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Sampling and reconstruction 
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A/D and D/A 

Device 
Signal Output 

RAM sampling Processing Reconstruction 

To process a signal digitally, we need to first convert an  
analog signal to a discrete one  (Sampling) 
 
Then we often need to convert it back to analog (Reconstruction) 
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Key step is to understand what X(f) looks like in terms of  

Signal sampling 

Xa(F) X(f) 

Xa(F) 
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A/D and D/A 

Key step is to understand what X(f) looks like in terms of  

Signal sampling 

Xa(F) X(f) 

Xa(F) 

If sampling is to sparse, there is aliasing.  
We find X(f) by the ”folding technique” 
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Xa(F) 

| 

Folding 

F=5000 Hz 

1 - 
Step 1: Identify Fs/2 
Step 2: Fold at Fs/2 
Step 3: Add 
Step 4: repeat at lhs 
Step 5: multiply with Fs 

Step 6: change F to f 

| 
Fs/2 = 2000 Hz 

Example: Folding 

Signal sampling 

Xa(F) X(f) 

Fs = 4000 Hz 
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| 

Folding 

F=5000 Hz 

1 - 
Step 1: Identify Fs/2 
Step 2: Fold at Fs/2 
Step 3: Add 
Step 4: repeat at lhs 
Step 5: multiply with Fs 

Step 6: change F to f 

| 
Fs/2 = 2000 Hz 

If this happens: 
Stop at 0 
Fold again 
Done 

Example: Folding 

Signal sampling 

Xa(F) X(f) 

Fs = 4000 Hz 
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Folding 

F=5000 Hz 

4000 - 
Step 1: Identify Fs/2 
Step 2: Fold at Fs/2 
Step 3: Add 
Step 4: repeat at lhs 
Step 5: multiply with Fs 

Step 6: change F to f 

| 
Fs/2 = 2000 Hz 

Example: Folding 
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Fs = 4000 Hz 
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Folding 

4000 - 
Step 1: Identify Fs/2 
Step 2: Fold at Fs/2 
Step 3: Add 
Step 4: repeat at lhs 
Step 5: multiply with Fs 

Step 6: change F to f 

| 

f=0.5 

Example: Folding 

Signal sampling 

Xa(F) X(f) 

Fs = 4000 Hz 
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A/D and D/A 

Key step is to understand what X(f) looks like in terms of  

Signal sampling 

Xa(F) X(f) 

Xa(F) 

If there is aliasing, 
we cannot, in general, 
recover x(t) from x(n) 
 

Sampling Theorem (Shannon 1948) 

If Fs>2B, where B is the highest frequency of 
the analog signal, then the analog signal can be 
recovered from its sampled version 
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A/D and D/A 

Key step is to understand what X(f) looks like in terms of  

Signal sampling 

Xa(F) X(f) 

Xa(F) 

If no aliasing 
(e.g., sampling 
Theorem fulfilled) 
 

Sampling Theorem (Shannon 1948) 

If Fs>2B, where B is the highest frequency of 
the analog signal, then the analog signal can be 
recovered from its sampled version 

k=0 
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A/D and D/A 

Reconstruction.  

Signal sampling 

Xa(F) X(f) 

k=0 

Reconstruction 
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A/D and D/A 

Reconstruction.  

Signal sampling 

Xa(F) X(f) 

k=0 

Reconstruction 

No aliasing 

Aliasing 
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A/D and D/A 

Reconstruction.  

Signal sampling 

Xa(F) X(f) 

k=0 

Reconstruction 

No aliasing 

Aliasing 

F1 Hz 
F2 Hz 

Note: sampling and reconstruction frequencies can differ. See lecture 9 
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LTI systems and z-transforms 
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LTI systems 

• It is linear 
• It is time-invariant 
 

Linear system Time invariant system 

A system is LTI if-and-only if:  
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a difference equation 
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• It is linear 
• It is time-invariant 
 

A system is LTI if-and-only if:  
 

An LTI system is fully characterized by 
a difference equation 
 

Assume that we turn on the circuit at n=0 
 
System at rest if  
 

Not at rest if (has initial conditions)  
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system 

LTI systems 

• It is linear 
• It is time-invariant 
 

A system is LTI if-and-only if:  
 

An LTI system is fully characterized by 
a difference equation 
 

Assume that we turn on the circuit at n=0 
 
System at rest if  
 

Not at rest if (has initial conditions)  
 

Impulse response 
 

Output if input is 
 
and system at rest  
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system Found by z-transform 
What is output for a given input 
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system Found by z-transform 
What is output for a given input 

The z-transform of          is  
defined as 
 

What is the z-transform? 
• A map from sequences to   
 complex valued functions 

 
 

What is H(z)? 
• A complex function of a  

 
 

complex number 
 
 

1 2 3 

z-transform 

If we want to plot H(z), we need 2 plots, one for the real part, one for the imaginary   

Z-transforms are not meant for ”plotting and obtaining insights” 
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An important example 

1 2 3 

0.5 

1 

-1 -2 -3 

-0.5 

-1 

Different signals, 
Same z-transform 

Anti-causal step 
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An important example 

1 2 3 

0.5 

1 

-1 -2 -3 

-0.5 

-1 

Different signals, 
Same z-transform 
Different ROC 

Anti-causal step 

Let’s specify the ROC 



EITF75, z-transform 

If we are given an X(z), and assume that the 
signal x(n) is causal, then we can be a bit sloppy 
with the ROC 
 
This is what we do in this (most) of this course 
 
In other words. There are many x(n) for the 
same X(z), and the ROC specifies the particular 
one. However, there is only one that is causal. 

Convention 
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Illustration 

x1(n) 

x2(n) 

x3(n) 

x4(n) 

x5(n) 

x6(n) 

x7(n) 

Assume a bunch of  
different sequences 

Sequence Transform ROC 
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Illustration 

x1(n) 

x2(n) 

x3(n) 

x4(n) 

x5(n) 

x6(n) 

x7(n) 

Assume a bunch of  
different sequences 

X1(z) 

X2(z) 

X1(z) 

X1(z) 

X1(z) 

Sequence Transform ROC 

X2(z) 

X2(z) 

Compute their transforms 
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Illustration 

x1(n) 

x2(n) 

x3(n) 

x4(n) 

Assume a bunch of  
different sequences 

X1(z) 

X1(z) 

X1(z) 

X1(z) 

Sequence Transform ROC 

Compute their transforms 

S
a
m
e
 tra

nsform
 

Ignore others 
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Illustration 

x1(n) 

x2(n) 

x3(n) 

x4(n) 

Assume a bunch of  
different sequences 

X1(z) 

X1(z) 

X1(z) 

X1(z) 

Sequence Transform ROC 

Compute their transforms    and ROCs 

R
O
C
s C

A
N
N
O
T
 b

e
 sa

m
e

 

Ignore others 

R1 

R2 

R3 

R4 
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x1(n) 

x2(n) 
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Sequence Transform ROC 
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Exactly one of the ROCs corresponds to a causal signal 

R1 

R2 

R3 

R4 

Causal 
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Illustration 

x1(n) 

x2(n) 

x3(n) 

x4(n) 

X1(z) 

X1(z) 

X1(z) 

X1(z) 

Sequence Transform ROC 

R
O
C
s C

A
N
N
O
T
 b

e
 sa

m
e

 

Exactly one of the ROCs corresponds to a causal signal 
 
So, if we know X1(z) and that we work with causal x(n),  
we can establish x4(n) without knowing the ROC 

R1 

R2 

R3 

R4 

Causal 
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system 

LTI systems 

Found by z-transform 
What is output for a given input 
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Expression for general  
difference equation 
 Change y(n-k) to z-k Y(z) 

Step 1: 

Change x(n-k) to z-k X(z) 

Step 2: 

Express Y(z) as H(z)X(z) 

Step 3: 

Solution for general  
difference equation  (at rest) 
 

Analyzing a general difference equation (at rest) 
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Expression for general  
difference equation 
 

Solution for general  
difference equation  (at rest) 
 

Analyzing a general difference equation (at rest) 

Find the roots of the 
denominator and nominator of 
H(z). Roots should be in 
terms of z, not z-1 

Step 4: 

zeros 

poles 
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Expression for general  
difference equation 
 

Solution for general  
difference equation  (at rest) 
 

Analyzing a general difference equation (at rest) 

Find the roots of the 
denominator and nominator of 
H(z). Roots should be in 
terms of z, not z-1 

Step 4: 

zeros 

poles 

If degree of numerator >= degree of 
denominator. Perform polynomial division 
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Expression for general  
difference equation 
 

Solution for general  
difference equation  (at rest) 
 

Analyzing a general difference equation (at rest) 

Find the roots of the 
denominator and nominator of 
H(z). Roots should be in 
terms of z, not z-1 

Step 4: 

zeros 

poles 

Will turn up in the time-domain as a delay 
(can be negative delay) 
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Expression for general  
difference equation 
 

Analyzing a general difference equation (at rest) 

Some polynomial in z 

Assume 

Assuming all poles are real and distinct 

Assuming deg(num) < deg(denom) 

Perform partial fraction expansion 
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Expression for general  
difference equation 
 

Analyzing a general difference equation (at rest) 

Some polynomial in z 

Assume 

Assuming all poles are real and distinct 

Assuming deg(num) < deg(denom) 

Invert 
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Expression for general  
difference equation 
 

Analyzing a general difference equation (at rest) 

This… 

…generates that 
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Important: poles in H(z) and 
in X(z) determines the output 
Structure 
 
”You can never get a term in 
y(n) that doesn’t exist in 
either X(z) or H(z)” 
 
 

Analyzing a general difference equation (at rest) 

Some polynomial in z 

Assume 
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Important: To get stable 
output, all poles must be 
inside the unit circle 
 
 

Analyzing a general difference equation (at rest) 

Some polynomial in z 

Assume 
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A complex conjugated pair of poles 
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A complex conjugated pair of poles 

Polar coordinates: r is ”length” and w is angle of the pole. 
To get stable output: r<1  (poles inside the unit circle) 
 
 
 
 

Example Quite messy to invert a mixture of the two above: Make sure 
you know how to do that. 

 

Invert 
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Systems not at rest 

Use the one-sided z-transform 
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Systems not at rest 

Use the one-sided z-transform 
 
 
End result: The solution at rest + contribution from initial conditions 
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Systems not at rest 

Use the one-sided z-transform 
 
 
End result: The solution at rest + contribution from initial conditions 
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Systems not at rest 

Use the one-sided z-transform 
 
 
End result: The solution at rest + contribution from initial conditions 
 
 
 
 

N: highest power of z-1 in A(z) 
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Systems not at rest 

Use the one-sided z-transform 
 
 
End result: The solution at rest + contribution from initial conditions 
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Fourier analysis. 4 cases 
 
Periodic/aperiodic signal 
Continuous/discrete signal 



Continuous and periodic 

4 different type of signals 

Continuous and aperiodic 

Discrete and periodic Discrete and aperiodic 

Continuous spectra Discrete spectra 

EITF75, Fourier transforms 

Time signals shown, not Fourier transforms 



Continuous and periodic 

4 different type of signals 

Continuous and aperiodic 

Discrete and periodic Discrete and aperiodic 

Periodic spectra 

Aperiodic spectra 

EITF75, Fourier transforms 



Continuous and periodic 

4 different type of signals 

Continuous and aperiodic 

Discrete and periodic Discrete and aperiodic 

Periodic spectra 

Aperiodic spectra 

EITF75, Fourier transforms 

Transform of this is DTFT 
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Z-transform 

DTFT 
(discrete time  
Fourier transform) 

Important: DTFT is z-transform 
evaluated at unit circle 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Book makes a big deal out of this. But quite easy…. 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Recall 

is H(z) at 
unit circle 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Recall 

is H(z) at 
unit circle 

0.125 
 

Value of H(z) here 

I
s 

H
(f

) 
h
e
re
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Recall 

is H(z) at 
unit circle 

0.25 
 

Value of H(z) here 

I
s 

H
(f

) 
h
e
re
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Recall 

is H(z) at 
unit circle 

V
a
lu
e
 o

f 
H
(z

) 
h
e
re

 

a
nd

 h
e
re

 

I
s 

H
(f

) 
h
e
re
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Recall 

is H(z) at 
unit circle 

How big is 
H(z) here? 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

We are at a zero 

is H(z) at 
unit circle 

How big is 
H(z) here? 0 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

is H(z) at 
unit circle 

How big is 
H(z) here?  
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

is H(z) at 
unit circle 

How big is 
H(z) here?   BIG 

We are close to a pole 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

is H(z) at 
unit circle How big is 

H(z) here?   
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

is H(z) at 
unit circle How big is 

H(z) here?   
small 

We are close to a zero 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Non-zero everywhere else, since 
no further zeros at unit circle 
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DTFT 
 

Pole-zero plot 

f 
 0.5 

 

-0.5 
 

Observe 

Unstable 
 

”Ka-boom” 
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f 
 

DTFT 
 

0.5 
 

-0.5 
 

Final remark: X(f) is periodic 
 

-1.5 
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DTFT 
 

Z-transform 
 

Important: An LTI system cannot create frequencies 
not present in the input signal 
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DTFT 
 

Z-transform 
 

Important: An LTI system cannot create frequencies 
not present in the input signal 
 

For cos/sin 
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Assume oscillating input, but turned on at n=0 

Steady state solution (i.e., y(n) at big n) is the same 
as before. At small n, there is a transient behavior. 
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Assume oscillating input, but turned on at n=0 

Steady state solution (i.e., y(n) at big n) is the same 
as before. At small n, there is a transient behavior. 
 
 

Transient (if all poles inside unit circle) Steady state (same as for infinite cos) 
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Parseval’s formula 
 
 
 
 
 
 
 
Special case:  
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Some filter design 
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x2 

Magnitude 

response 
 

FIASCO  

h(n) = { 1   -2cos(w0)    1 } 

An attempt to cancel f=0.125 
by using two zeros  
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Let us try 
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Much better 

Magnitude 

response 
 

NOTCH filter 
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FIR filters with linear phase 
 
Linear phase is desirable since it delays all frequencies equally much 
 

Linear phase is defined as 
 
Whenever there is a phase jump with    , this should be seen as a 
magnitude response that is negative  
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FIR filters with linear phase 
 
Linear phase is desirable since it delays all frequencies equally much 
 

Linear phase is defined as 
 
Whenever there is a phase jump with    , this should be seen as a 
magnitude response that is negative  

Symmetry around n=0. Not causal 

Symmetry around n=(N-1)/2.  

Anti-symmetry around n=(N-1)/2.  

Three types of linear phase filters 
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Example TYPE 1 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

r 

1/r 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

40o 

40o 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

This is not a 
real-valued h(n) 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

This is 
z1 

z1 
-1 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 z0 
-1 

z1 z1 
-1 
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system 

LTI systems 

• It is linear 
• It is time-invariant 
 

Linear system Time invariant system 

A system is LTI if-and-only if:  
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Minimum phase filters 

z0 

z0 -1 

z1 

z1 
-1 

f 
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Minimum phase filters 

z0 

z0 -1 

z1 

z1 
-1 

This is a general rule: 
A filter with all zeros 
inside the unit circle has 
smaller phase. 
 
Minimum phase filter 
Maximum phase filter 
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Minimum phase filters 

This is a general rule: 
A filter with all zeros 
inside the unit circle has 
smaller phase. 
 
Minimum phase filter 
Maximum phase filter 

Let         be any filter with magnitude response 

Let           be the minimum phase filter with magnitude 

Then 

Let              be the maximum phase filter with magnitude 

Then 

Super-important for trunction 

1 2 3 1 2 3 

Min-phase Max-phase 

1 2 3 

Mix-phase 
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The DFT 
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Background and motivation for yet another transform 

The DTFT is continuous -> Cannot be evaluated by a computer/DSP 

1 2 3 4 5 0 

Besides, the DTFT is 
terribly inefficient 

These 6 numbers, are 
in the frequency domain 
represened by 
a continuous curve ! f=0.5 

| 

It should be possible to Fourier 
represent x(n) by 6 numbers as well 
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Background and motivation for yet another transform 

1 2 3 4 5 0 

Besides, the DTFT is 
terribly inefficient 

These 6 numbers, are 
in the frequency domain 
represened by 
a continuous curve ! f=0.5 

| 

It should be possible to Fourier 
represent x(n) by 6 numbers as well 

The discrete Fourier Transform (DFT) in one sentence:   
A Fourier version of x(n) with 6 numbers 
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Formal definition 

For a sequence      of arbitrary length, the  
N-point DFT is defined as 
 
 
and the inverse transform (IDFT) as 
 
 
 
 
if the length of       is N, then 
 
                      and    

Result 
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1 2 3 4 5 0 

The DTFT is periodic 

f=0.5 

| 
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1 2 3 4 5 0 

We can represent it like this  

f=0.5 
| | 

f=1 
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1 2 3 4 5 0 

A 6-point DFT would compute the samples of the DTFT 
 
This is sufficient to represent x(n) 

f=0.5 
| | 

f=1 



EITF75 Systems and Signals 

1 2 3 4 5 0 

A 6-point DFT would compute the samples of the DTFT 
 
This is sufficient to represent x(n) 
 
Important: The DFT size must be at least as long as 
the signal, otherwise there is a loss (aliasing in time) 

f=0.5 
| | 

f=1 
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Assume a DTFT of a 6-tap signal 

f 
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Sample it 

f 
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Sample it 

1 2 3 4 5 0 
f 

Compute the ”other domain” representation 
from samples. In this case, the time domain 
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1 2 3 4 5 0 
f 

Compute the ”other domain” representation 
from samples. In this case, the time domain 

But if sample 
spacing is too small… 



EITF75 Systems and Signals 

1 2 3 4 5 0 
f 

But if sample 
spacing is too small… 

There is aliasing 
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1 2 3 4 5 0 
f 

But if sample 
spacing is too small… 

There is aliasing 

Aliasing No aliasing 

Periodically extended 
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1 2 3 4 5 0 
f 

But if sample 
spacing is too small… 

There is aliasing 

Aliasing No aliasing 

Periodically extended 

The time-aliasing only occurs if we are 
not careful with the DFT size. If it is 
equal or larger than the length of the 
signal, there is no time-aliasing 
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Computational complexity 

DFT defined as 
 
 
 
 
 
Number of operations needed: 
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Computational complexity 

DFT defined as 
 
 
 
 
 
Number of operations needed: 
 N values              to be computed 
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Computational complexity 

DFT defined as 
 
 
 
 
 
Number of operations needed: 
 N values              to be computed 

 
Each value requires N multiplications 
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Computational complexity 

DFT defined as 
 
 
 
 
 
Number of operations needed: 
 N values              to be computed 

 
Each value requires N multiplications 
 
Total complexity N2 
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Computational complexity 

Test in Matlab 
 
 
 
 
 
 

N 

A
ve

ra
ge

 t
im

e
 t

o 
co

m
pu

te
 a

n 
N
-
po

in
t 

D
F
T
 



EITF75 Systems and Signals 

Computational complexity 

Test in Matlab 
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We see that for some 
values of N, much less 
time is needed 
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Computational complexity 

Test in Matlab 
 
 
 
2049 not power of 2 
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2048 is 211 

Let us zoom in 



EITF75 Systems and Signals 

Computational complexity 

Test in Matlab 
 
 
 
Significant speed-up 
possible for N=2k 
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2048 is 211 
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Computational complexity 

Test in Matlab 
 
 
 
 
 

Fast Fourier transform (FFT) 

If N=2k , then N log2(N) complexity to compute  

Made possible by some algebraic manipulations and tricks. 
 

Cooley and Tukey 1965 
 
Method known to, and used by, Gauss in 1805  

FFT not included in course, but good to know about 
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Computational complexity 

Test in Matlab 
 
 
 
 
 

Fast Fourier transform (FFT) 

If N=2k , then N log2(N) complexity to compute  

Made possible by some algebraic manipulations and tricks. 

The importance of the FFT cannot be underestimated. WIFI and 4G, 
etc could not been implemented without the FFT 
 
For a computer, 
1. It can avoid the continuous DTFT 
2. It can compute the DFT extremely fast  

FFT not included in course, but good to know about 
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Properties 

For DTFTs, we have 

Still true ? I.e.  
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Properties 

For DTFTs, we have 

Still true ? I.e.  
Assume length N sequences. Follows that DFTs also length N   
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Properties 

For DTFTs, we have 

Still true ? I.e.  
Assume length N sequences. Follows that DFTs also length N   
But this is length 2N-1. So its DFT must be length 2N-1 

Assume length N. Ex {1 2 3 4} 
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Properties 

For DTFTs, we have 

Still true ? I.e.  
Assume length N sequences. Follows that DFTs also length N   
But this is length 2N-1. So its DFT must be length 2N-1 

Also length N. Becomes {10  2+2i  2  2-2i} 

Assume length N. Ex {1 2 3 4} 
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Properties 

For DTFTs, we have 

Still true ? I.e.  
Assume length N sequences. Follows that DFTs also length N   
But this is length 2N-1. So its DFT must be length 2N-1 

Length N+n0. Ex {0 1 2 3 4} 

Also length N. Becomes {10  2+2i  2  2-2i} 

Assume length N. Ex {1 2 3 4} 



EITF75 Systems and Signals 

Properties 

For DTFTs, we have 

Still true ? I.e.  
Assume length N sequences. Follows that DFTs also length N   
But this is length 2N-1. So its DFT must be length 2N-1 

Length N+n0. Ex {0 1 2 3 4} 

Also length N. Becomes {10  2+2i  2  2-2i} 

Assume length N. Ex {1 2 3 4} 

Still length N 

Makes no sense… 
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Properties 

For DTFTs, we have 

Still true ? NO  
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Properties 

For DTFTs, we have 

For DFTs, we have 

where 

Circular convolution 
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Example 

Linear convolution computed via DFTs 

Given: Two length N sequences, x(n), y(n) 

Task: Compute their linear convolution by 
 using DFT and its inverse IDFT 
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Linear convolution computed via DFTs 

Given: Two length N sequences, x(n), y(n) 

Task: Compute their linear convolution by 
 using DFT and its inverse IDFT 

This is the result, But 
not computed via DFT 
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Example 

Linear convolution computed via DFTs 

Given: Two length N sequences, x(n), y(n) 

Task: Compute their linear convolution by 
 using DFT and its inverse IDFT 

This is the result, But 
not computed via DFT 

Still a circular convolution carried out, but due to zero-padding, it behaves linear. 
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More examples: Resolution increase 

Compute DFT (N=6) 

k/N 
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Compute DFT (N=8) 

k/N 

More examples: Resolution increase 
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Compute DFT (N=8) 

k/N 

More examples: Resolution increase 
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Compute DFT (N=16) 

k/N 

More examples: Resolution increase 
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Compute DFT (N=16) 

k/N 

What is this line? 

More examples: Resolution increase 
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Compute DFT (N=16) 

k/N 

What is this line? 
 
DFT size larger-or-equal to  
the length of x(n) 

More examples: Resolution increase 
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Compute DFT (N=16) 

k/N 

What is this line? 
 
DFT size larger-or-equal to  
the length of x(n) 
 
Therefore, DFT samples of DTFT 

More examples: Resolution increase 


