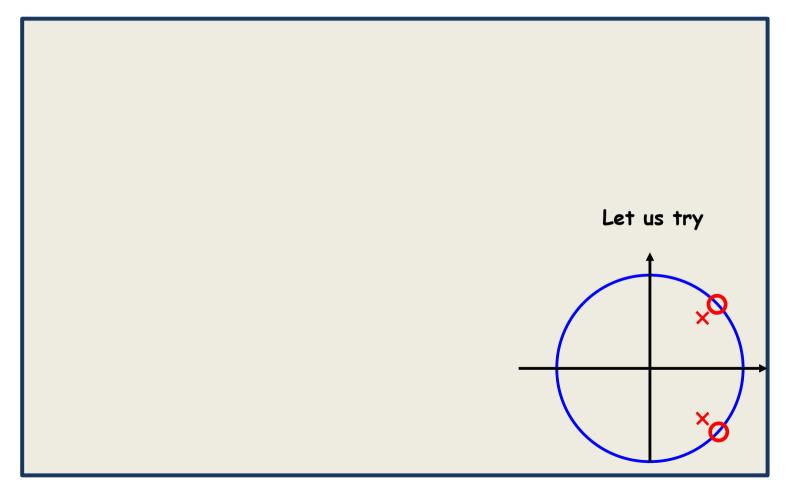
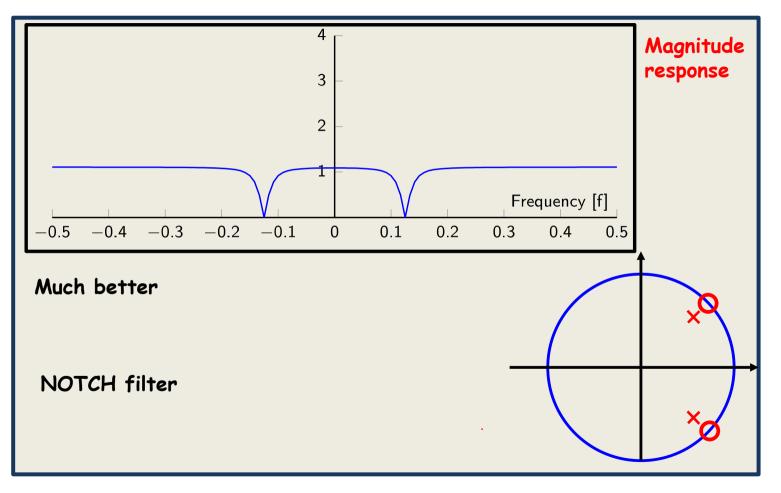
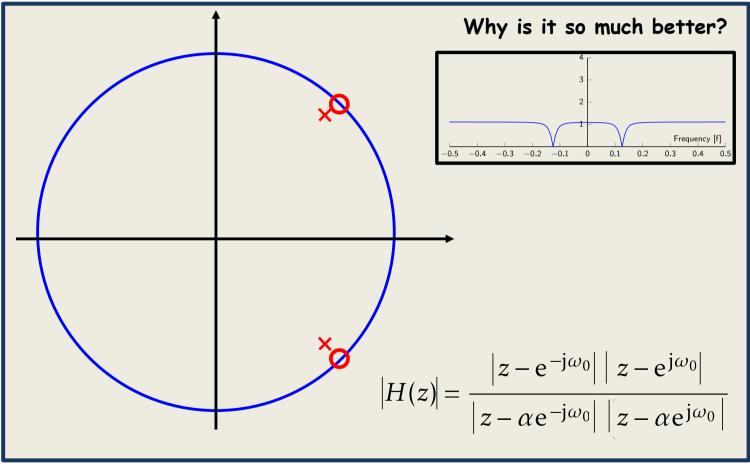


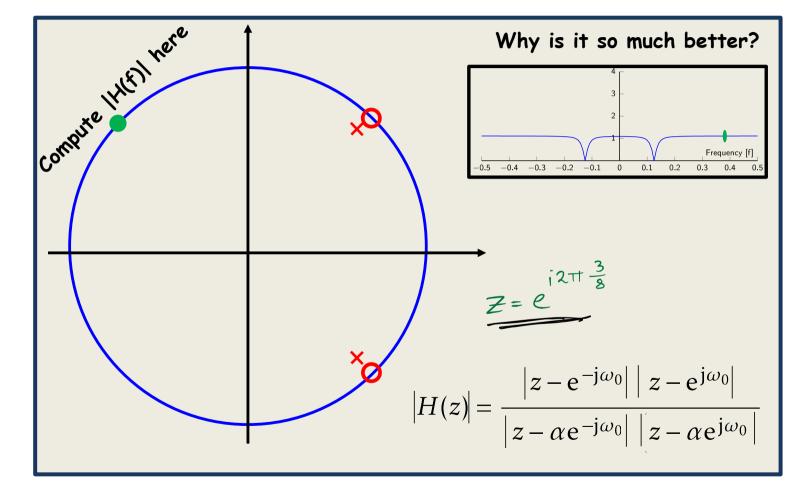
 $h(n) = \{ \underline{1} - 2\cos(w_0) = 1 \}$

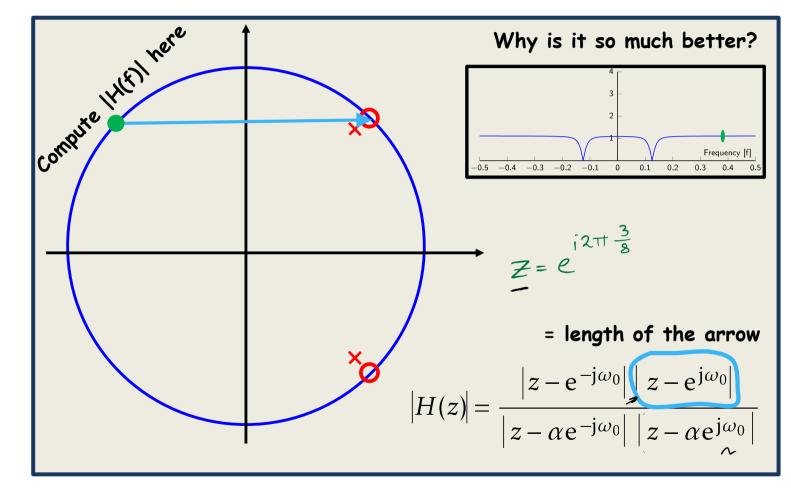


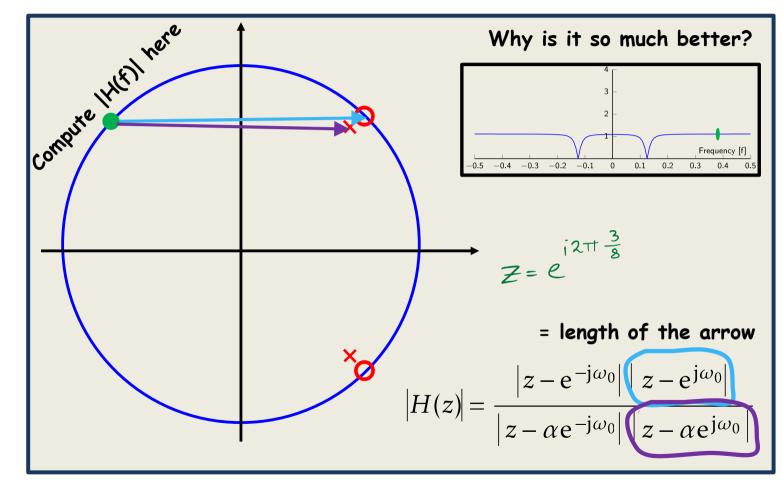




a<1 ax1

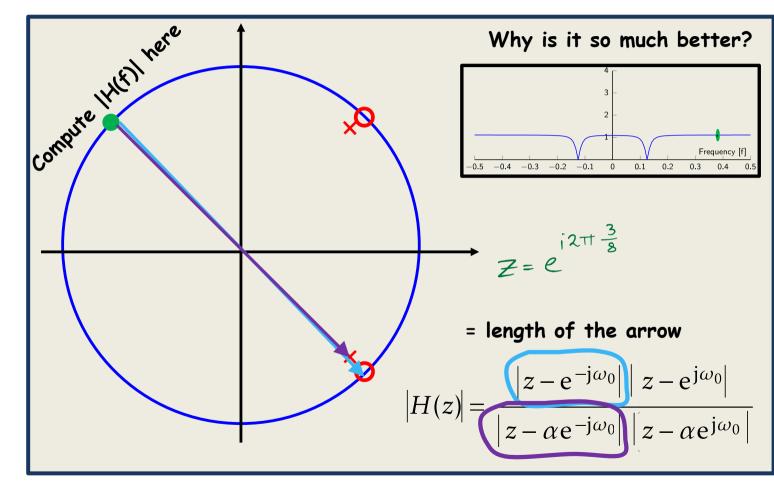




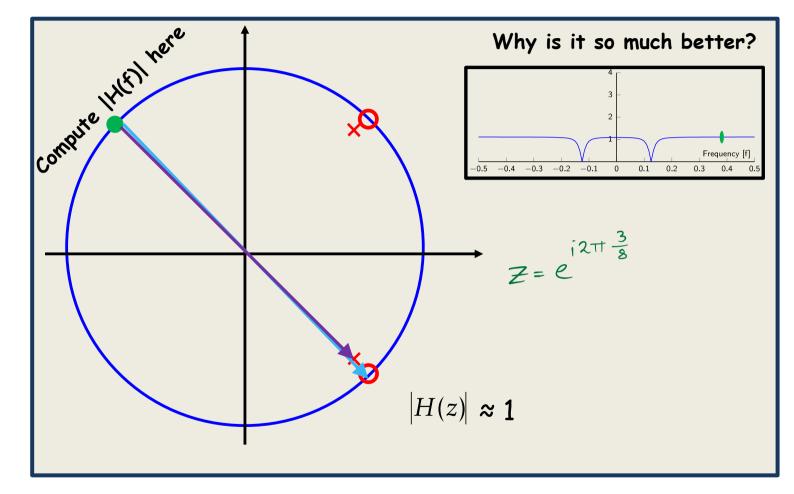


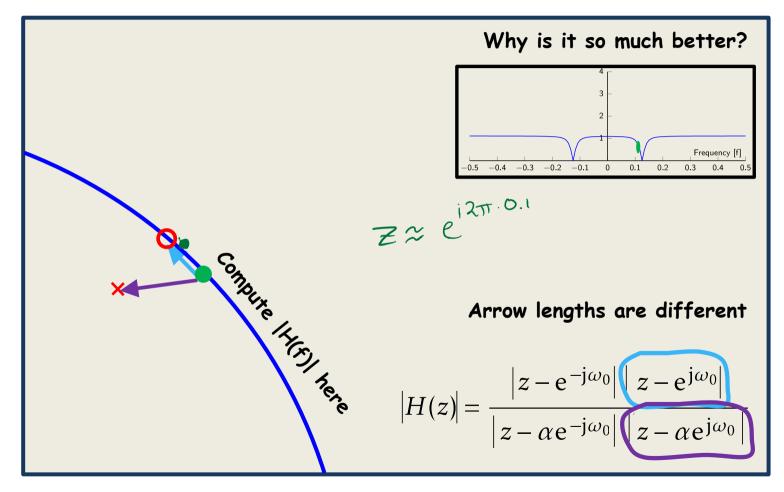
= length of the other arrow

 \approx the same



= length of the other arrow≈ the same





Summary:

A pole close to a zero "stabilizes" the magnitude response

A causal FIR filter has poles at the origin

If no poles at all, not a causal filter

Indeed possible to remove interference digitally

Comb filters

Assume a FIR filter
$$H(z) = \sum_{k=0}^{K} h(k) z^{-k}$$

k=0

Comb filters

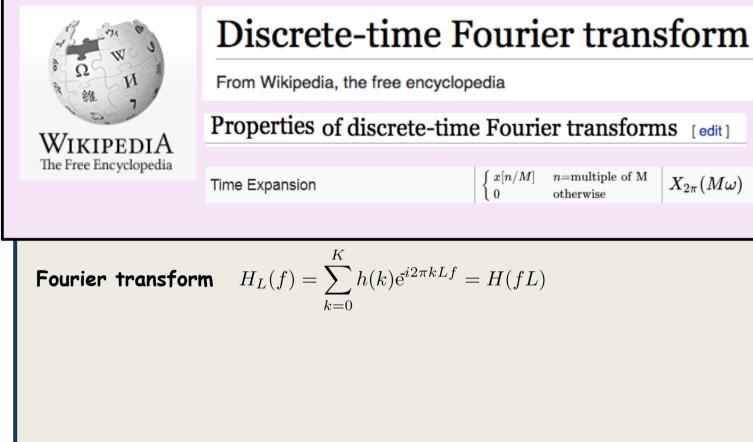
Assume a FIR filter $H(z) = \sum_{k=0}^{K} h(k) z^{-k}$ Construct another filter as $H_L(z) = \sum^{K} h(k) z^{-kL}$

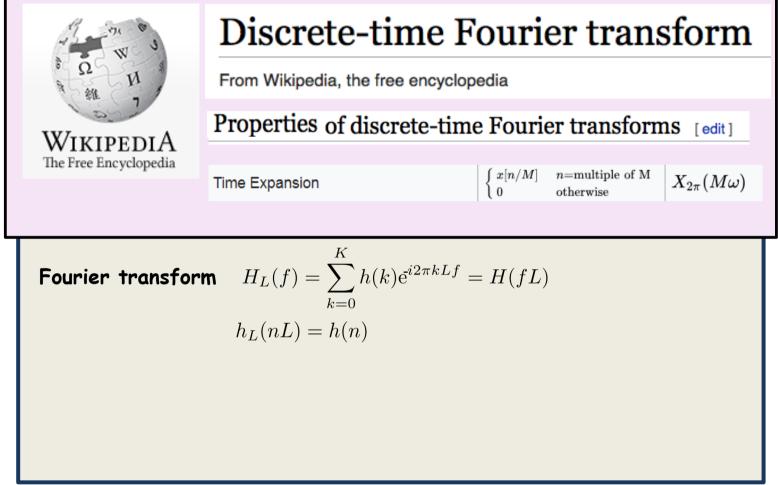
k=0

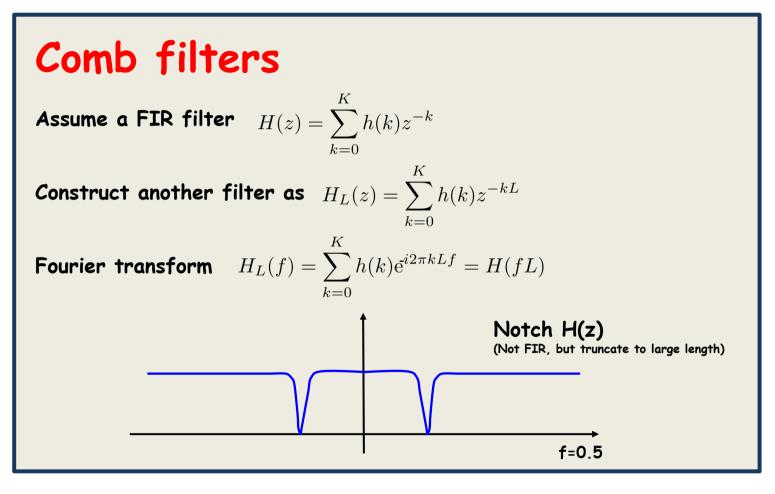
Comb filters

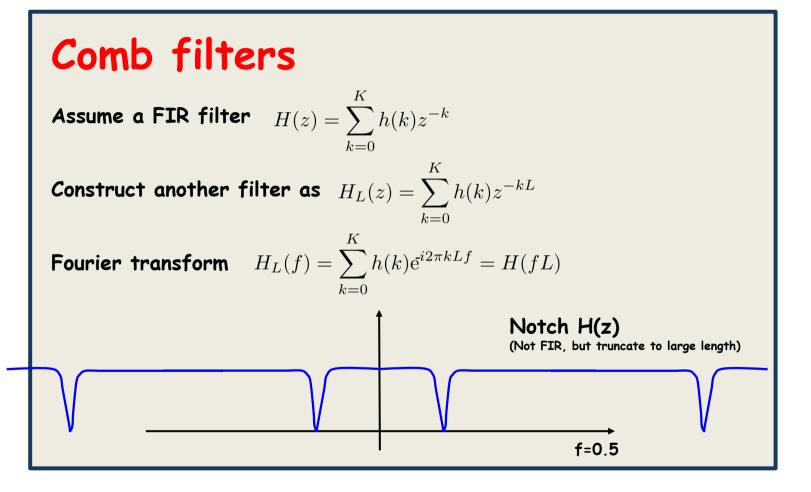
Assume a FIR filter $H(z) = \sum_{k=0}^{K} h(k) z^{-k}$ Construct another filter as $H_L(z) = \sum^{K} h(k) z^{-kL}$

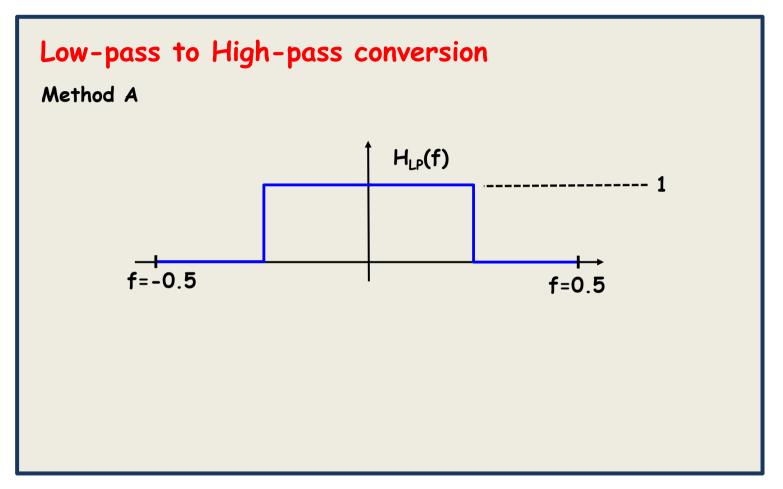
Fourier transform $H_L(f) = \sum_{k=0}^{K} h(k) e^{i2\pi kLf} = H(fL)$

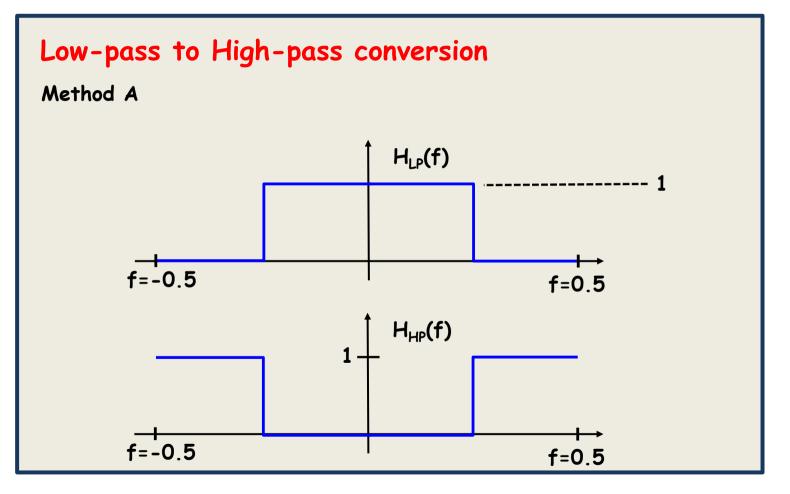


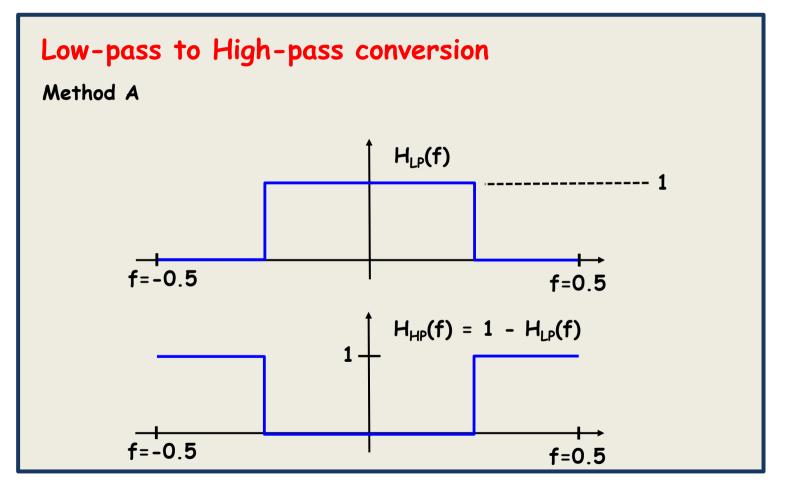


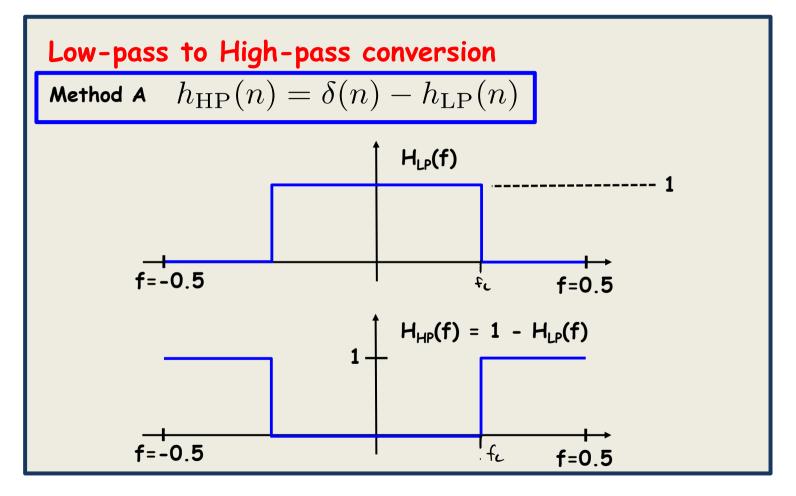


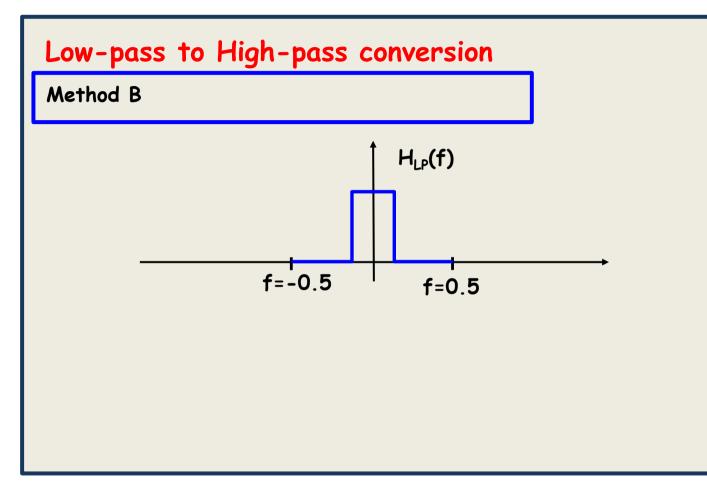


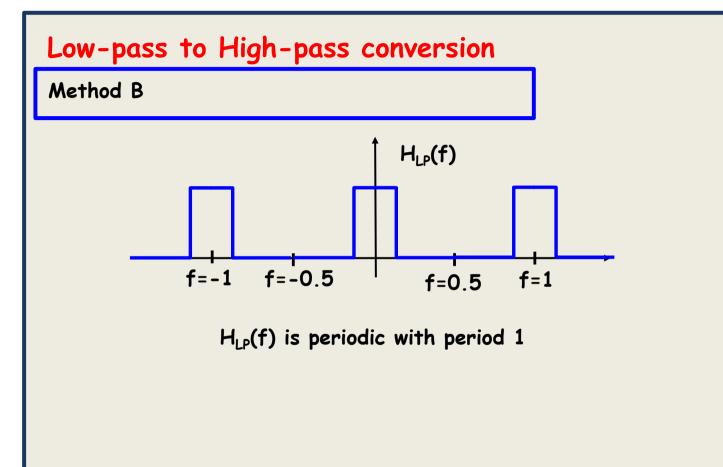


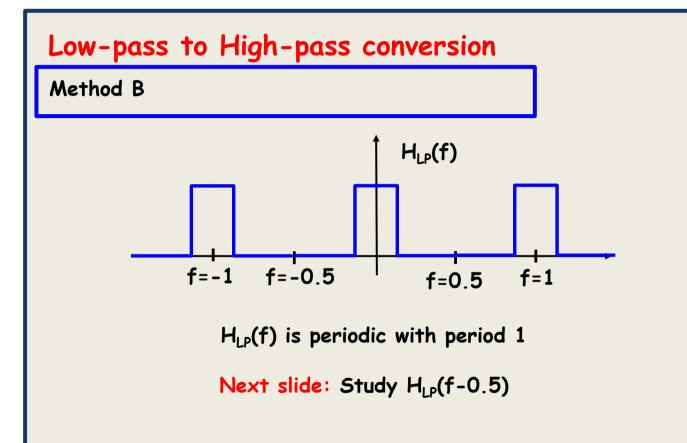


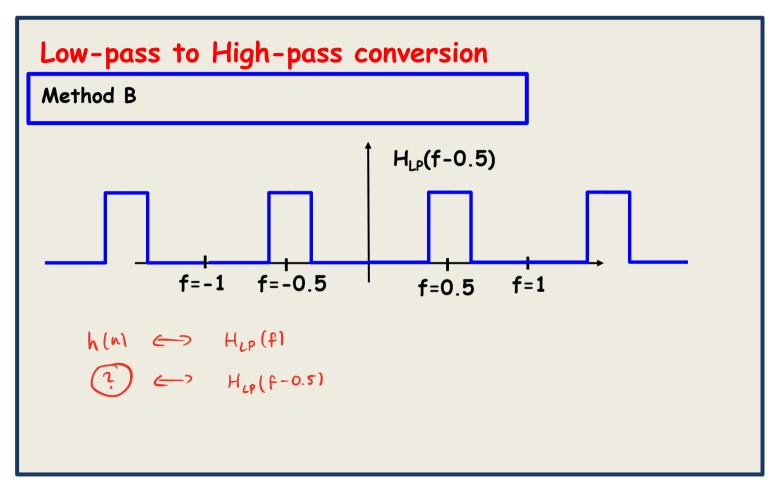


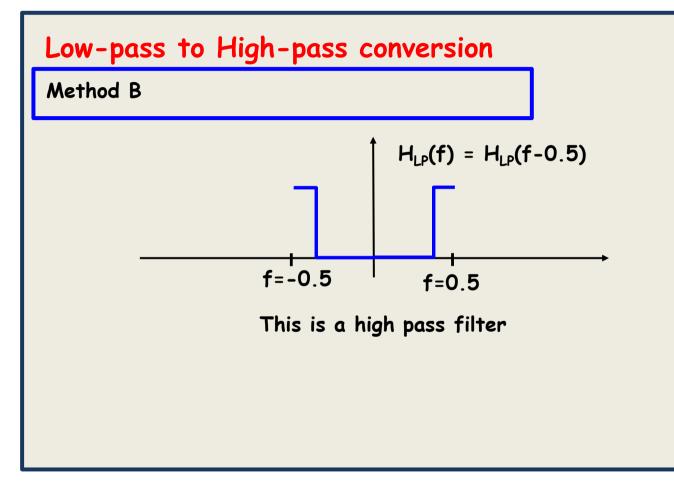


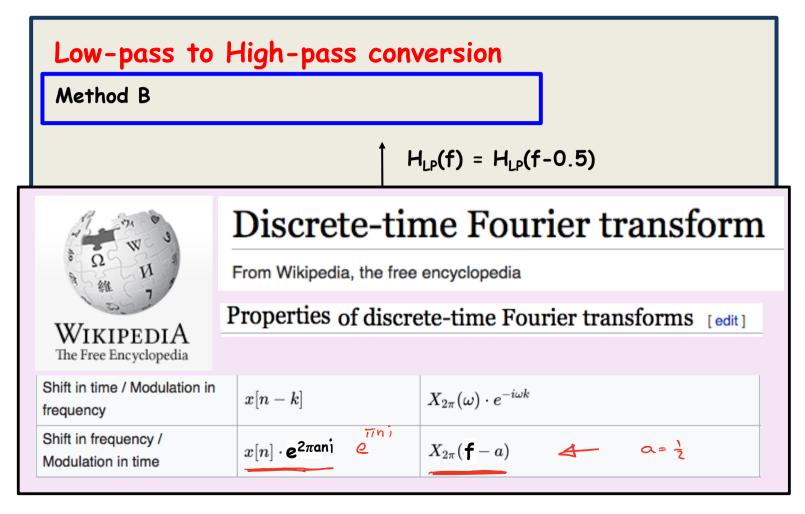


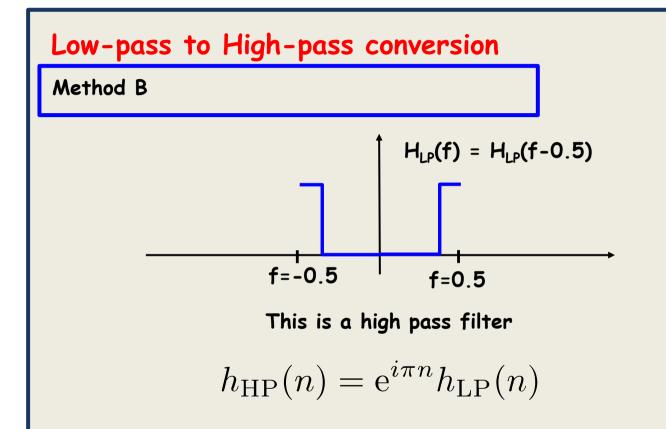


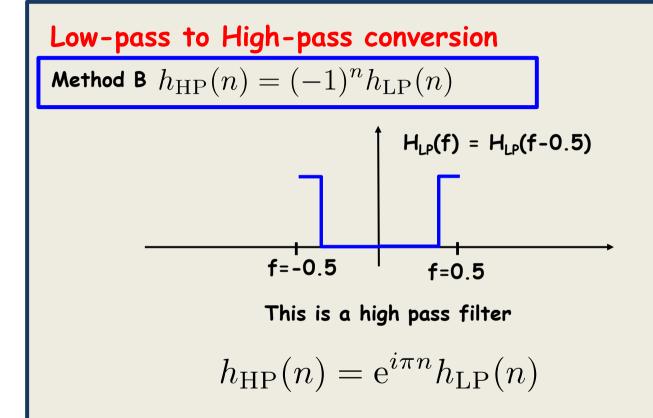


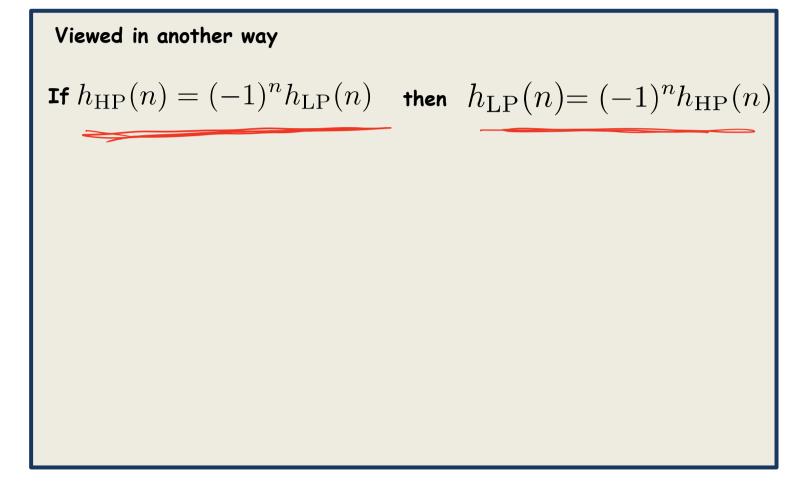








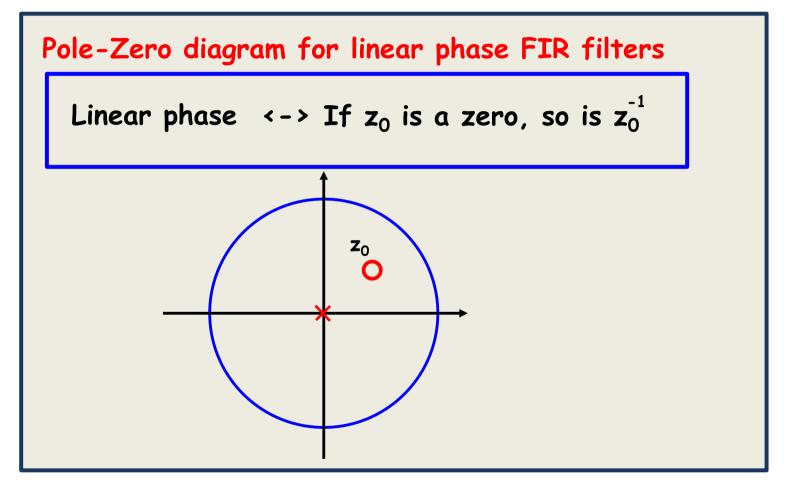


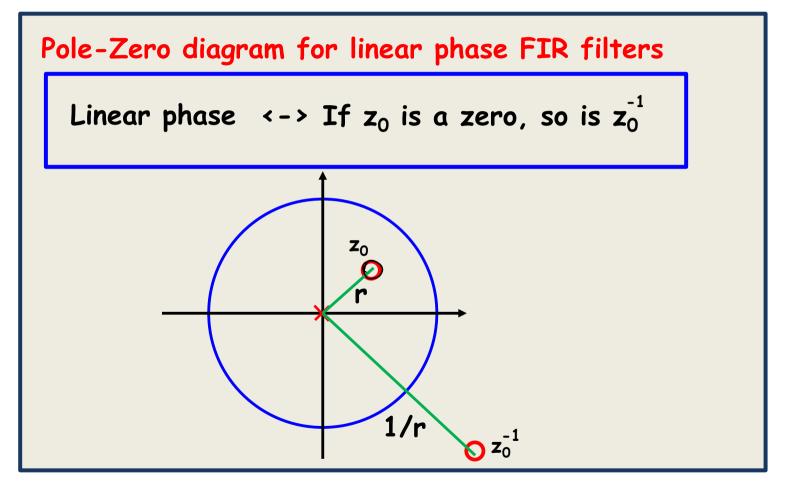


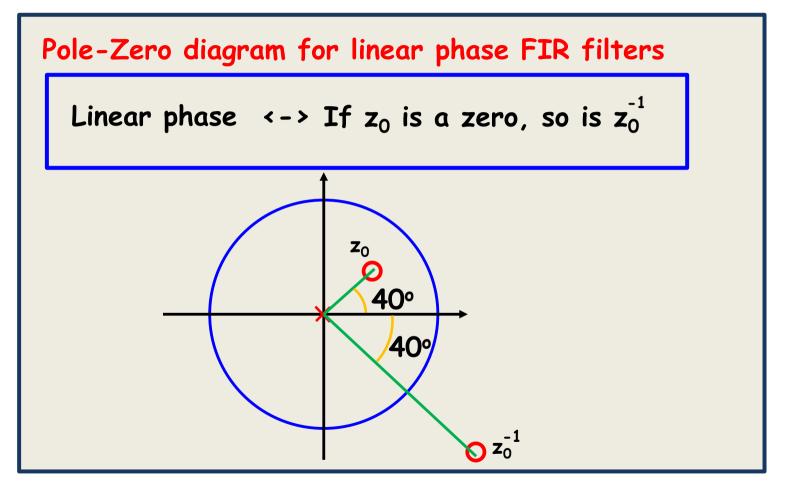
Viewed in another way

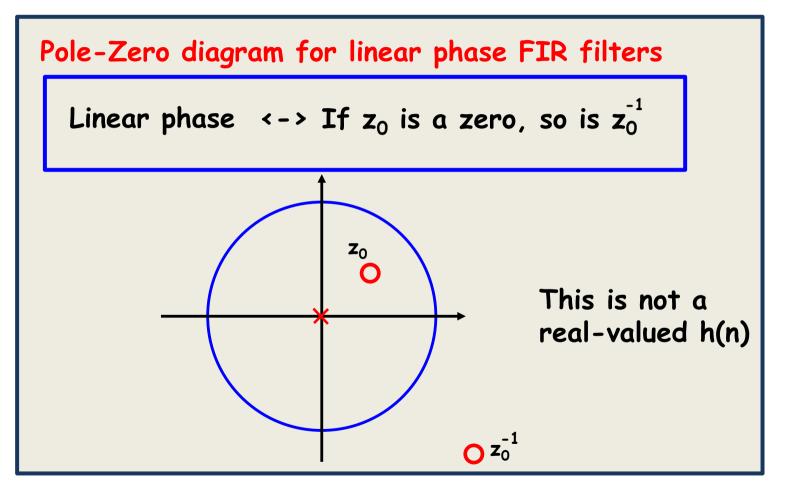
If $h_{
m HP}(n)=(-1)^nh_{
m LP}(n)$ then $h_{
m LP}(n){=}(-1)^nh_{
m HP}(n)$ "high pass" z₀ = 1 $H(z) = (z - 1) = \frac{1 - z^{-1}}{z^{-1}}$ $h(n) = \{1 - 1\}$

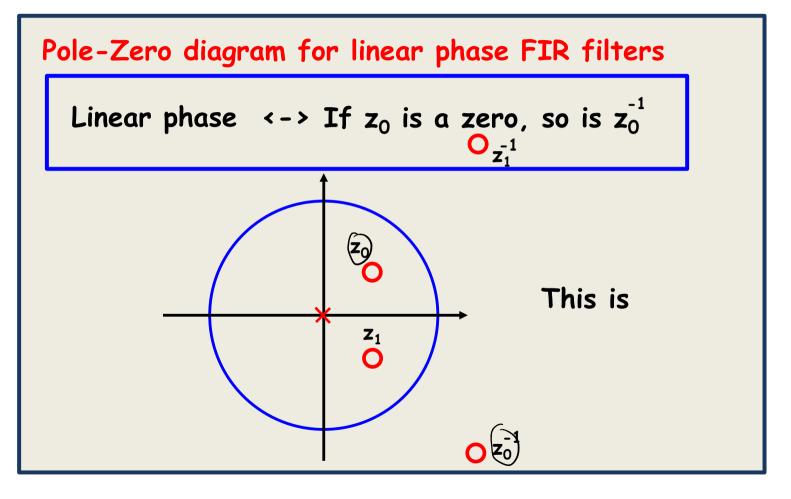
Viewed in another way If $h_{
m HP}(n)=(-1)^nh_{
m LP}(n)$ then $h_{
m LP}(n){=}(-1)^nh_{
m HP}(n)$ "low pass" $z_0 = -1$ "high pass" $z_0 = 1$ $H(z) = (z - 1) = \frac{1 - z^{-1}}{z^{-1}}$ $h(n) = \{1 - 1\}$ $H(z) = (z+1) = \frac{1+z^{-1}}{z^{-1}}$ $h(n) = \{1 \ 1\}$

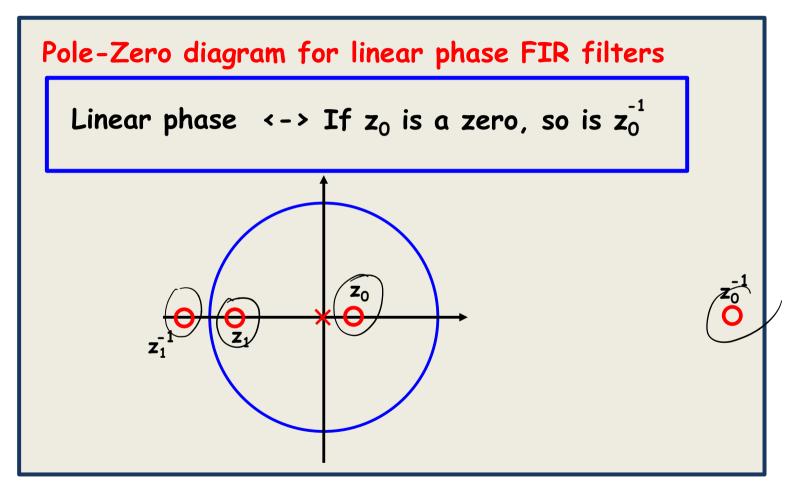












-1 **z**1

 ${}_{0}\bar{z_{0}}^{1}$

Z0

oZ₁

