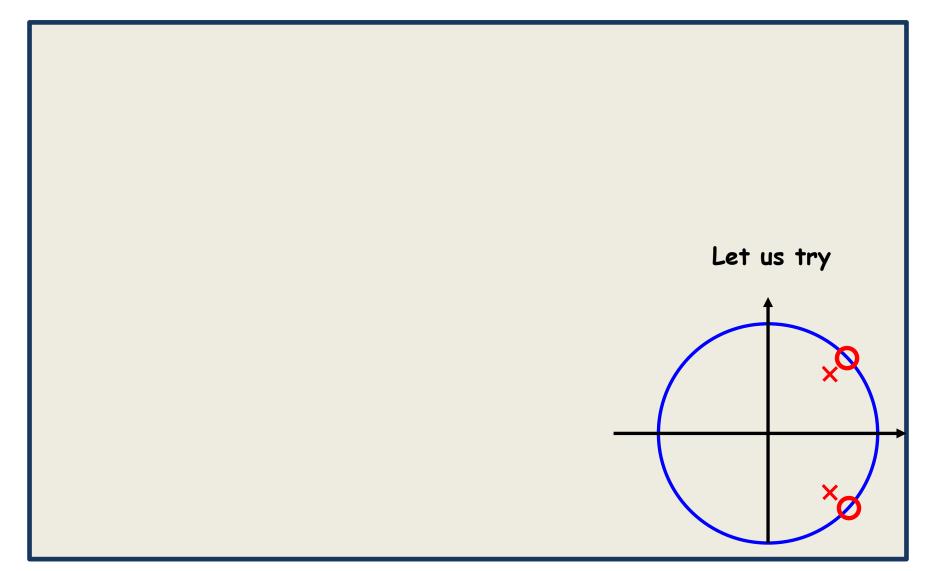
$$\sum_{n=-\infty}^{\infty} x(n)y^*(n) = \int_{-0.5}^{0.5} X(f)Y^*(f) \mathrm{d}f$$

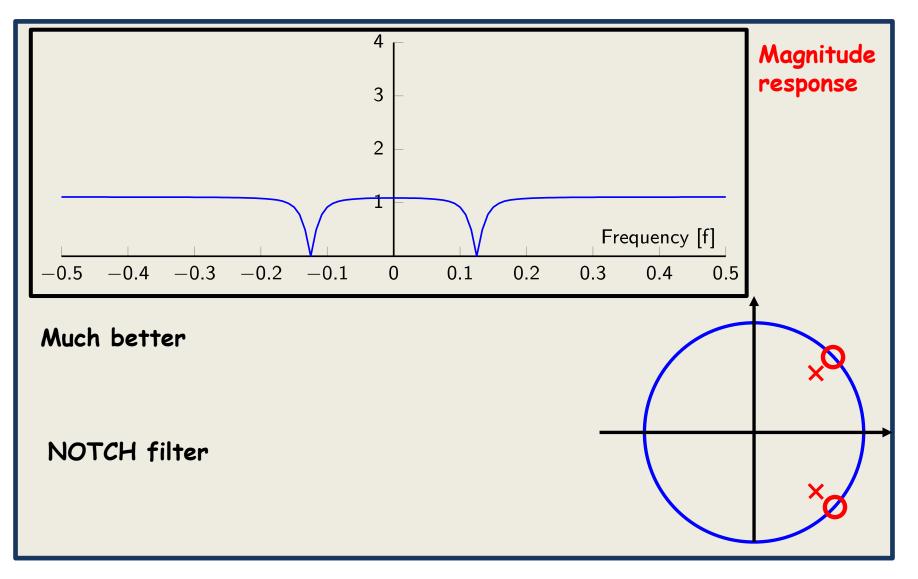
Special case: y(n) = x(n)

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \int_{-0.5}^{0.5} |X(f)|^2 \mathrm{d}f$$



 $h(n) = \{ \underline{1} - 2\cos(w_0) = 1 \}$





FIR filters with linear phase

Linear phase is desirable since it delays all frequencies equally much

Linear phase is defined as $\ \Theta(\omega) = \kappa \omega + 2\pi \ell$

Whenever there is a phase jump with π , this should be seen as a magnitude response that is negative

FIR filters with linear phase

Linear phase is desirable since it delays all frequencies equally much

Linear phase is defined as $\ \Theta(\omega) = \kappa \omega + 2\pi \ell$

Whenever there is a phase jump with π , this should be seen as a magnitude response that is negative

$$h(n)=h(-n)$$
 Symmetry around n=0. Not causal

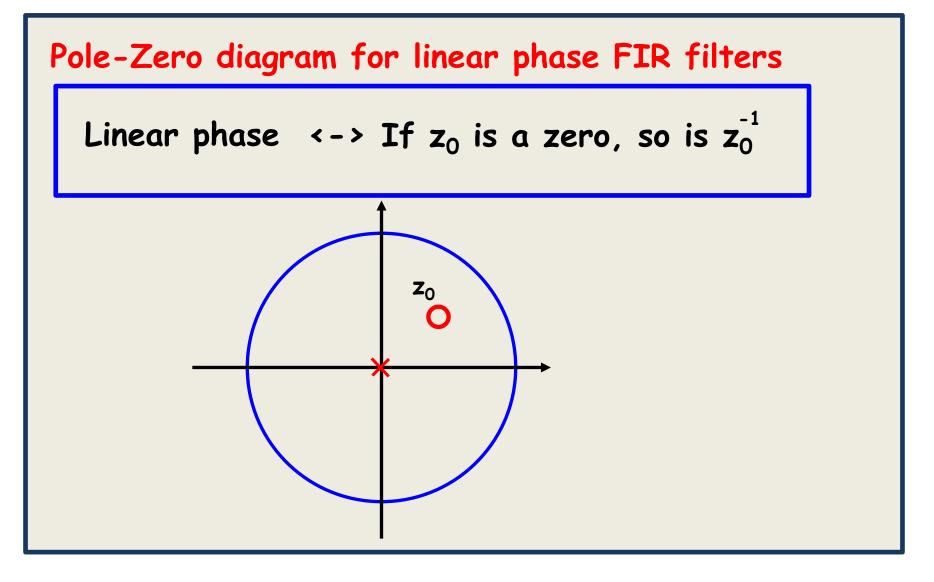
$$h(n) = h(N - n)$$
 Symmetry around n=(N-1)/2.

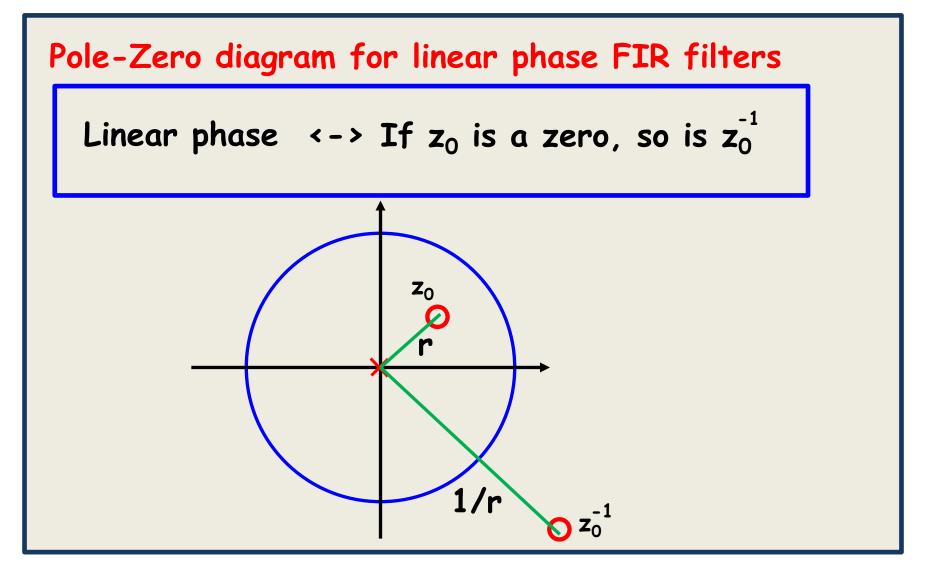
h(n) = -h(N - n) Anti-symmetry around n=(N-1)/2.

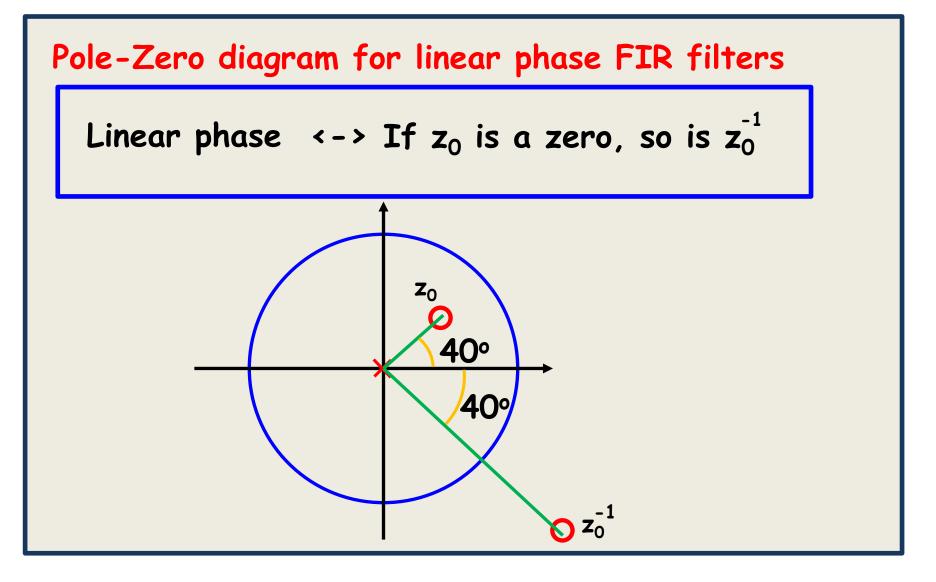
Three types of linear phase filters

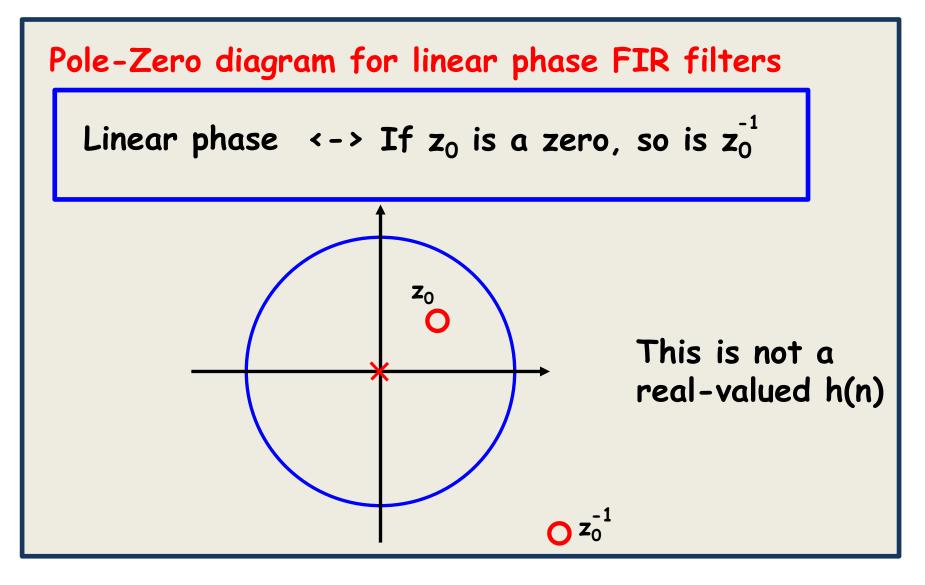
Example TYPE 1

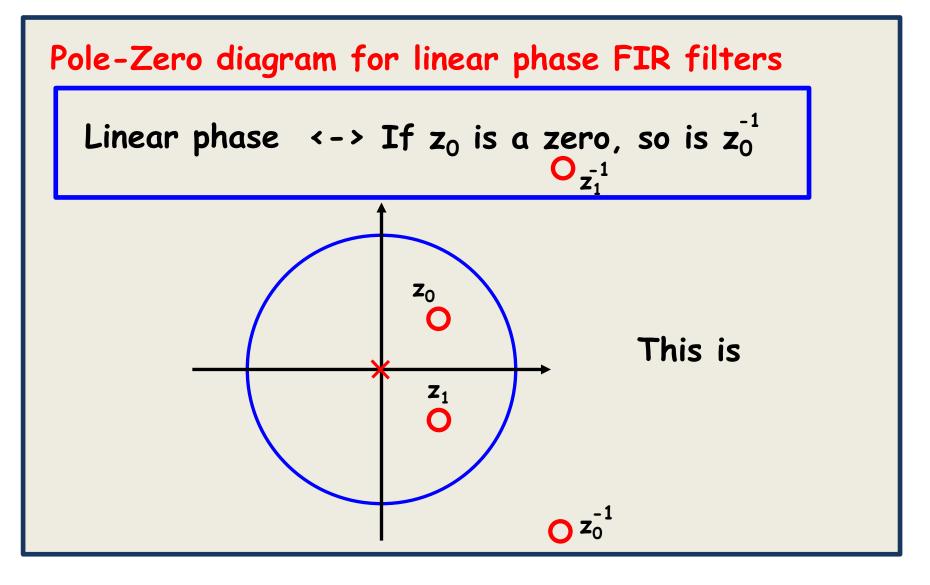
 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

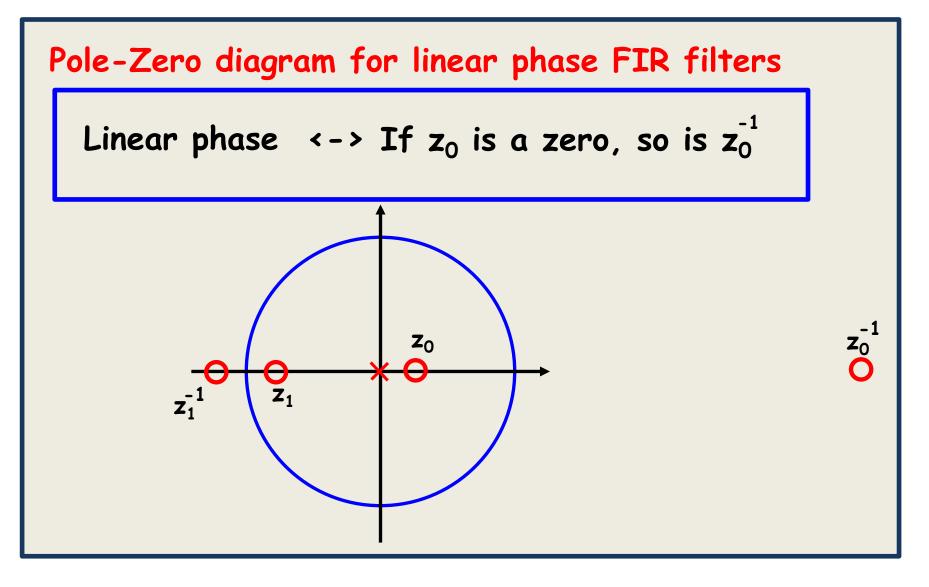


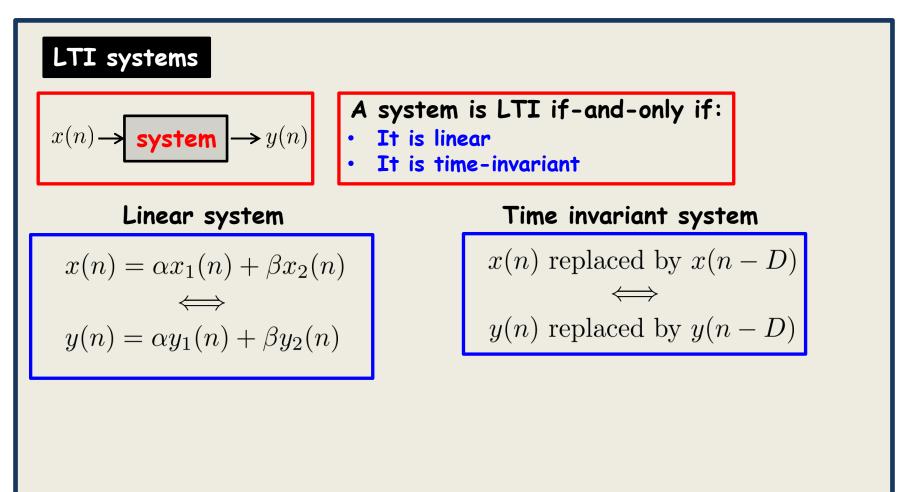


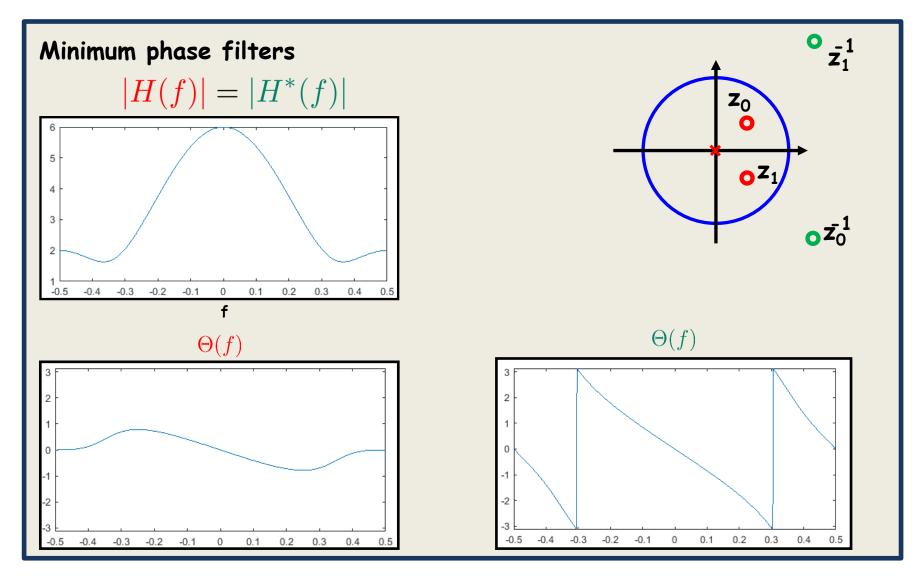


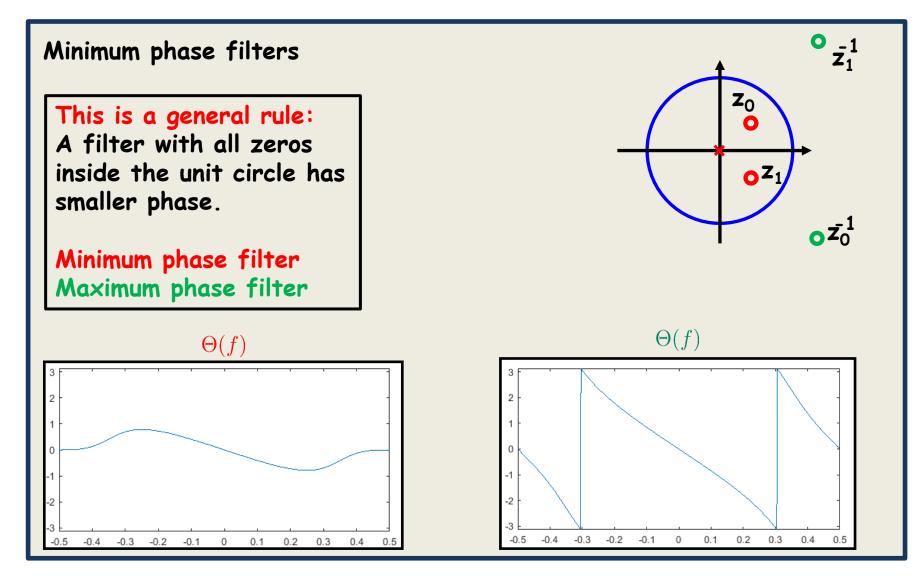


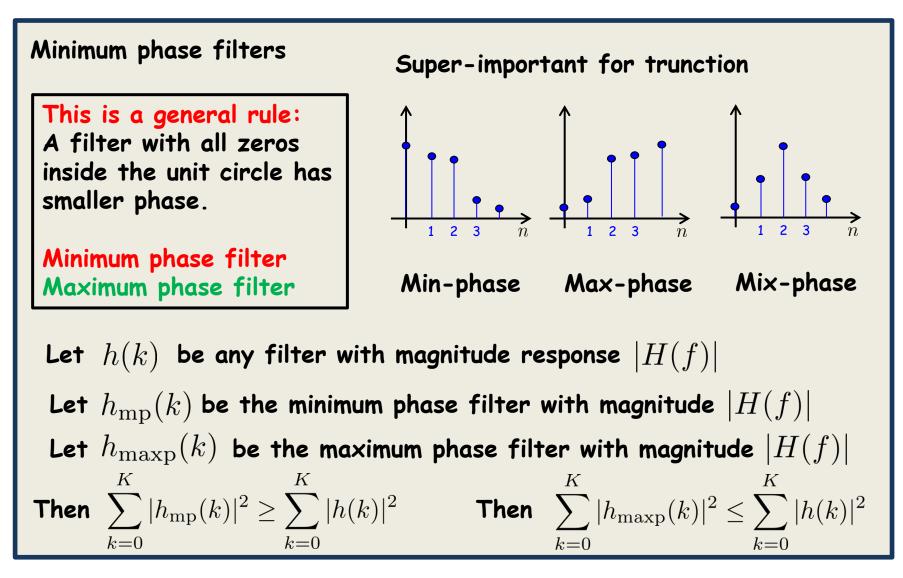


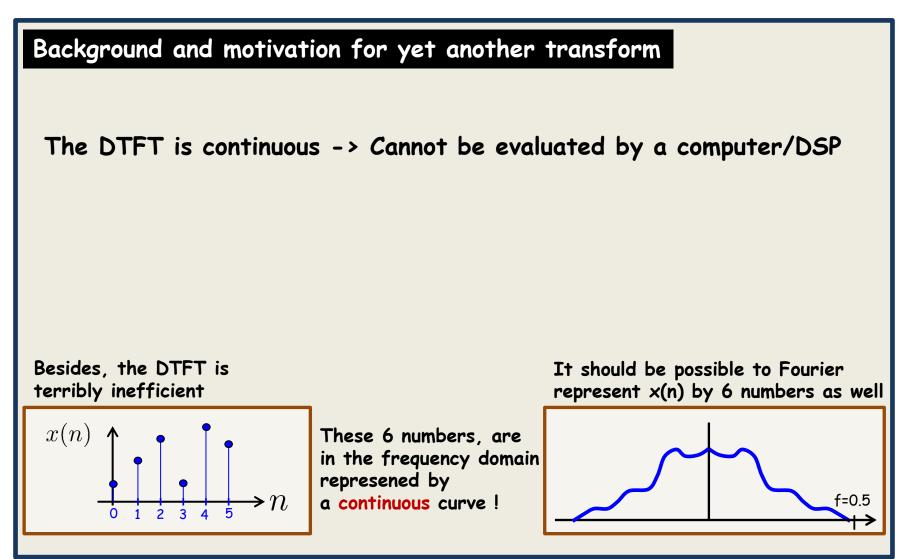






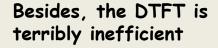


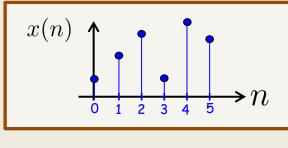




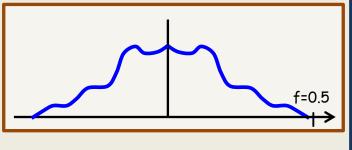
Background and motivation for yet another transform

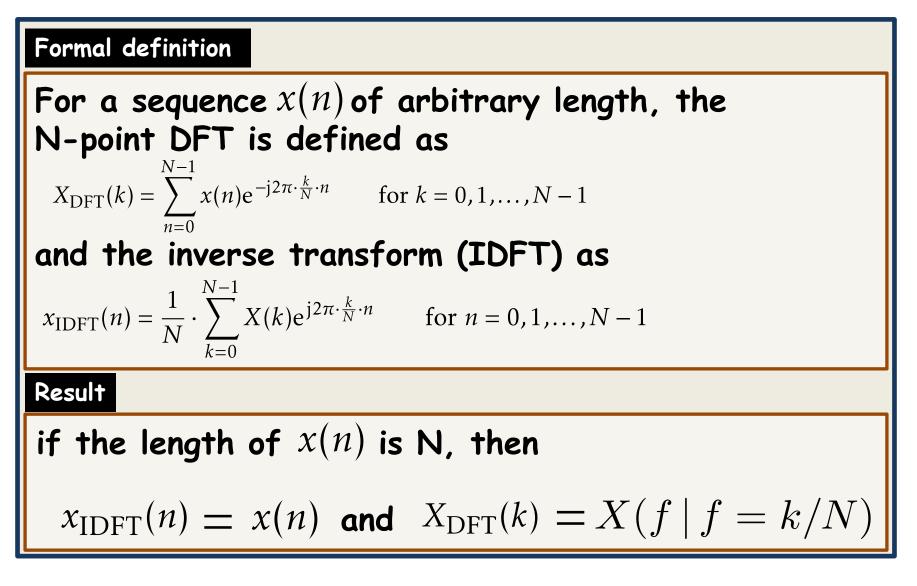
The discrete Fourier Transform (DFT) in one sentence: A Fourier version of x(n) with 6 numbers

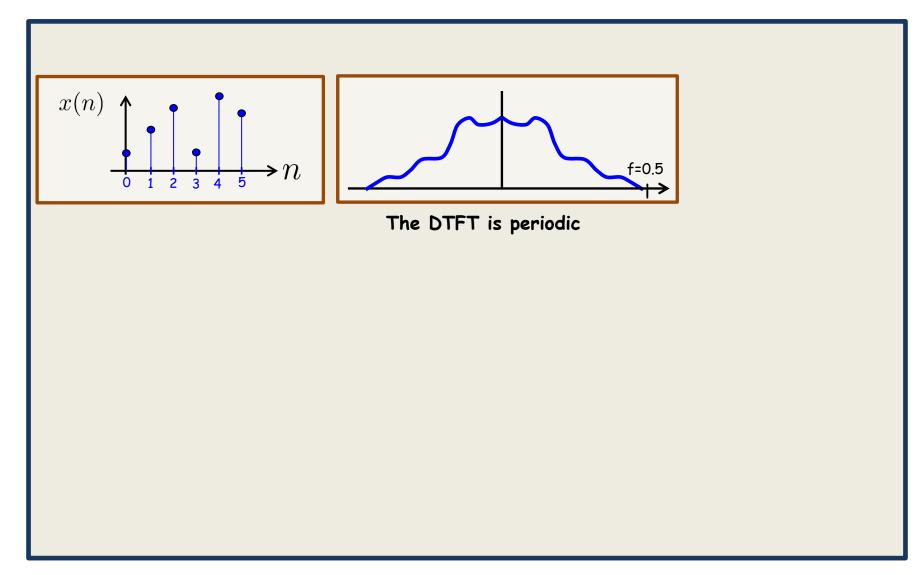


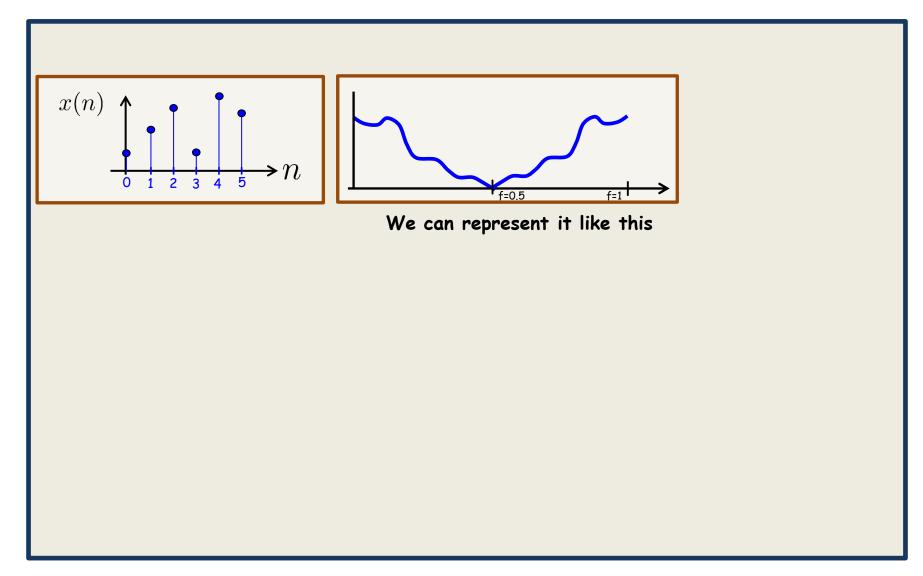


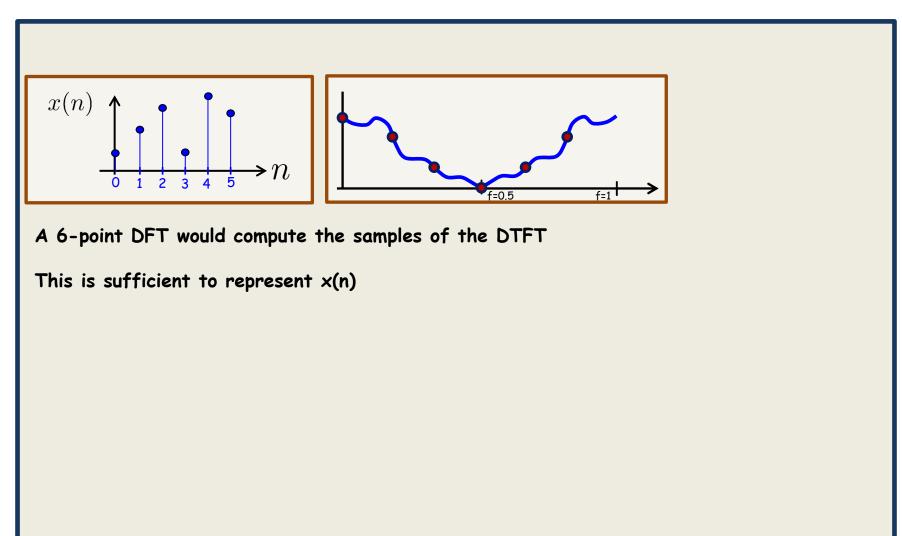
These 6 numbers, are in the frequency domain represened by a continuous curve ! It should be possible to Fourier represent x(n) by 6 numbers as well

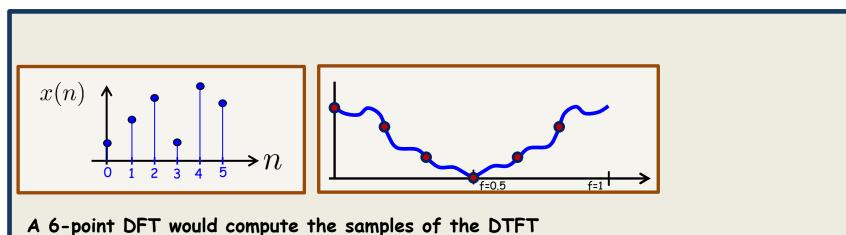








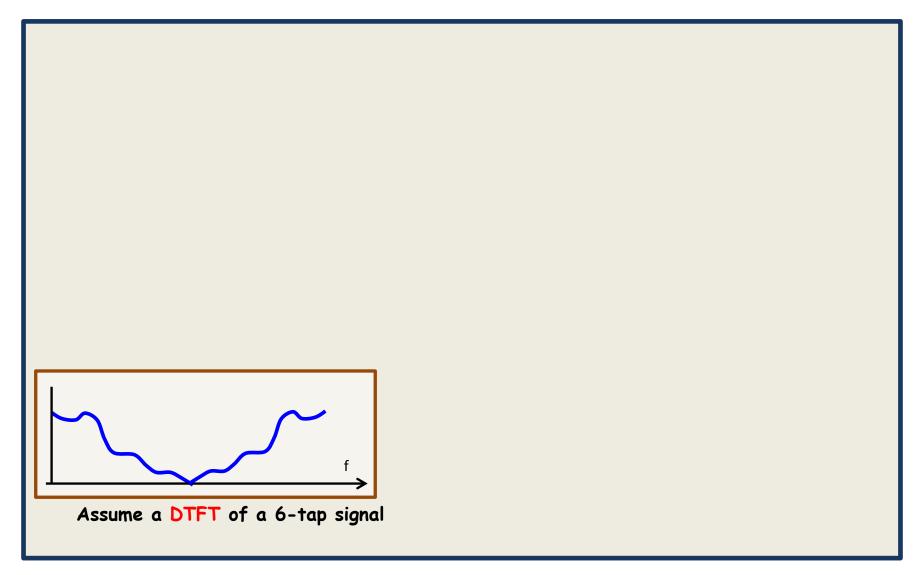


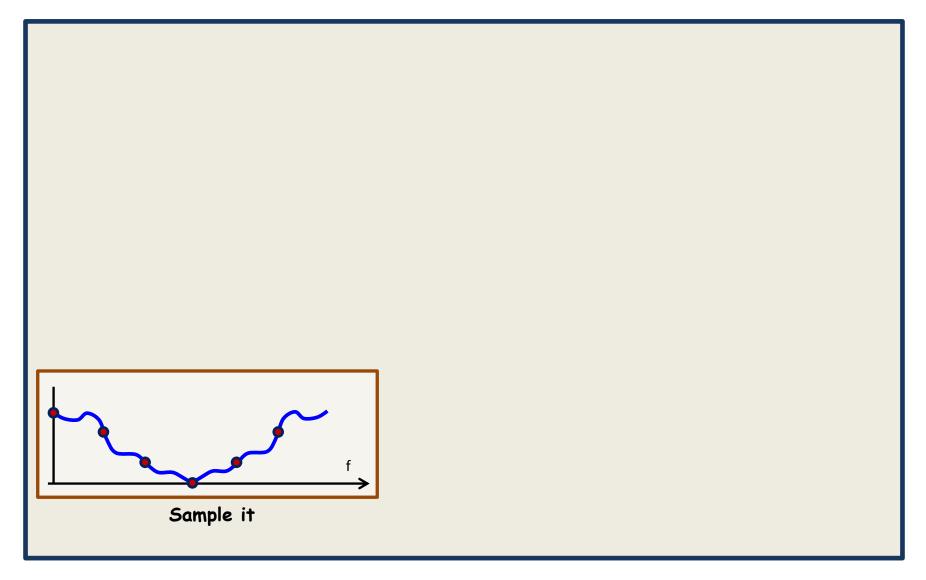


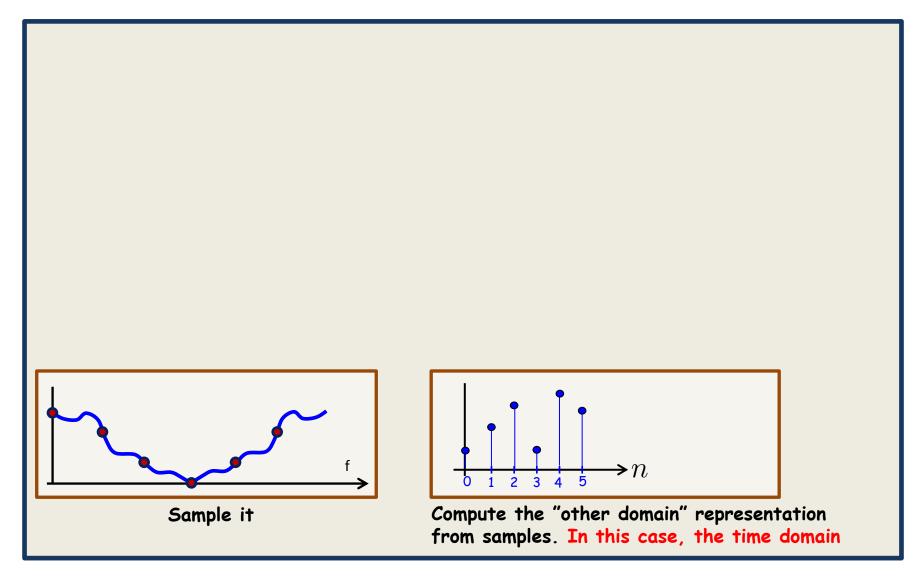
. . . .

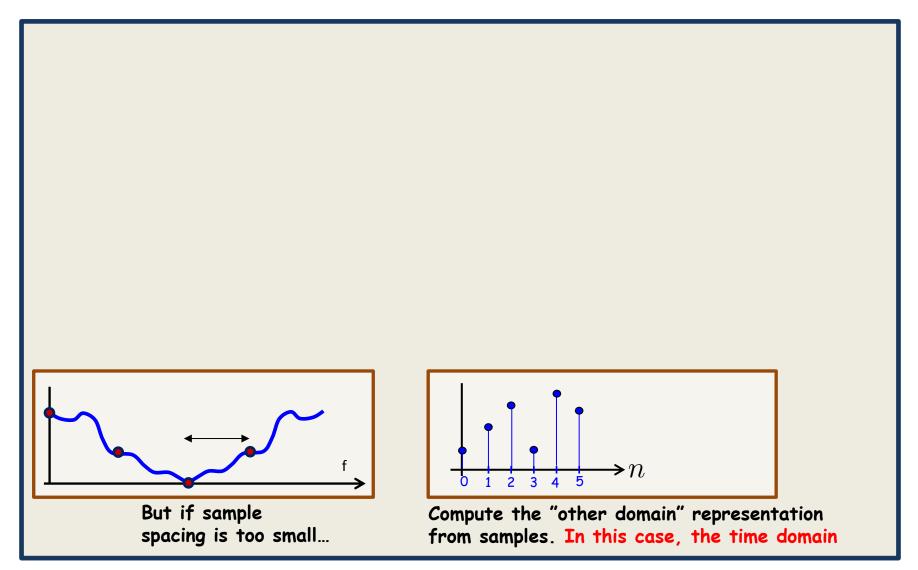
This is sufficient to represent x(n)

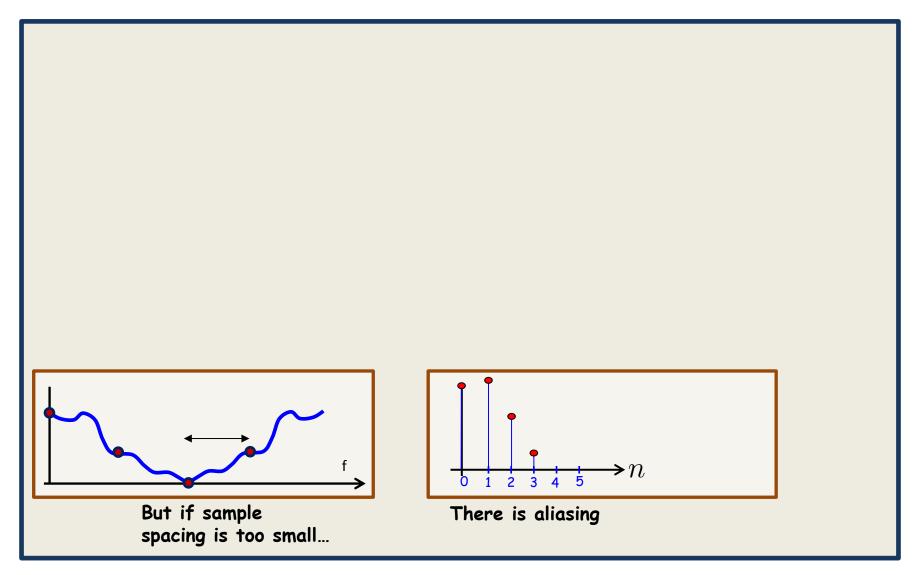
Important: The DFT size must be at least as long as the signal, otherwise there is a loss (aliasing in time)

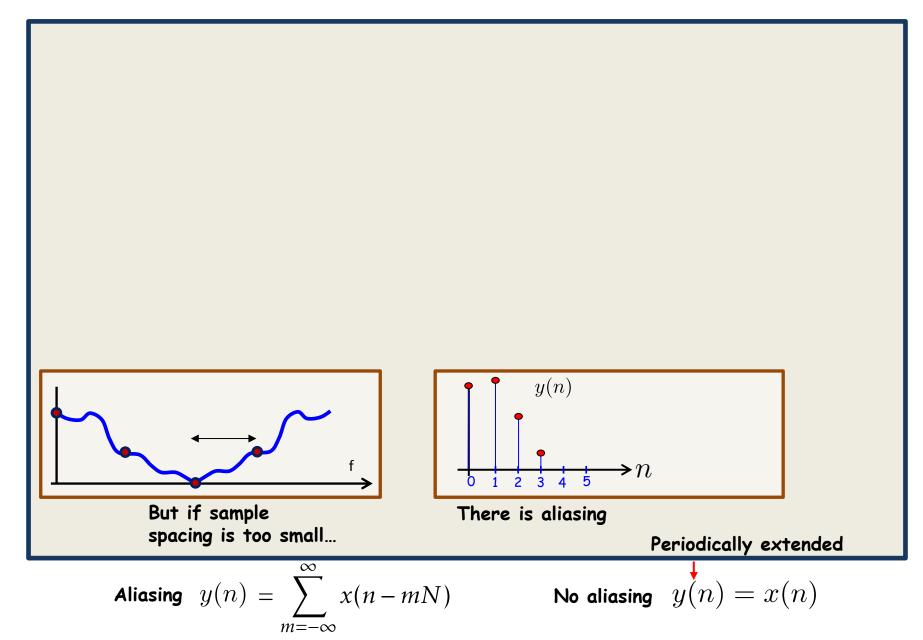




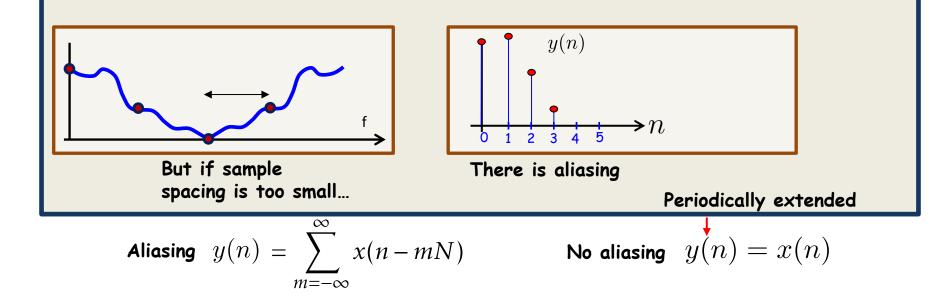








The time-aliasing only occurs if we are not careful with the DFT size. If it is equal or larger than the length of the signal, there is no time-aliasing



Computational complexity

DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for
$$k = 0, 1, ..., N - 1$$

Number of operations needed:

Computational complexity

DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for
$$k = 0, 1, ..., N - 1$$

Number of operations needed:

N values $X_{
m DFT}(k)$ to be computed

Computational complexity

DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for k = 0, 1, ..., N - 1

Number of operations needed:

N values $X_{
m DFT}(k)$ to be computed

Each value requires N multiplications x(

$$x(n) \cdot \mathrm{e}^{-j2\pi kn/N}$$

Computational complexity

DFT defined as

$$X_{\text{DFT}}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$$

for
$$k = 0, 1, ..., N - 1$$

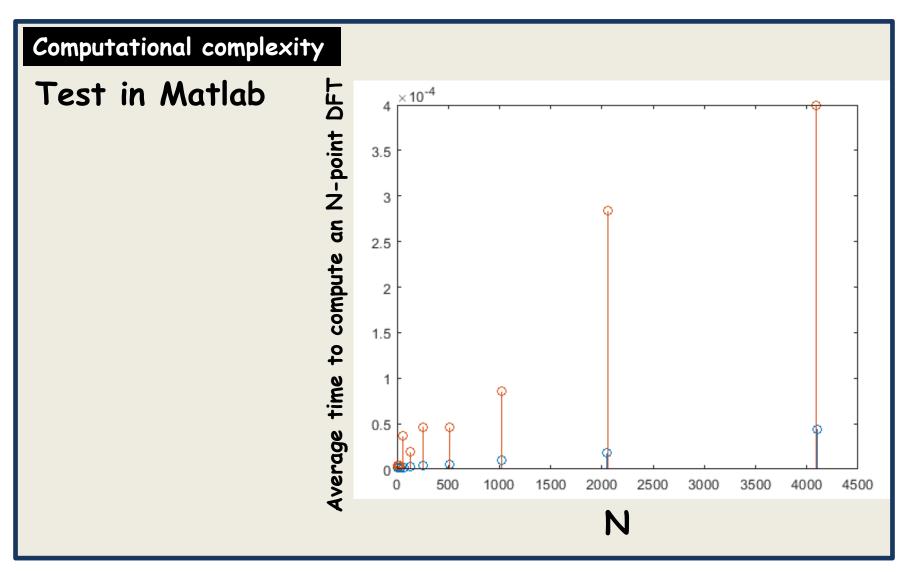
Number of operations needed:

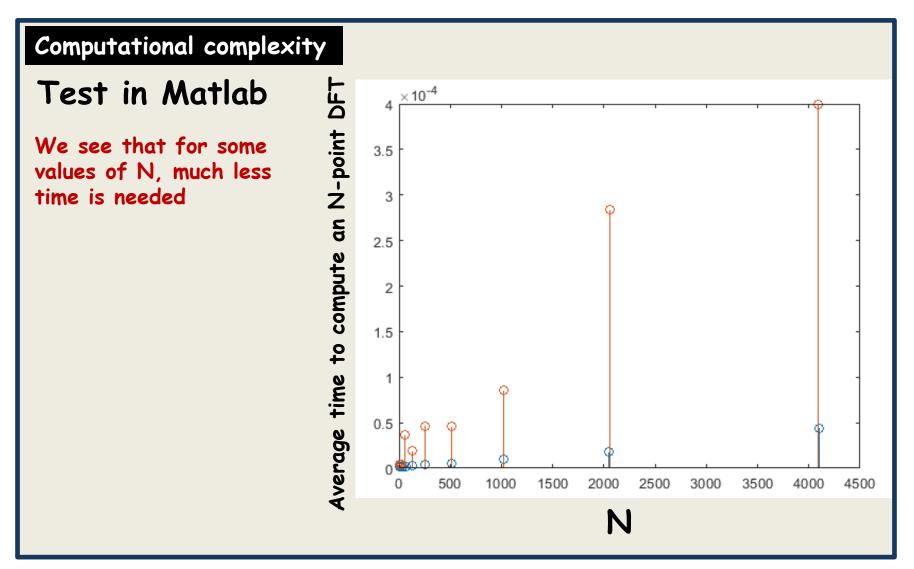
N values $X_{
m DFT}(k)$ to be computed

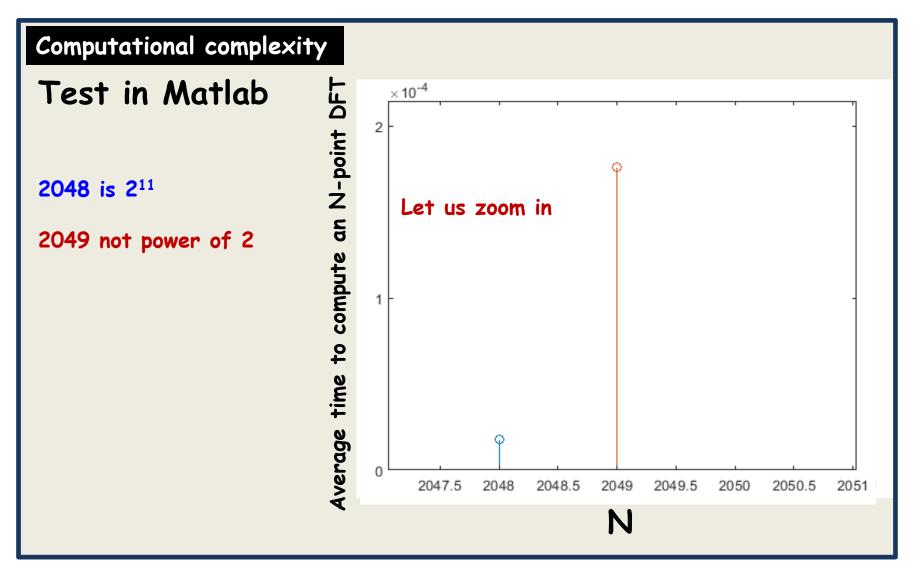
Each value requires N multiplications

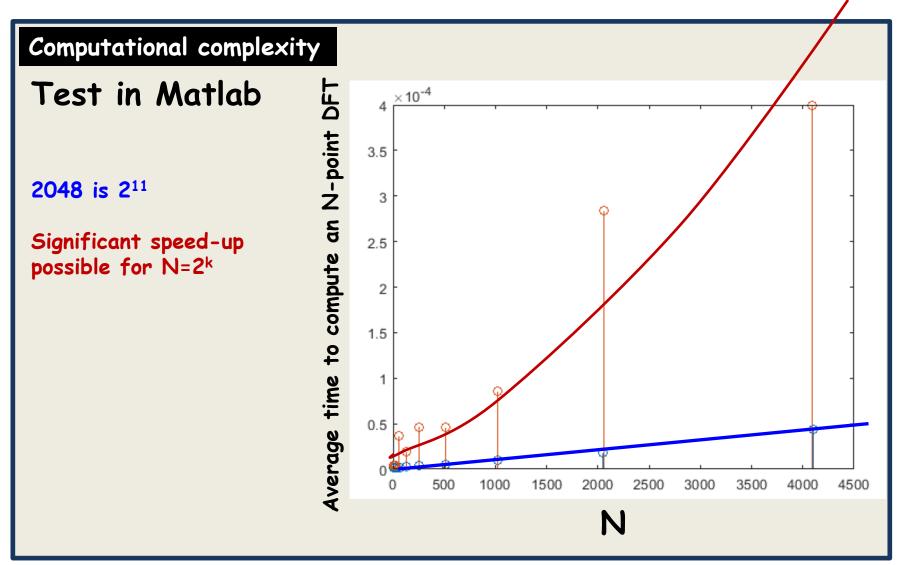
$$x(n) \cdot \mathrm{e}^{-j2\pi kn/N}$$

Total complexity N²









 Computational complexity
 FFT not included in course, but good to know about

 Test in Matlab

 Fast Fourier transform (FFT)

 If N=2^k, then N log₂(N) complexity to compute

 $X_{DFT}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n}$ for $k = 0, 1, \dots, N-1$

Made possible by some algebraic manipulations and tricks.

Cooley and Tukey 1965

Method known to, and used by, Gauss in 1805

Computational complexity FFT not included in course, but good to know about

Test in Matlab

Fast Fourier transform (FFT)

If $N=2^k$, then $N \log_2(N)$ complexity to compute

$$X_{\rm DFT}(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \cdot \frac{k}{N} \cdot n} \qquad \text{for } k = 0, 1, \dots, N-1$$

Made possible by some algebraic manipulations and tricks.

The importance of the FFT cannot be underestimated. WIFI and 4G, etc could not been implemented without the FFT

For a computer,

- 1. It can avoid the continuous DTFT
- 2. It can compute the DFT extremely fast

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$

Still true ? I.e.

$$x(n) \star y(n) \leftrightarrow X(k)Y(k)$$

$$x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

Still true ? I.e. Assume length N sequences

$$\begin{aligned} x(n) \star y(n) &\leftrightarrow X(k)Y(k) \\ x(n) &\leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N} \end{aligned}$$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$

Still true ? I.e. Assume length N sequences. Follows that DFTs also length N $x(n) \star y(n) \leftrightarrow X(k)Y(k)$ $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k)e^{-i2\pi k n_0/N}$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1

$$\begin{array}{l} x(n) \star y(n) \leftrightarrow X(k)Y(k) \\ x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) \mathrm{e}^{-i2\pi k n_0/N} \end{array}$$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

$$\begin{array}{c} -x(n) \leftrightarrow y(n) \leftrightarrow X(k)Y(k) \\ x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N} \end{array}$$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4}

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4}

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$

Also length N. Becomes {10 2+2i 2 2-2i}

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$

Still true ? I.e.

Assume length N sequences. Follows that DFTs also length N But this is length 2N-1. So its DFT must be length 2N-1

Assume length N. Ex {1 2 3 4} Length N+n_0. Ex {0 1 2 3 4} $x(n) \leftrightarrow X(f)$ $x(n - n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$

Also length N. Becomes {10 2+2i 2 2-2i}

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$$
Still true ? I.e.
Assume length N sequences. Follows that DFTs also length N
But this is length 2N-1. So its DFT must be length 2N-1
Assume length N. Ex {1 2 3 4}
Length N+n_0. Ex {0 1 2 3 4}

 $x(n) \leftrightarrow X(f)$ $x(n-n_0) \leftrightarrow X(k) e^{-i2\pi k n_0/N}$

Also length N. Becomes {10 2+2i 2 2-2i}

Still length N

Makes no sense...

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

 $x(n) \leftrightarrow X(f) \qquad x(n-n_0) \leftrightarrow X(f)e^{-i2\pi f n_0}$

Still true ? NO

Properties

For DTFTs, we have

$$x(n) \star y(n) \leftrightarrow X(f)Y(f)$$

$$x(n) \leftrightarrow X(f)$$
 $x(n-n_0) \leftrightarrow X(f) e^{-i2\pi f n_0}$

For DFTs, we have

$$x_1(n) \otimes x_2(n) \leftrightarrow X(k)Y(k)$$
$$x(n - n_0 \mod N) \leftrightarrow X(k)e^{-i2\pi k n_0/N}$$
where $x_1(n) \otimes x_2(n) = \sum_{k=0}^{N-1} x_1(k)x_2(n - k \mod N)$

Circular convolution

Example

Linear convolution computed via DFTs

- Given: Two length N sequences, x(n), y(n)
- Task: Compute their linear convolution by using DFT and its inverse IDFT

Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by using DFT and its inverse IDFT

This is the result, But not computed via DFT

Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by using DFT and its inverse IDFT

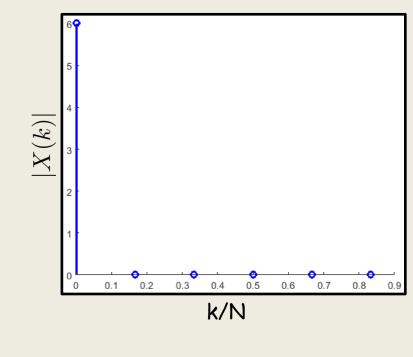
>> $x=[1 \ 2 \ 3 \ 4];$ This is the result, But >> y=[2 2 1 1]; >> vL=conv(x, y)not computed via DFT vL = 2 6 11 17 13 7 4 >> xp=[1 2 3 4 0 0 0 0]; >> yp=[2 2 1 1 0 0 0 0]; >> yL=ifft(fft(xp).*fft(yp)) yL = 2.0000 6.0000 11.0000 17.0000 13.0000 7.0000 4.0000 -0.0000

Still a circular convolution carried out, but due to zero-padding, it behaves linear.

More examples: Resolution increase

$x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \}$

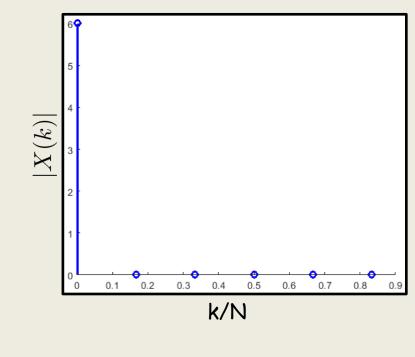
Compute DFT (N=6)



More examples: Resolution increase

$x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0\}$

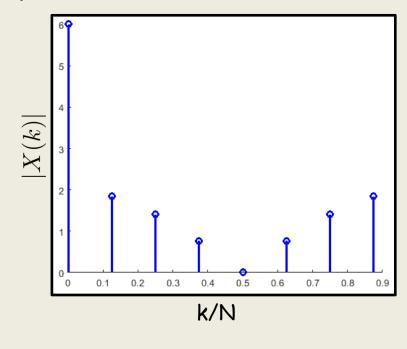
Compute DFT (N=8)



More examples: Resolution increase

$x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0\}$

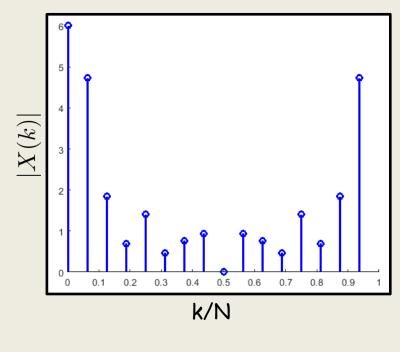
Compute DFT (N=8)

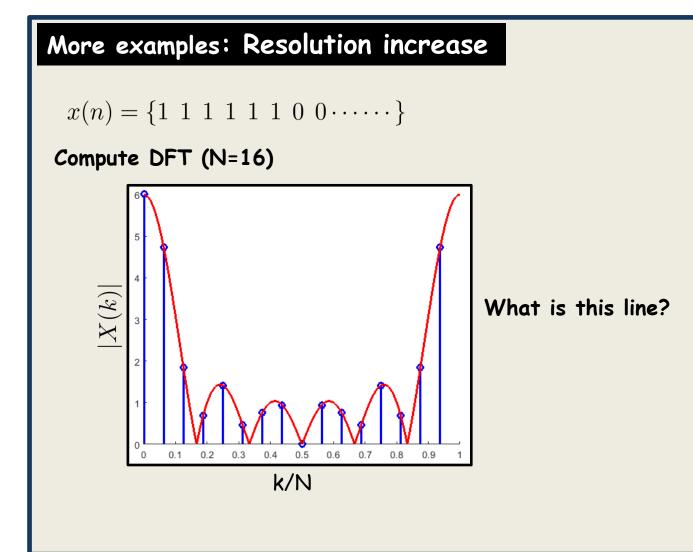


More examples: Resolution increase

 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \cdots \}$

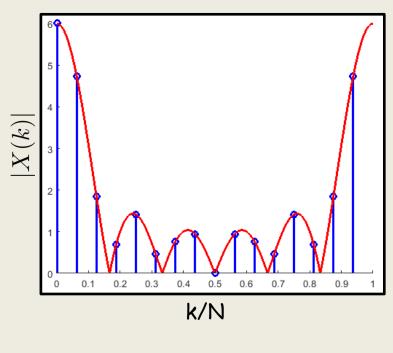
Compute DFT (N=16)





 $x(n) = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \cdots \}$

Compute DFT (N=16)



What is this line?

```
DFT size larger-or-equal to the length of x(n)
```

