

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Continuous time signal

Objective: Filter out the interference

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Continuous time signal

Objective: Filter out the interference

Step 1: Go to discrete time via sampling. More about this next week

 $F_s = 10000 \, \text{Hz}$

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Continuous time signal

Objective: Filter out the interference

Step 1: Go to discrete time via sampling. More about this next week

 $F_s = 10\,000\,\text{Hz}$

$$x(n) = s(n) + \sin(\omega_0 n)$$

 $\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$

Discrete time signal

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

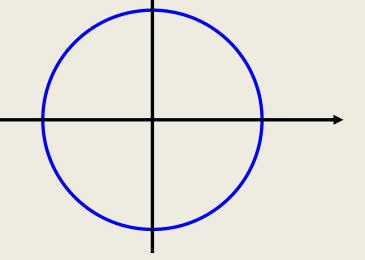
Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,{\rm Hz}$$

$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Continuous time signal Objective: Filter out the interference Step 2: Make a pole-zero diagram for filter



EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,\text{Hz}$$

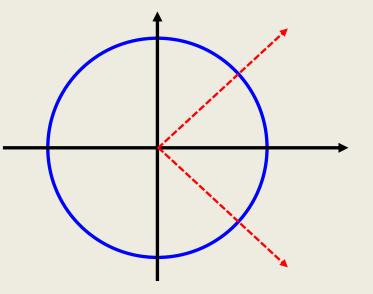
$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Step 3: Identify interference frequency

Continuous time signal

Objective: Filter out the interference



EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,\text{Hz}$$

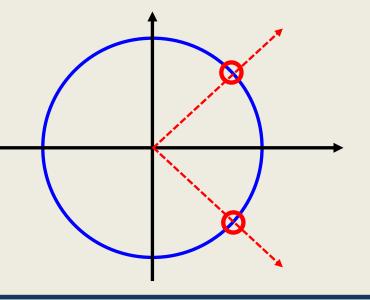
$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Step 3: Identify interference frequency Step 4: Try something out. Makes sense to put zeros at unit circle (will cancel interference)

Continuous time signal

Objective: Filter out the interference



EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,\text{Hz}$$

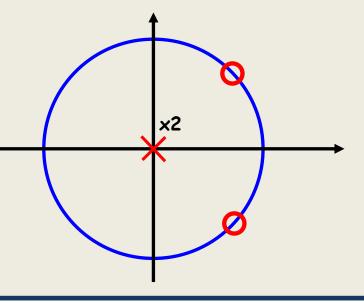
$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Continuous time signal

Objective: Filter out the interference





Step 3: Identify interference frequency Step 4: Try something out. Makes sense to put zeros at unit circle (will cancel interference)

Do we need any poles? A causal FIR filter has poles in the origin

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Step 1: Go to discrete time via sampling.

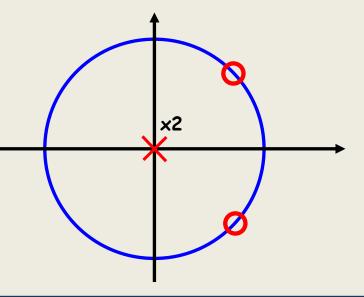
$$F_s = 10\,000\,\mathrm{Hz}$$

$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Continuous time signal

Objective: Filter out the interference



Filter H(z) =

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$
$$\Omega_0 = 2\pi \cdot 1250$$
 Interference

Step 1: Go to discrete time via sampling.

 $x(n) = s(n) + \sin(\omega_0 n)$

 $\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$

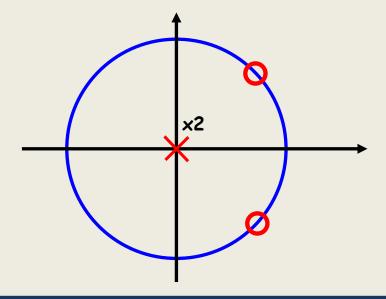
$$F_s = 10\,000\,\mathrm{Hz}$$

Filter H(z) = $\frac{(z-e^{i2\pi/8})(z-e^{-i2\pi/8})}{7^2}$

Continuous time signal

Objective: Filter out the interference





$$x(t) = s(t) + \sin(\Omega_0 t)$$

$$\Omega_0 = 2\pi \cdot 1250$$
Interference
Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,\text{Hz}$$

$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \{0.125\}$$
Filter H(z) = $\frac{(z - e^{i2\pi/8})(z - e^{-i2\pi/8})}{z^2}$

$$= 1 - 2\cos(w_0)z^{-1} + z^{-2}$$

$$h(n) = \{\underline{1} - 2\cos(w_0) \ 1\}$$
FIR

EITF75 Systems and Signals

$$x(t) = s(t) + \sin(\Omega_0 t)$$

$$\Omega_0 = 2\pi \cdot 1250$$
 Interference
Step 1: Go to discrete time via sampling.

$$F_s = 10000 \text{ Hz}$$

$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \cdot 0.125$$

Filter H(z) = (z-e^{i2\pi/8})(z-e^{-i2\pi/8})

WHAT IF WE SKIP POLES AT THE ORIGIN ?

EITF75 Systems and Signals

Continuous time signal

$$x(t) = s(t) + \sin(\Omega_0 t)$$

$$\Omega_0 = 2\pi \cdot 1250$$
Interference
Step 1: Go to discrete time via sampling.

$$F_s = 10\,000\,\text{Hz}$$

$$x(n) = s(n) + \sin(\omega_0 n)$$

$$\omega_0 = 2\pi \cdot \frac{F_0}{F_s} = 2\pi \quad 0.125$$
Filter H(z) = (z-e^{i2\pi/8})(z-e^{-i2\pi/8})
$$= z^2 - 2\cos(w_0)z + 1$$

$$h(n) = \{1 - 2\cos(w_0) \quad 1\}$$
FIR

Not Causal

Magnitude response H(f)		
H(z) = z ² - 2cos(w ₀)z + 1 h(n) = { 1 -2cos(w ₀) <u>1</u> }	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻² h(n) = { <u>1</u> -2cos(w ₀) 1 }	
Same magnitude response?		

Magnitude response H(f)	
$H(z) = z^{2} - 2\cos(w_{0})z + 1$ h(n) = { 1 -2cos(w_{0}) <u>1</u> }	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻² h(n) = { <u>1</u> -2cos(w ₀) 1 }
$ H(f) = e^{i4\pi f} - 2\cos(\omega_0)e^{i2\pi f} + 1 $	$ H(f) = 1 - 2\cos(\omega_0)e^{-i2\pi f} + e^{-i4\pi f} $
Method 1 $H(f) = H(z)\Big _{z = \exp(i2\pi f)}$	

Magnitude response H(f)	
$H(z) = z^{2} - 2\cos(w_{0})z + 1$ h(n) = { 1 -2cos(w_{0}) <u>1</u> }	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻² h(n) = { <u>1</u> -2cos(w ₀) 1 }
$ H(f) = e^{i4\pi f} - 2\cos(\omega_0)e^{i2\pi f} + 1 $	$ H(f) = 1 - 2\cos(\omega_0)e^{-i2\pi f} + e^{-i4\pi f} $
	$= \frac{\left e^{i4\pi f} - 2\cos(\omega_0) e^{i2\pi f} + 1 \right }{\left e^{i4\pi f} \right }$
Method 1 $\left. H(f) = H(z) \right _{z = \exp(i 2 \pi f)}$	

Magnitude response H(f)	
$H(z) = z^{2} - 2\cos(w_{0})z + 1$ h(n) = { 1 -2cos(w_{0}) <u>1</u> }	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻² h(n) = { <u>1</u> -2cos(w ₀) 1 }
$ H(f) = e^{i4\pi f} - 2\cos(\omega_0)e^{i2\pi f} + 1 $	$ H(f) = 1 - 2\cos(\omega_0)e^{-i2\pi f} + e^{-i4\pi f} $
	$= \frac{\left e^{i4\pi f} - 2\cos(\omega_0) e^{i2\pi f} + 1 \right }{\left e^{i4\pi f} \right }$
	$= \left \mathrm{e}^{i4\pi f} - 2\cos(\omega_0) \mathrm{e}^{i2\pi f} + 1 \right $
Method 1 $H(f) = H(z) \Big _{z = \exp(i2\pi f)}$ Equal	

Magnitude response H(f)	
$H(z) = z^{2} - 2\cos(w_{0})z + 1$ h(n) = { 1 -2cos(w_{0}) <u>1</u> }	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻² h(n) = { <u>1</u> -2cos(w ₀) 1 }
$\begin{array}{ll} h(n) \leftrightarrow H(f) \\ \mbox{Method 2} & h(n-n_0) \leftrightarrow {\rm e}^{-i2\pi n_0 f} H(f) \end{array}$	

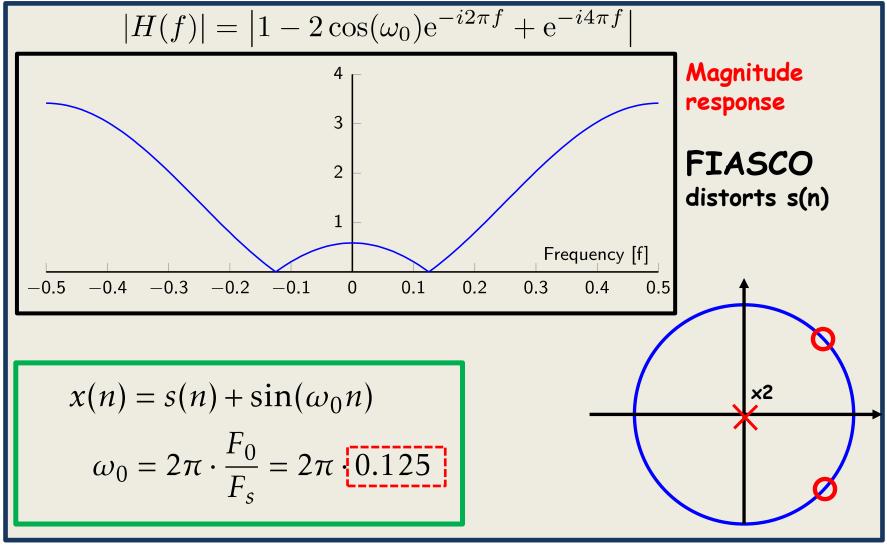
Magnitude response H(f)	
$H(z) = z^2 - 2\cos(w_0)z + 1$	H(z) = 1 - 2cos(w ₀)z ⁻¹ + z ⁻²
$h(n) = \{ 1 - 2\cos(w_0) \ \underline{1} \}$	$h(n) = \{ \underline{1} - 2\cos(w_0) = 1 \}$
h(n) = h(n+2)	
Apply the below property	
$\begin{array}{ll} h(n) \leftrightarrow H(f) \\ \mbox{Method 2} & h(n-n_0) \leftrightarrow {\rm e}^{-i2\pi n_0 f} H(f) \end{array}$	

Interlude EITF75 Systems and Signals

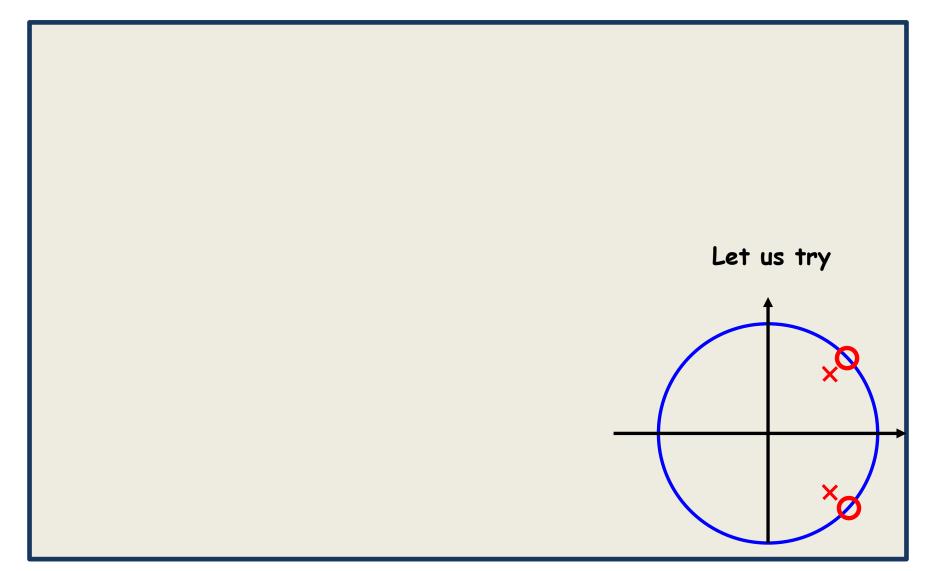
Phase response $\theta(f)$	
$H(z) = 1 - 2\cos(w_0)z^{-1} + z^{-2}$	
h(n) = { <u>1</u> -2cos(w ₀) 1 }	
Same phase response?	

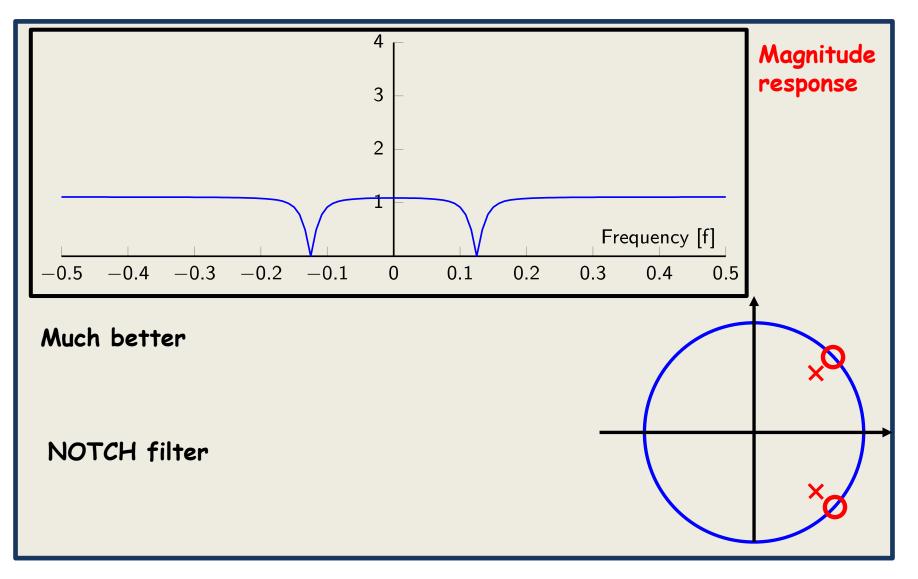
Interlude EITF75 Systems and Signals

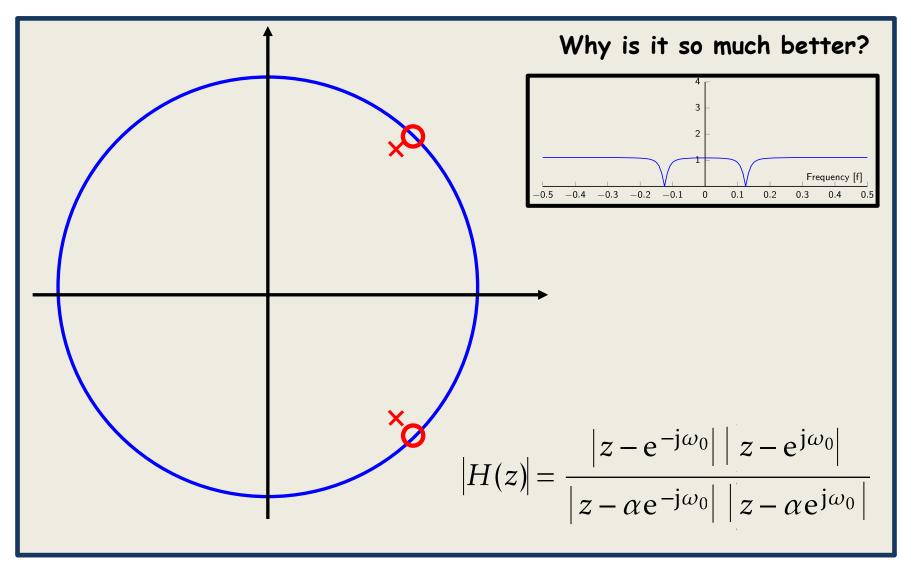
Phase response $\theta(f)$	
$H(z) = z^2 - 2\cos(w_0)z + 1$	$H(z) = 1 - 2\cos(w_0)z^{-1} + z^{-2}$
h(n) = { 1 -2cos(w ₀) <u>1</u> }	h(n) = { <u>1</u> -2cos(w ₀) 1 }
 Same phase response?	
No, since 1. Signals not the same 2. Signals have equal magnitude responses 3. Therefore, must have different phase responses	



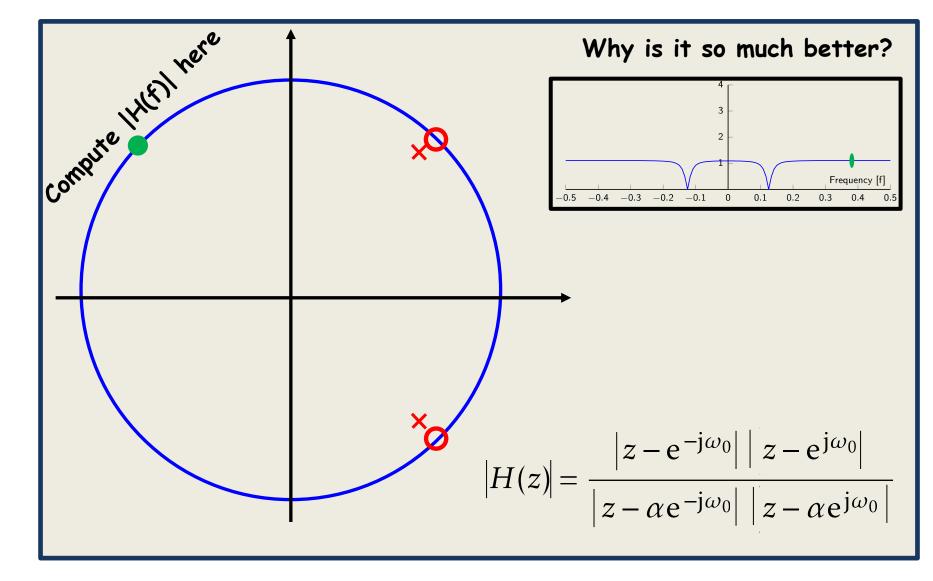
 $h(n) = \{ \underline{1} - 2\cos(w_0) = 1 \}$



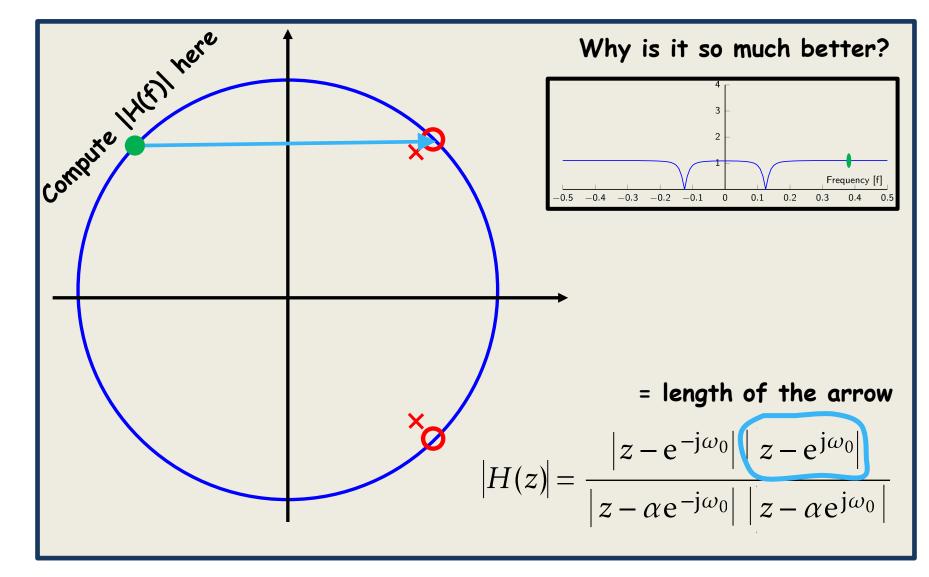


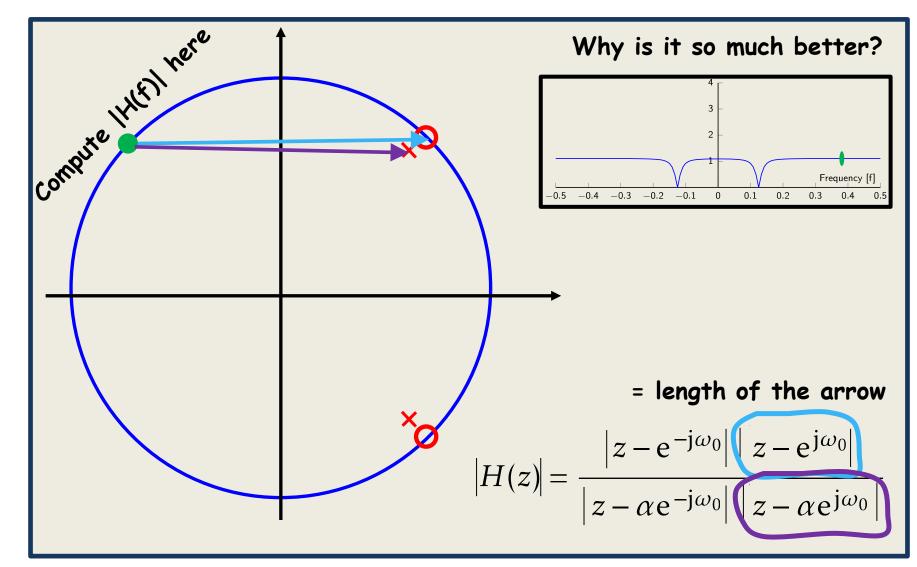


 $\alpha \approx 1$



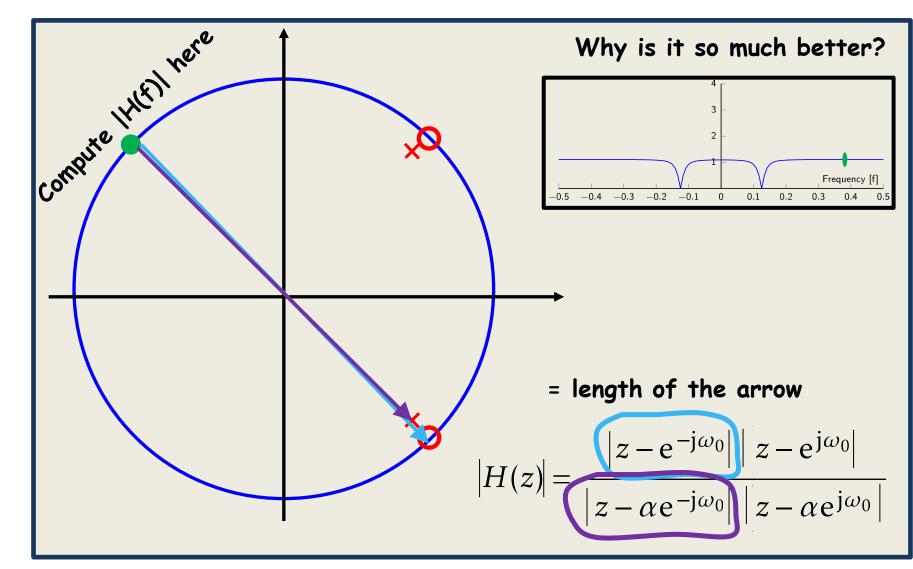
 $\alpha \approx 1$



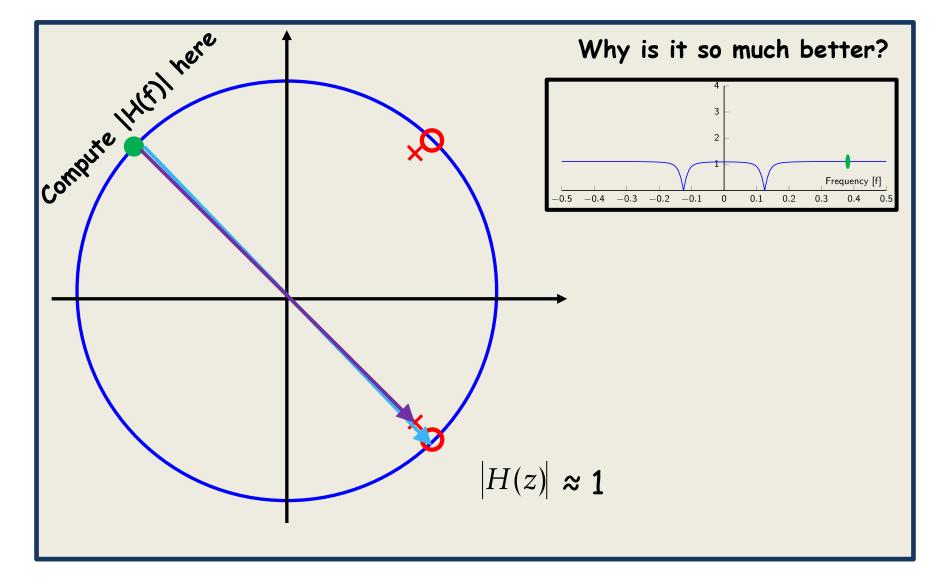


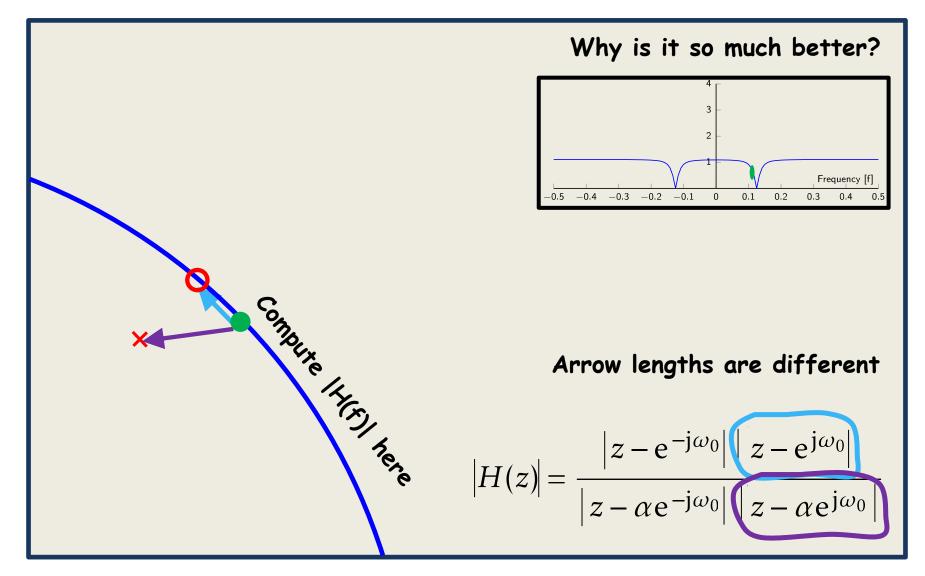
= length of the other arrow

 \approx the same



= length of the other arrow≈ the same





Summary:

A pole close to a zero "stabilizes" the magnitude response

A causal FIR filter has poles at the origin

If no poles at all, not a causal filter

Indeed possible to remove interference digitally

Comb filters

Assume a FIR filter
$$H(z) = \sum_{k=0}^{K} h(k) z^{-k}$$

k=0

Comb filters

Assume a FIR filter $H(z) = \sum_{k=0}^{K} h(k) z^{-k}$ Construct another filter as $H_L(z) = \sum^{K} h(k) z^{-kL}$

k=0

Comb filters

Assume a FIR filter $H(z) = \sum_{k=0}^{K} h(k) z^{-k}$ Construct another filter as $H_L(z) = \sum_{k=0}^{K} h(k) z^{-kL}$

Fourier transform $H_L(f) = \sum_{k=0}^{K} h(k) e^{i2\pi kLf} = H(fL)$

<u>FITF75 Systems and Signals</u>

The Free Encyclopedia

F

Discrete-time Fourier transform

From Wikipedia, the free encyclopedia

Properties of discrete-time Fourier transforms [edit]

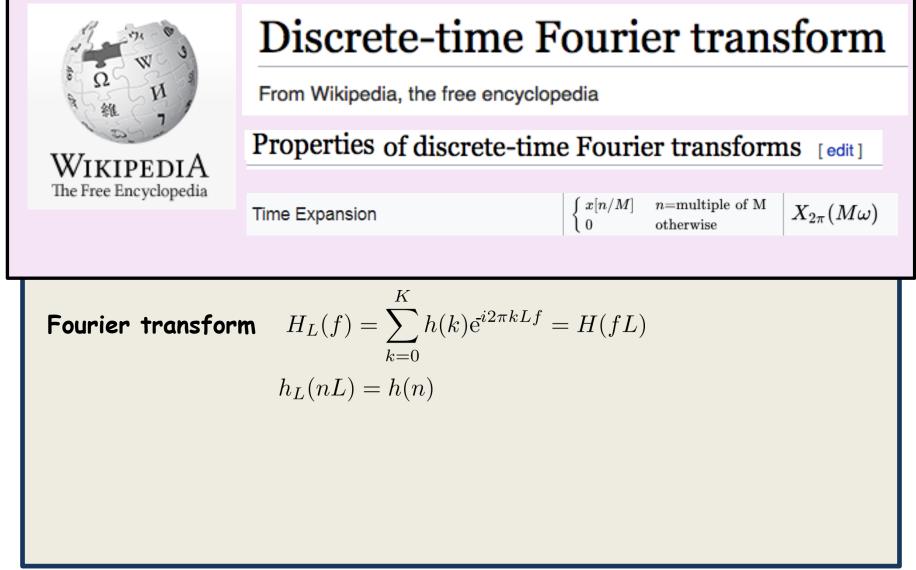
Time Expansion

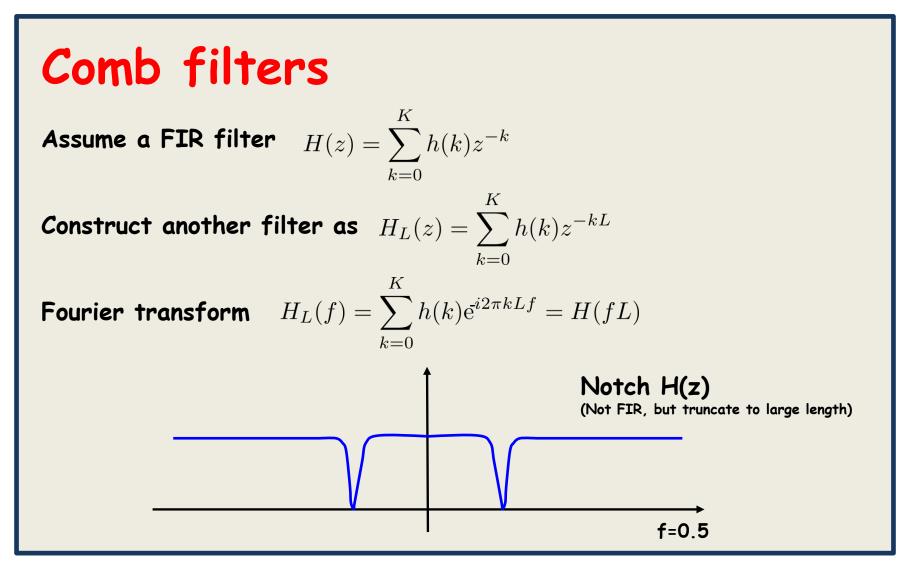
 $\left\{egin{array}{c} x[n/M] \\ 0 \end{array}
ight.$

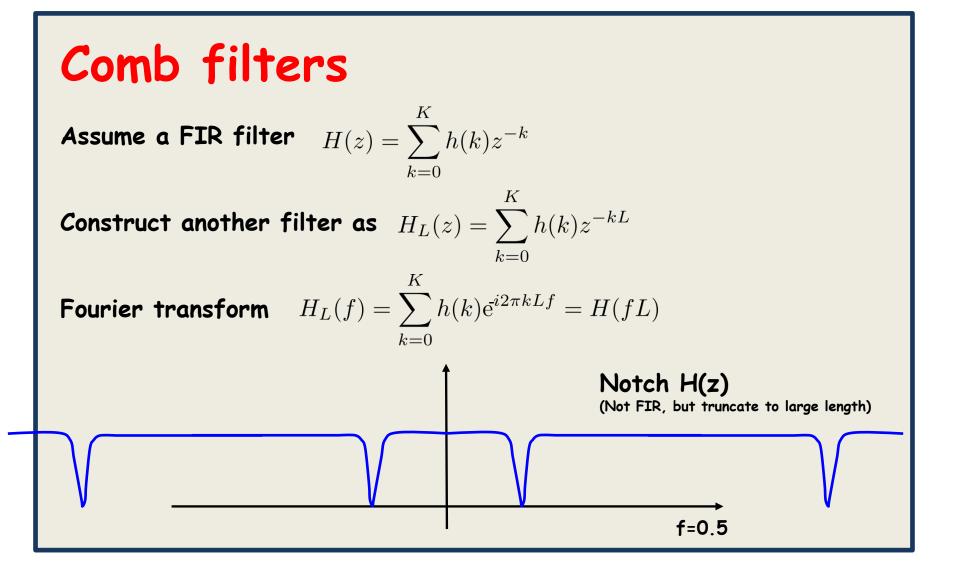
otherwise

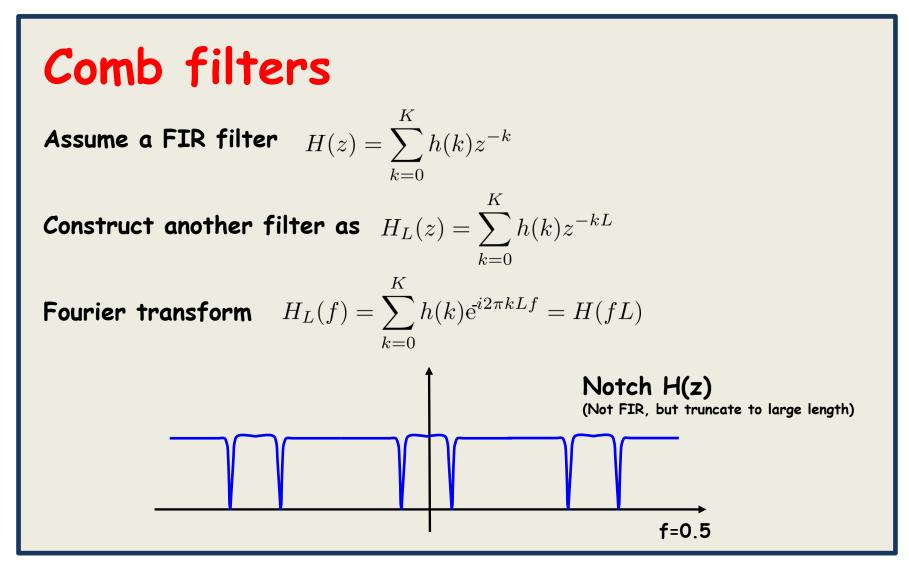
n =multiple of M $X_{2\pi}(M\omega)$

Fourier transform
$$H_L(f) = \sum_{k=0}^{K} h(k) e^{i2\pi kLf} = H(fL)$$





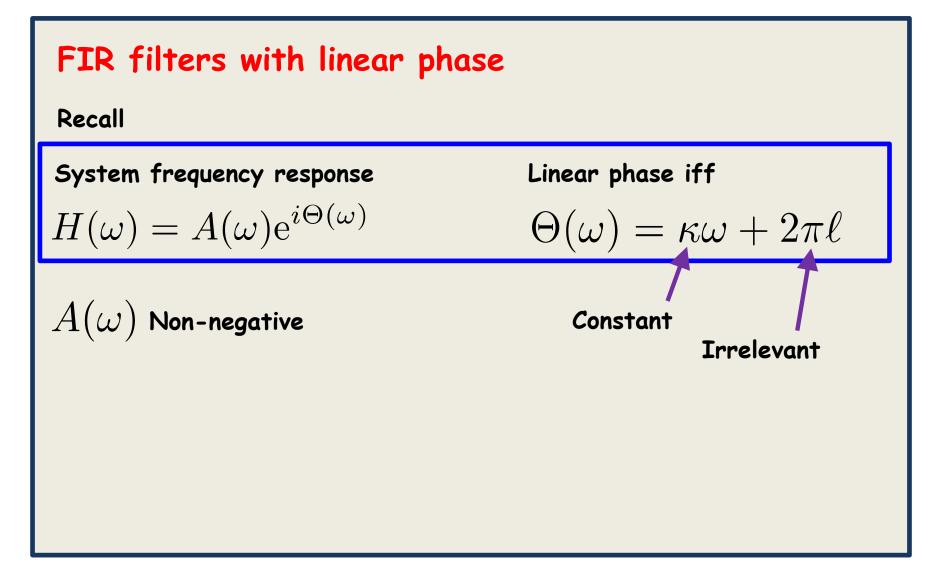


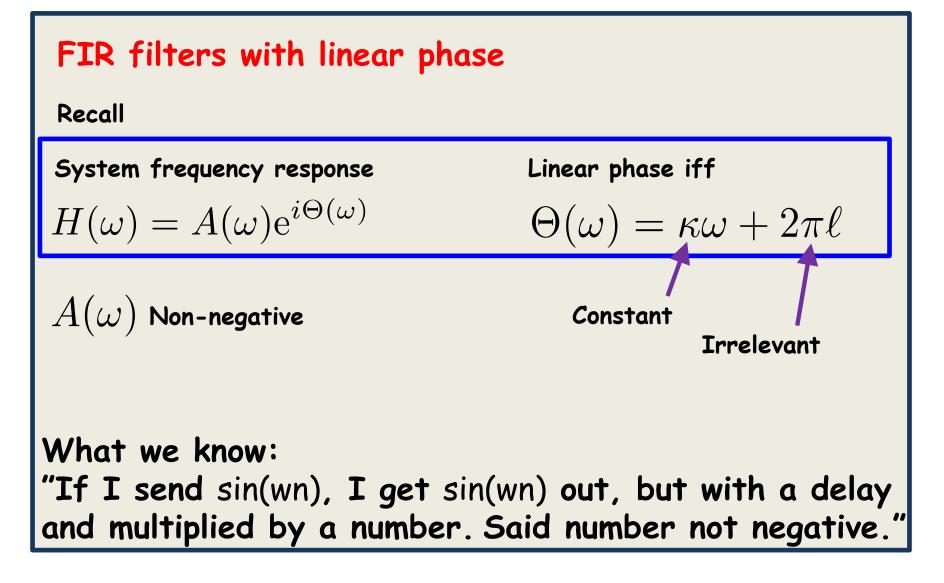


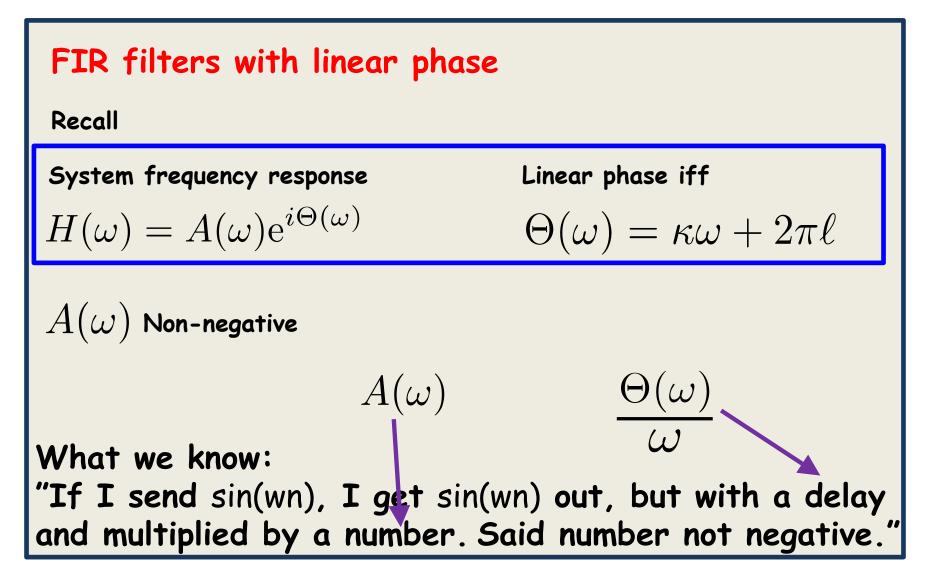
FIR filters with linear phase

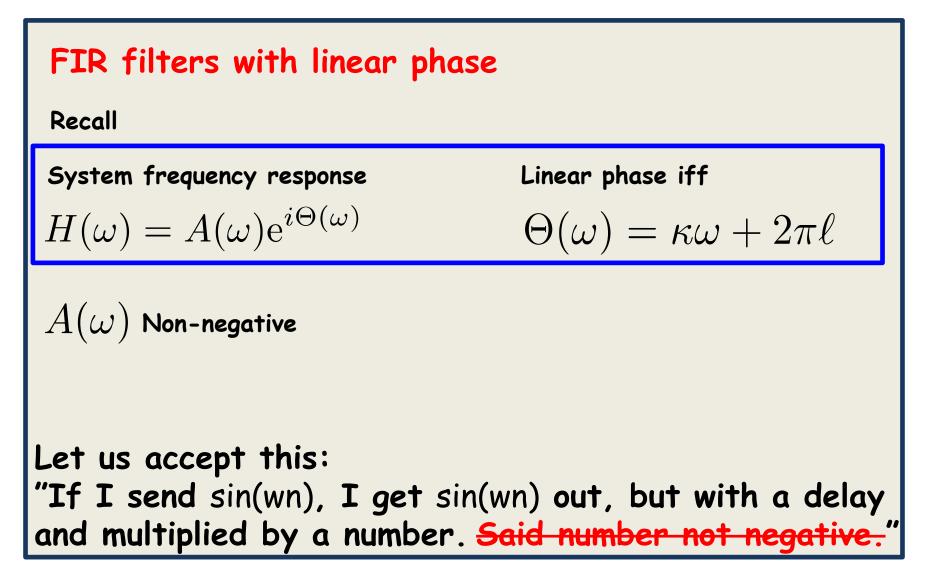
Linear phase is desirable since it delays all frequencies equally much

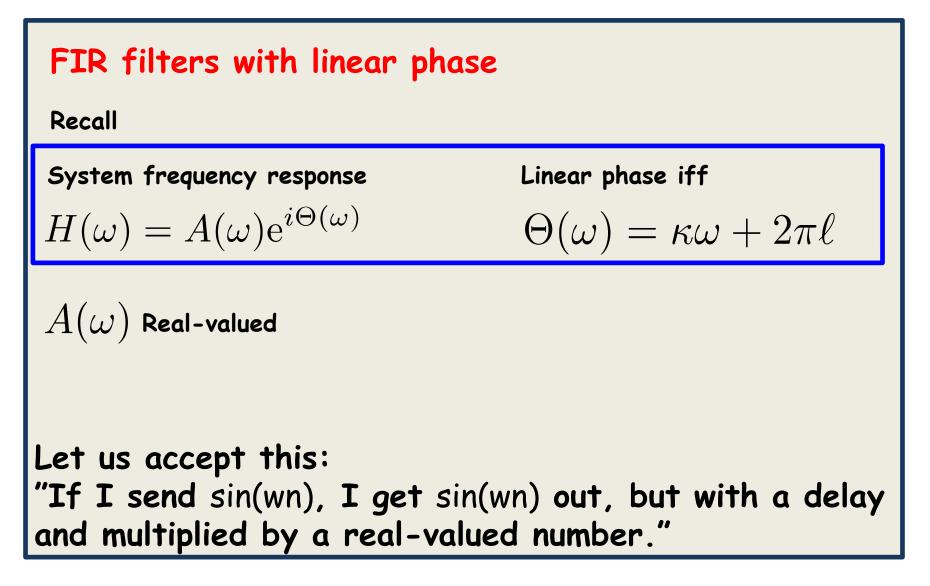
How to create it?

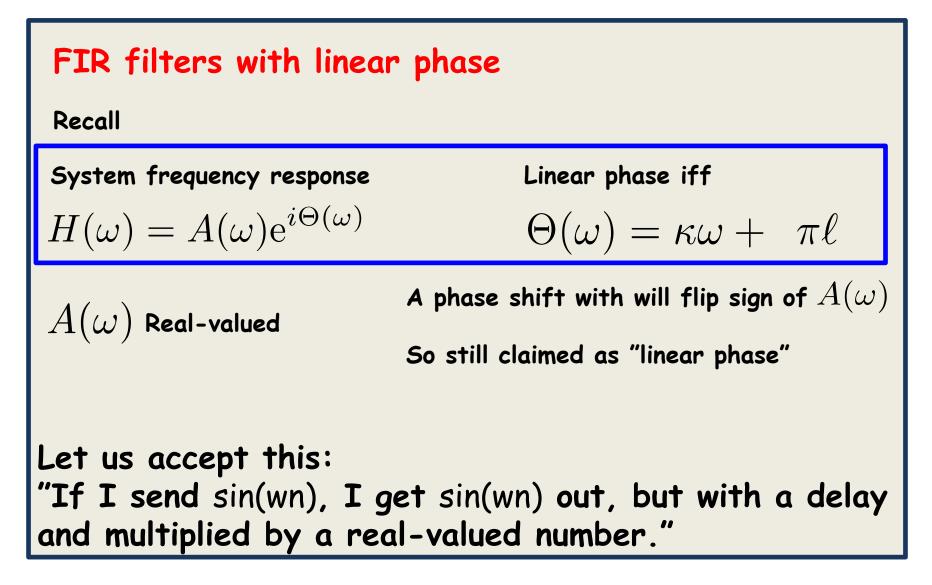


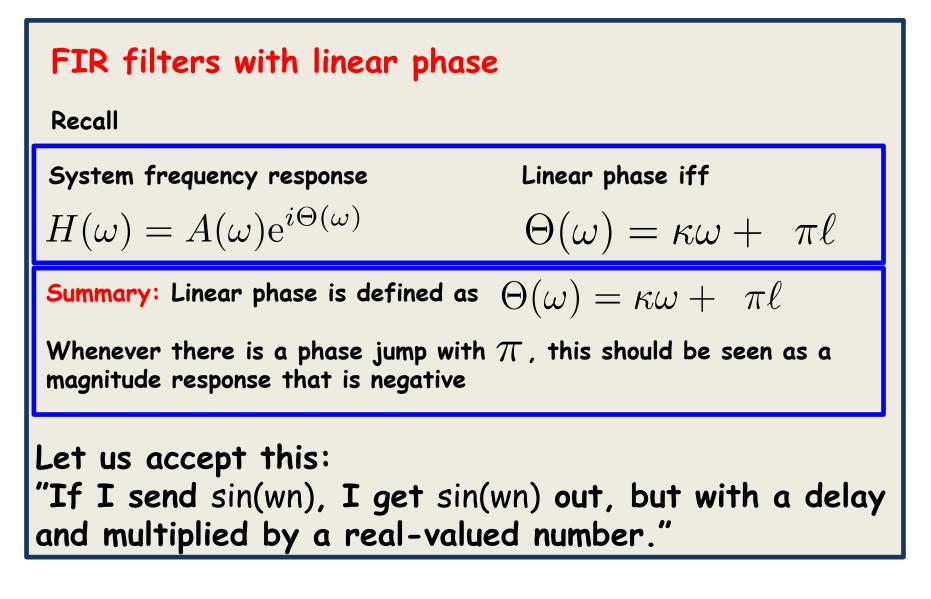


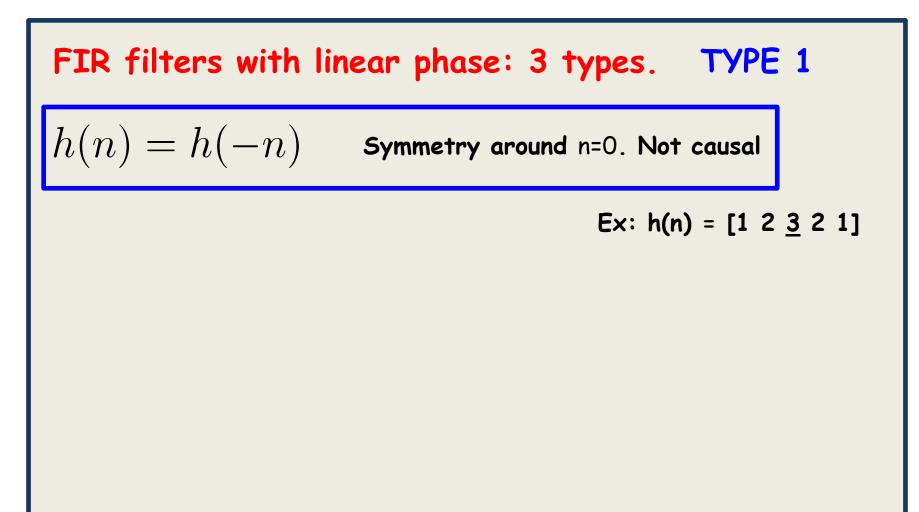


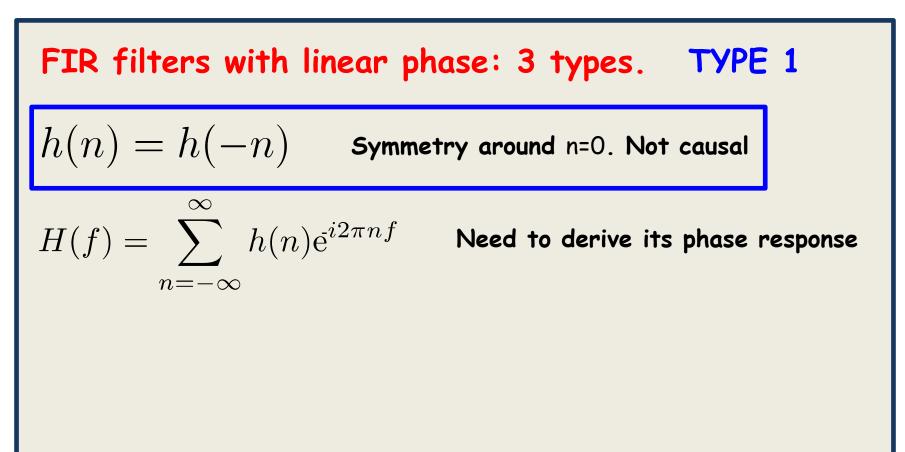


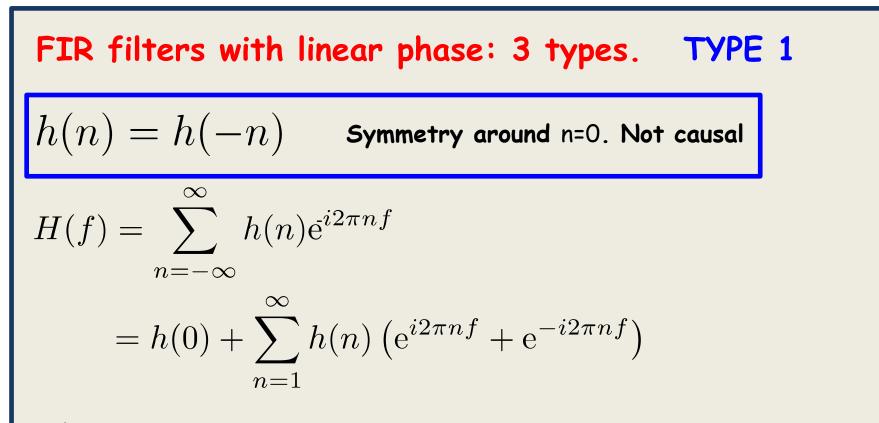




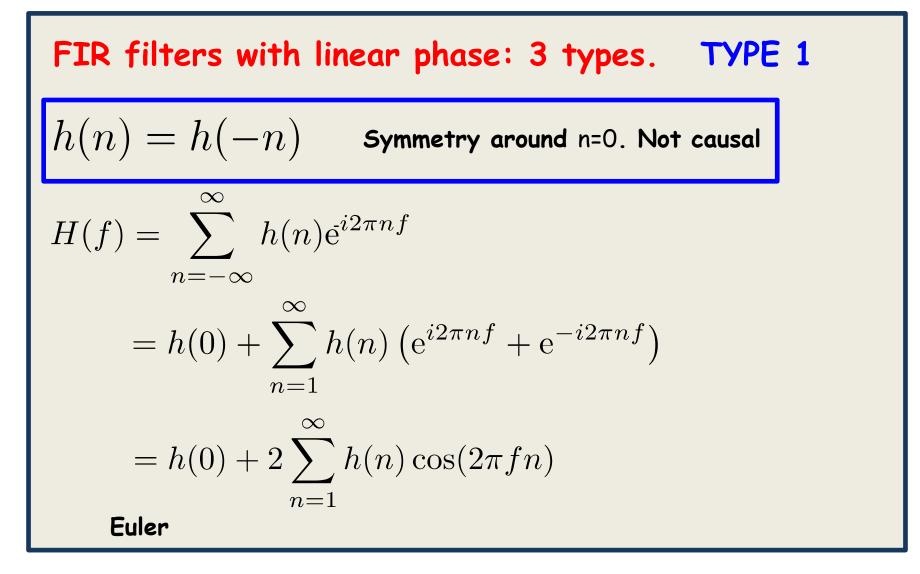








Due to symmetry



FIR filters with linear phase: 3 types. TYPE 1

$$h(n) = h(-n)$$
 Symmetry around n=0. Not causal
 $H(f) = h(0) + 2\sum_{n=1}^{\infty} h(n) \cos(2\pi f n)$
Phase response
 $\operatorname{Im}(H(f))$

$$\Theta(f) = \tan^{-1} \frac{\operatorname{Im}(H(f))}{\operatorname{Re}(H(f))}$$

FIR filters with linear phase: 3 types. TYPE 1

$$h(n) = h(-n)$$
 Symmetry around n=0. Not causal
 $H(f) = h(0) + 2\sum_{n=1}^{\infty} h(n) \cos(2\pi f n)$ real-valued
Phase response
 $\Theta(f) = \tan^{-1} \frac{\operatorname{Im}(H(f))}{\operatorname{Re}(H(f))} = \tan^{-1} \frac{0}{\operatorname{Re}(H(f))}$

FIR filters with linear phase: 3 types. TYPE 1

$$h(n) = h(-n) \quad \text{Symmetry around n=0. Not causal}$$

$$H(f) = h(0) + 2 \sum_{n=1}^{\infty} h(n) \cos(2\pi f n) \quad \text{real-valued}$$
Phase response

$$\Theta(f) = \tan^{-1} \frac{\text{Im}(H(f))}{\text{Re}(H(f))} = \tan^{-1} \frac{0}{\text{Re}(H(f))} = 0$$

$$\tan^{-1} 0 = 0$$

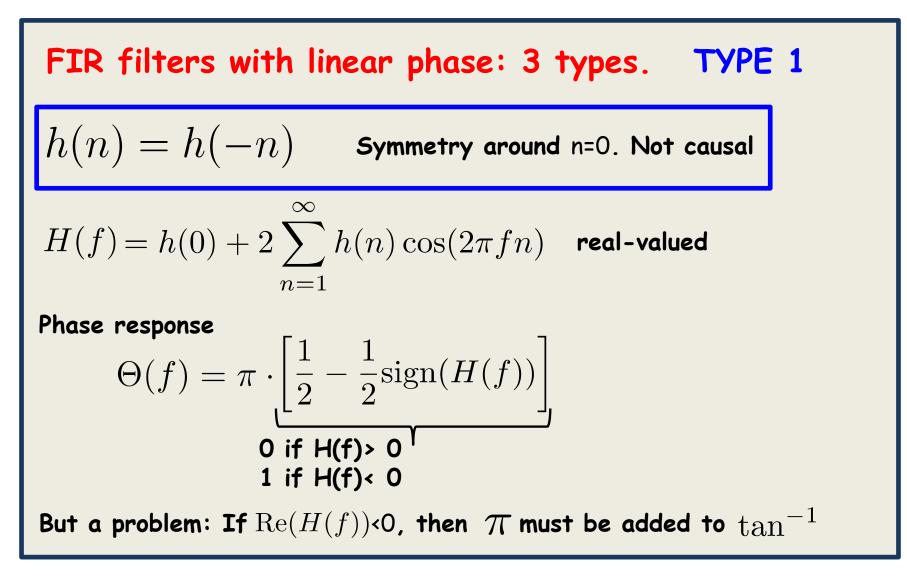
FIR filters with linear phase: 3 types. TYPE 1

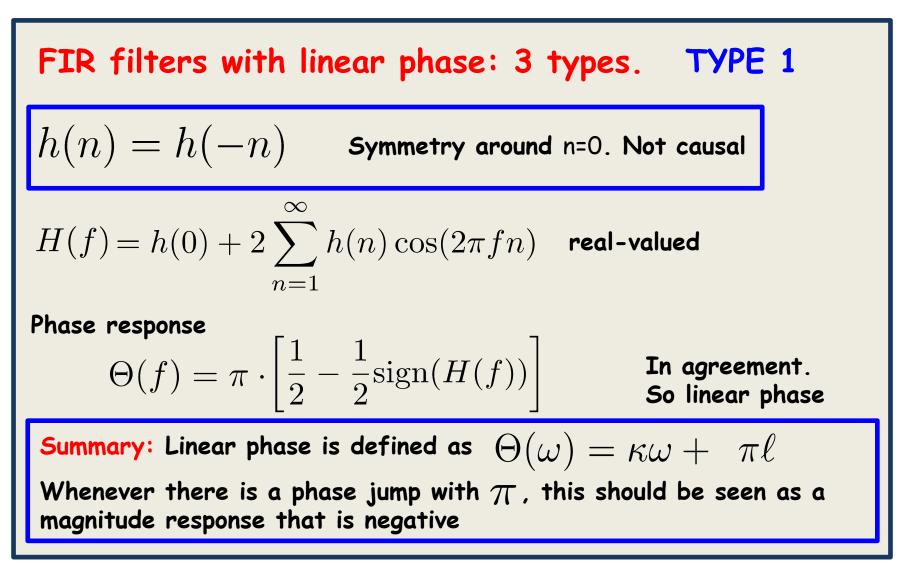
$$h(n) = h(-n) \quad \text{Symmetry around n=0. Not causal}$$

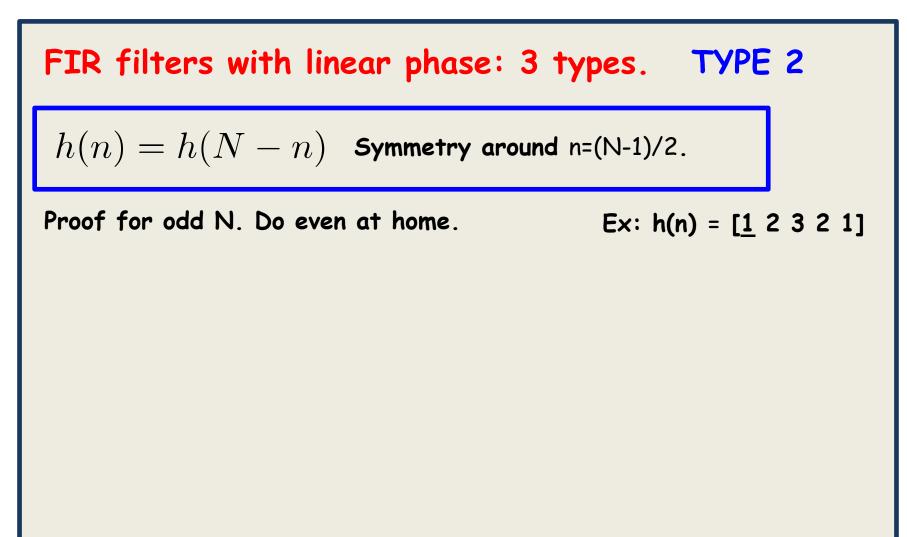
$$H(f) = h(0) + 2\sum_{n=1}^{\infty} h(n) \cos(2\pi f n) \quad \text{real-valued}$$
Phase response

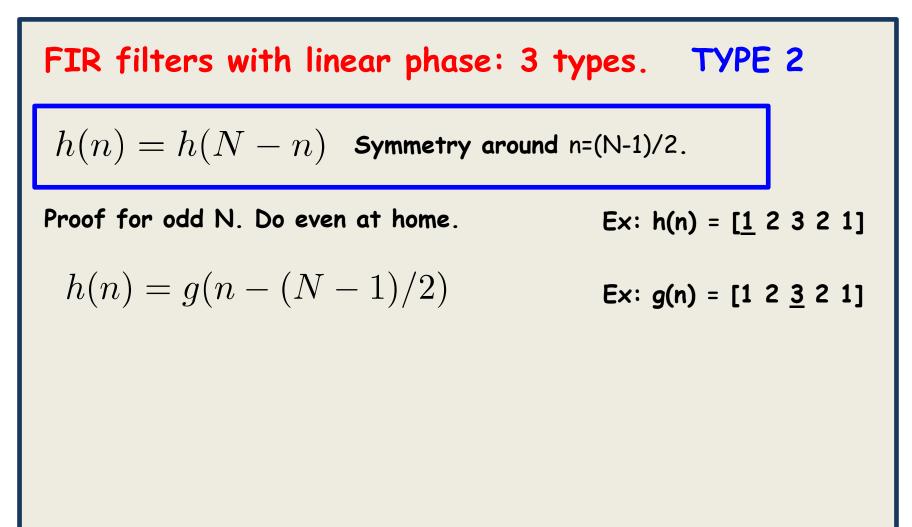
$$\Theta(f) = \tan^{-1} \frac{\text{Im}(H(f))}{\text{Re}(H(f))} = \tan^{-1} \frac{0}{\text{Re}(H(f))} = 0$$

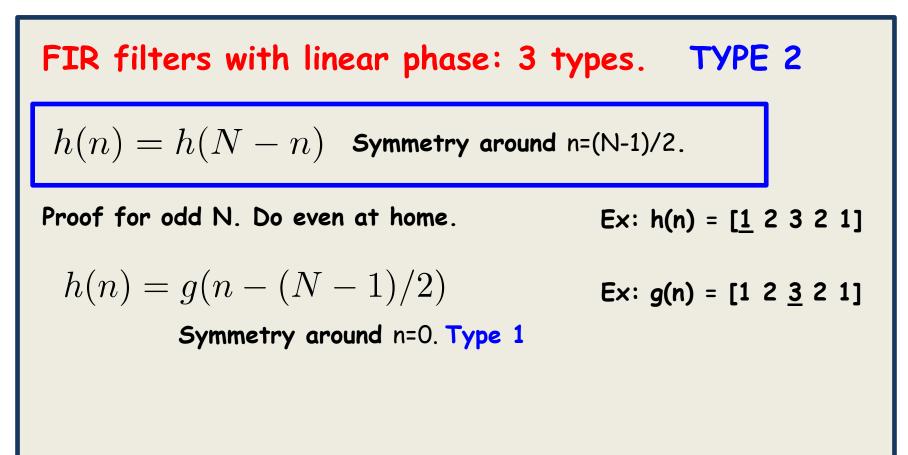
But a problem: If $\operatorname{Re}(H(f))$ <0, then π must be added to an^{-1}

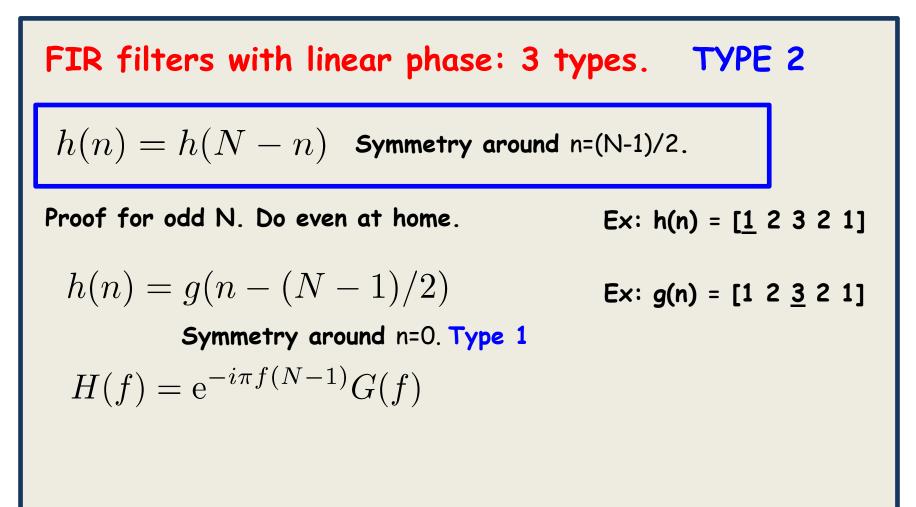


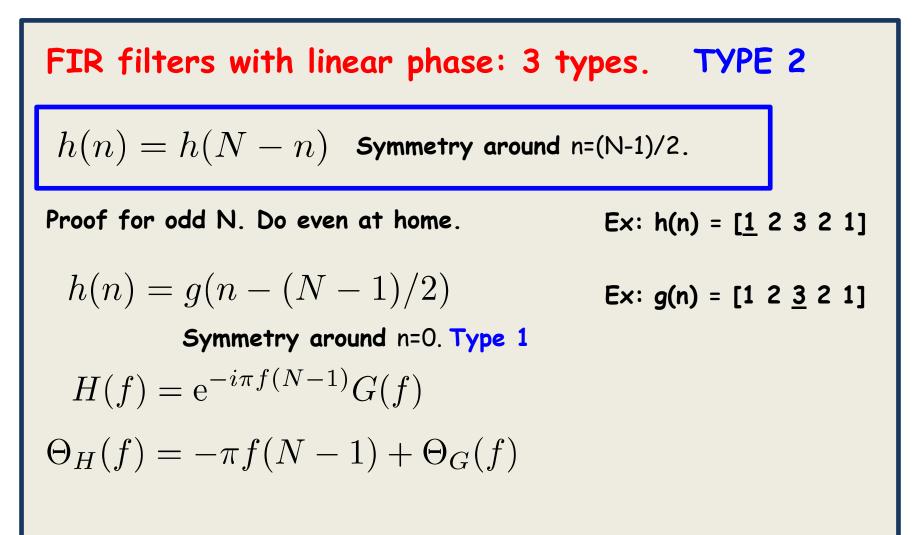


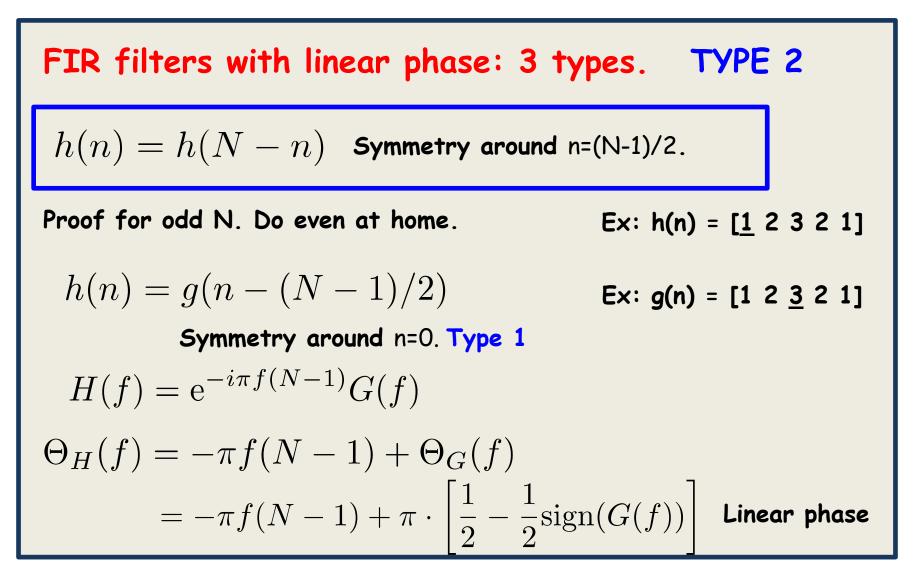


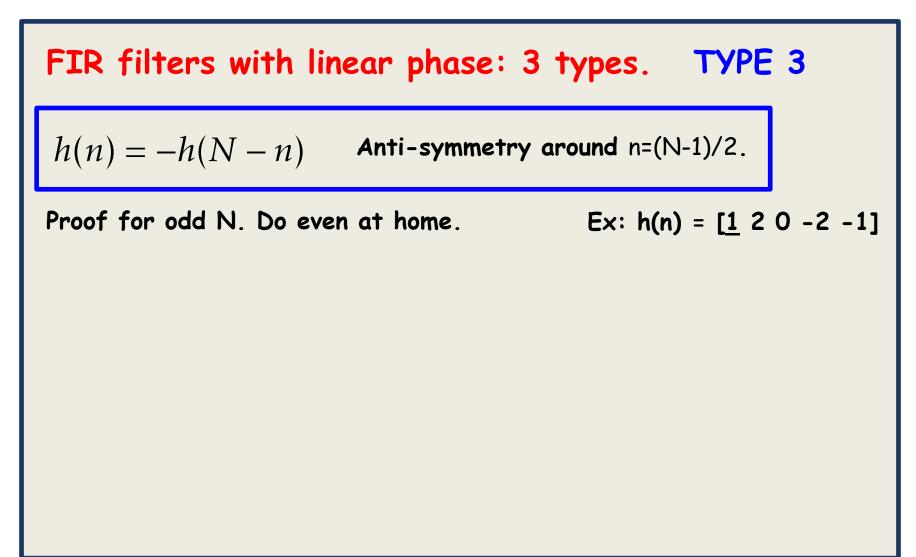


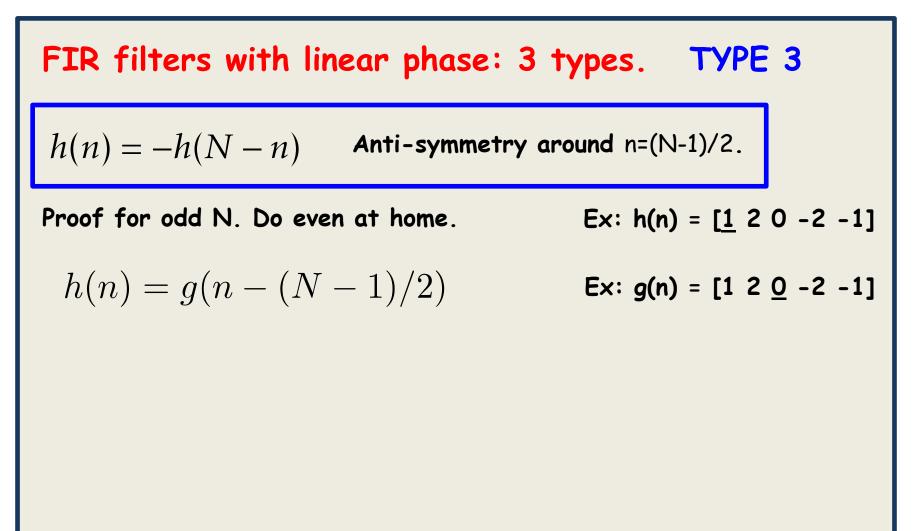












FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: } g(n) = [1 2 0 -2 -1]$$

$$G(f) = \sum_{n=-\infty}^{\infty} g(n) e^{i2\pi nf} = \sum_{n=1}^{\infty} g(n) (e^{i2\pi nf} - e^{-i2\pi nf})$$

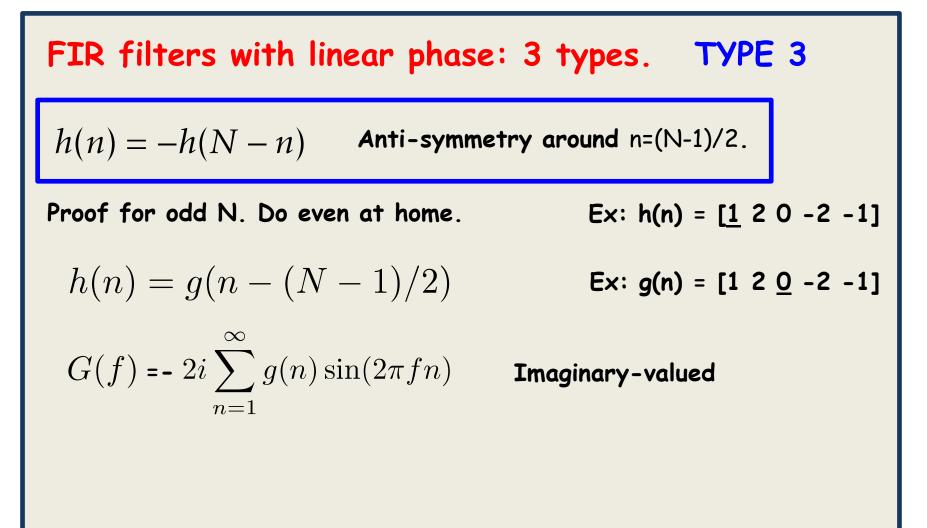
FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: g(n) = [1 2 0 -2 -1]}$$

$$G(f) = \sum_{n=-\infty}^{\infty} g(n) e^{i2\pi nf} = \sum_{n=1}^{\infty} g(n) (e^{i2\pi nf} - e^{-i2\pi nf})$$

$$= -2i \sum_{n=1}^{\infty} g(n) \sin(2\pi fn)$$



FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: } g(n) = [1 2 0 -2 -1]$$

$$G(f) = -2i \sum_{n=1}^{\infty} g(n) \sin(2\pi f n) \quad \text{Imaginary-valued}$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))}$$

FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: } g(n) = [1 2 0 -2 -1]$$

$$G(f) = -2i \sum_{n=1}^{\infty} g(n) \sin(2\pi f n) \quad \text{Imaginary-valued}$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))} = \tan^{-1} \pm \infty$$

FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: g(n) = [1 2 0 -2 -1]}$$

$$G(f) = -2i \sum_{n=1}^{\infty} g(n) \sin(2\pi f n) \quad \text{Imaginary-valued}$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))} = \tan^{-1} \pm \infty = \pm \frac{\pi}{2}$$

FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N - n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: g(n) = [1 2 0 -2 -1]}$$

$$G(f) = -2i \sum_{n=1}^{\infty} g(n) \sin(2\pi f n) \quad \text{Imaginary-valued}$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))} = \tan^{-1} \pm \infty = \pm \frac{\pi}{2} = -\frac{\pi}{2} + \pi \ell$$

FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N-n) \quad \text{Anti-symmetry around } n=(N-1)/2.$$
Proof for odd N. Do even at home. Ex: $h(n) = [1 \ 2 \ 0 \ -2 \ -1]$

$$h(n) = g(n - (N-1)/2) \quad \text{Ex: } g(n) = [1 \ 2 \ 0 \ -2 \ -1]$$

$$\Theta_H(f) = -\pi f(N-1) + \Theta_G(f)$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))} = \tan^{-1} \pm \infty = \pm \frac{\pi}{2} = -\frac{\pi}{2} + \pi \ell$$

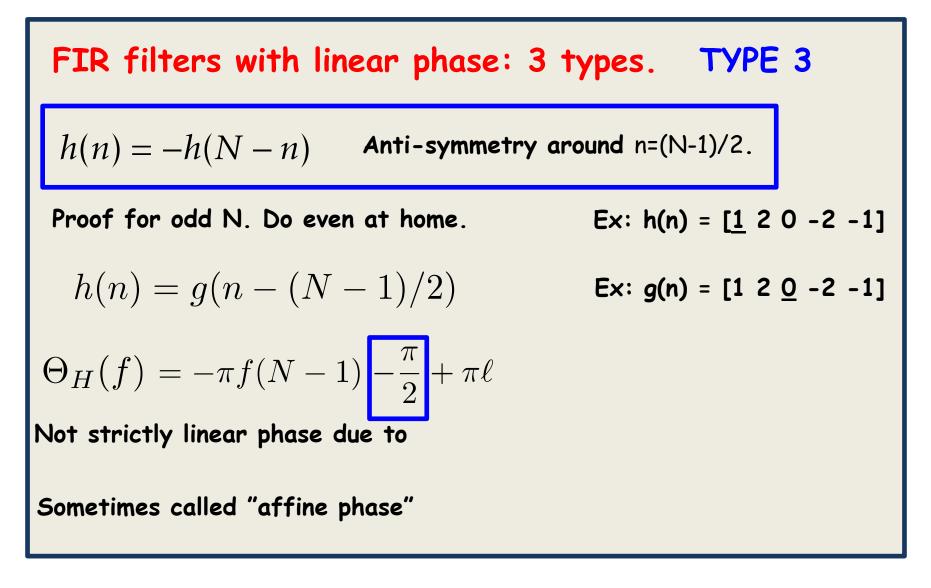
FIR filters with linear phase: 3 types. TYPE 3

$$h(n) = -h(N-n) \quad \text{Anti-symmetry around n=(N-1)/2.}$$
Proof for odd N. Do even at home. Ex: h(n) = [1 2 0 -2 -1]

$$h(n) = g(n - (N-1)/2) \quad \text{Ex: g(n) = [1 2 0 -2 -1]}$$

$$\Theta_H(f) = -\pi f(N-1) + \Theta_G(f) = -\pi f(N-1) - \frac{\pi}{2} + \pi \ell$$

$$\Theta_G(f) = \tan^{-1} \frac{\text{Im}(G(f))}{\text{Re}(G(f))} = \tan^{-1} \pm \infty = \pm \frac{\pi}{2} = -\frac{\pi}{2} + \pi \ell$$

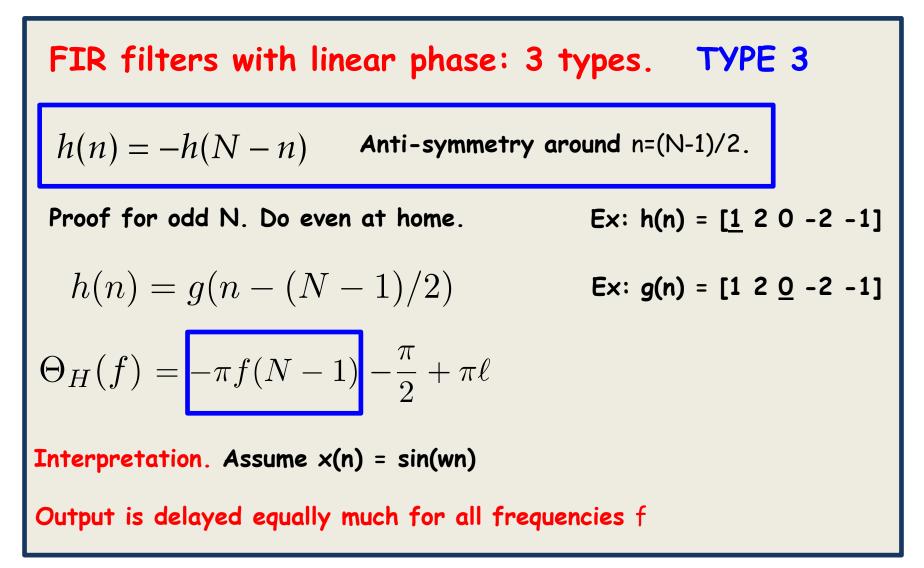


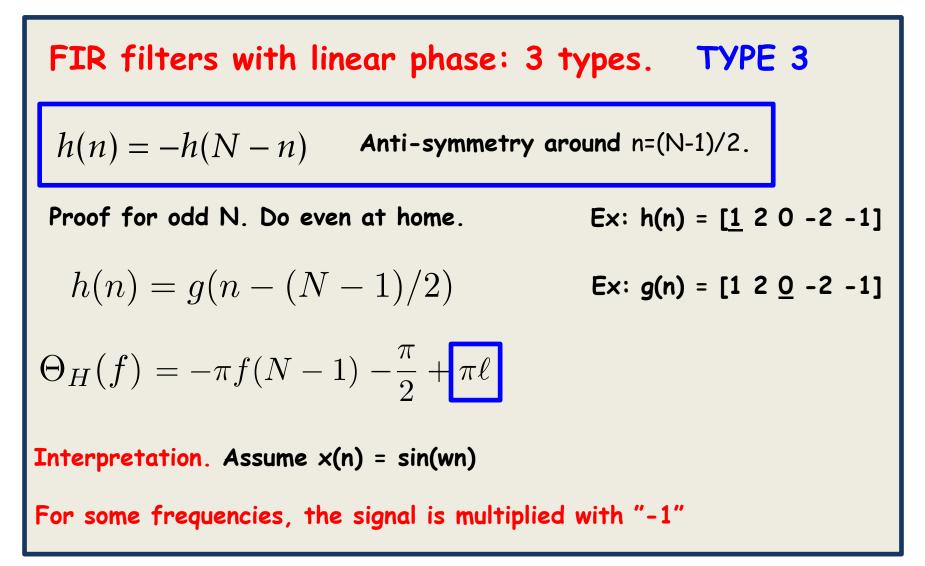
FIR filters with linear phase: 3 types. TYPE 3

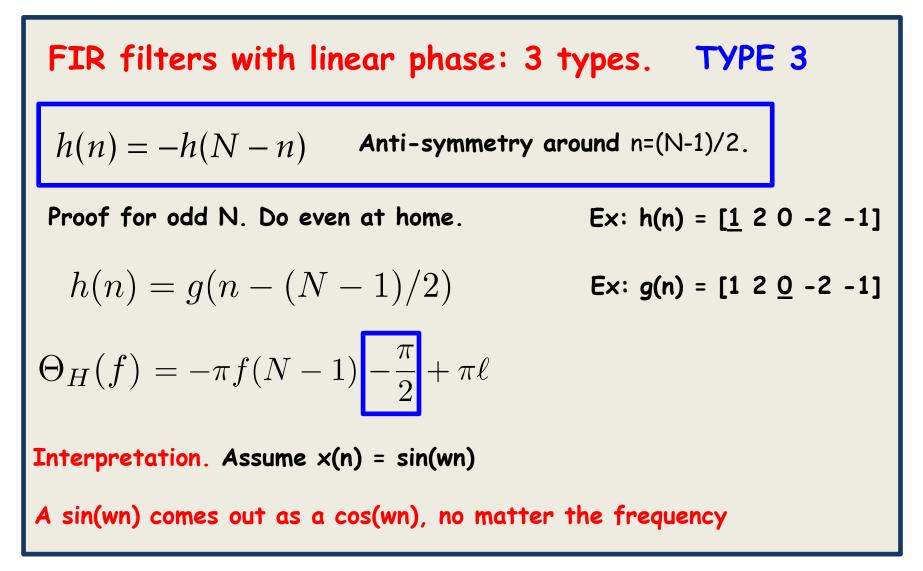
$$h(n) = -h(N - n) \quad \text{Anti-symmetry around } n=(N-1)/2.$$
Proof for odd N. Do even at home.

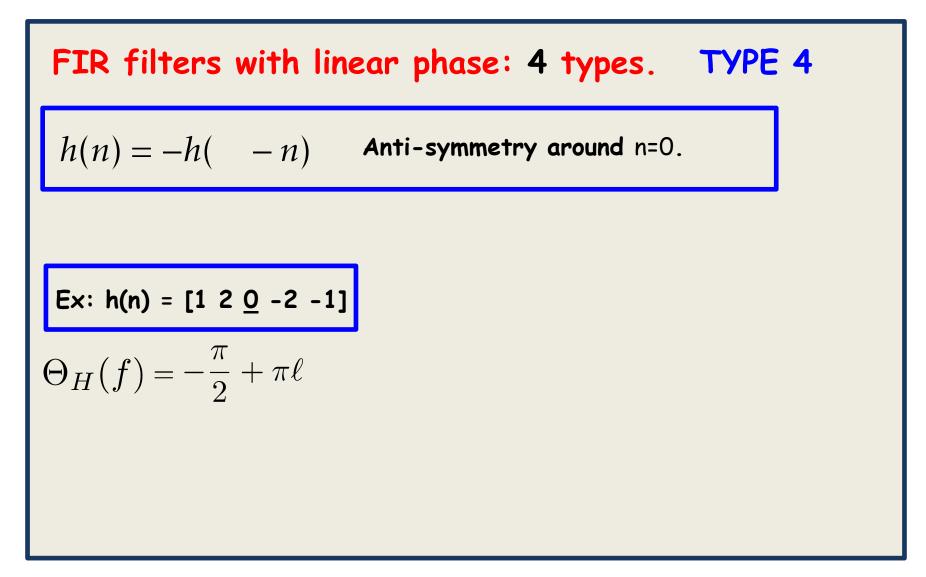
$$h(n) = g(n - (N - 1)/2) \quad \text{Ex: } h(n) = [1 \ 2 \ 0 \ -2 \ -1]$$

$$\Theta_H(f) = -\pi f(N - 1) - \frac{\pi}{2} + \pi \ell$$
Interpretation. Assume x(n) = sin(wn)









Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

 $H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$

Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

 $H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$

$$= \left(e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega} \right) \cdot e^{-j2\omega}$$

Preparation for Euler

Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

 $H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$

$$= \left(e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega} \right) \cdot e^{-j2\omega}$$

 $= (3 + 4\cos\omega + 2\cos 2\omega) \cdot e^{-j2\omega}$ Application of Euler

Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

 $H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$

$$= \left(e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega} \right) \cdot e^{-j2\omega}$$

$$= (3 + 4\cos\omega + 2\cos 2\omega) \cdot e^{-j2\omega}$$

 $= |(3 + 4\cos\omega + 2\cos 2\omega)| \cdot e^{-j2\omega + j\pi \cdot k}$

Example TYPE 1

 $h(n) = \left\{ \begin{array}{cccc} 1 & 2 & \underline{3} & 2 & 1 \end{array} \right\} \qquad H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

 $H(\omega) = 1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}$

$$= \left(e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega}\right) \cdot e^{-j2\omega}$$
If negative
$$= \left(3 + 4\cos\omega + 2\cos 2\omega\right) \cdot e^{-j2\omega}$$
Activate this (k=1)
$$= \left|(3 + 4\cos\omega + 2\cos 2\omega)\right| \cdot e^{-j2\omega} \cdot j\pi \cdot k$$

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar)

 $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$ $= z^{-4} \cdot (z^4 + 2z^3 + 3z^2 + 2z + 1)$ 4 poles at the origin 4 zeros

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$ $= z^{-4} \cdot \left(z^4 + 2z^3 + 3z^2 + 2z + 1\right)$ $= z^{-4} \cdot H(z^{-1})$ Important property

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$ $= z^{-4} \cdot \left(z^4 + 2z^3 + 3z^2 + 2z + 1 \right)$ $= z^{-4} \cdot H(z^{-1}) \quad \begin{array}{l} \text{Conclusions} \\ \text{Assume } z_0 \text{ to be a zero} \end{array}$

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4} = 0$ $= z^{-4} \cdot \left(z^4 + 2z^3 + 3z^2 + 2z + 1 \right)$ $= z^{-4} \cdot H(z^{-1}) \quad \begin{array}{c} \text{Conclusions} \\ \text{Assume } z_0 \text{ to be a zero} \end{array}$

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4}$ $= z_0^{-4} \cdot \left(z_0^4 + 2z_0^3 + 3z_0^2 + 2z_0 + 1 \right)$ $= z_0^{-4} \cdot H(z_0^{-1})$ Conclusions
Assume z_0 to be a zero Last expression must also be zero

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4}$ $= z_0^{-4} \cdot \left(z_0^4 + 2z_0^3 + 3z_0^2 + 2z_0 + 1 \right)$ $= \underbrace{z_0^{-4}}_{0} H(z_0^{-1}) \qquad \begin{array}{c} \text{Conclusions} \\ \text{Assume } z_0 \text{ to be a zero} \end{array}$ Last expression must also be zero Can it be zero due to the first term

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4}$ $= z_0^{-4} \cdot \left(z_0^4 + 2z_0^3 + 3z_0^2 + 2z_0 + 1 \right)$ $= \underbrace{z_0^{-4}}_{0} H(z_0^{-1}) \qquad \begin{array}{c} \text{Conclusions} \\ \text{Assume } z_0 \text{ to be a zero} \end{array}$ Last expression must also be zero Can it be zero due to the first term NO

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4}$ $= z_0^{-4} \cdot \left(z_0^4 + 2z_0^3 + 3z_0^2 + 2z_0 + 1 \right)$ Conclusions $= z_0^{-4} H(z_0^{-1})$ Assume z_0 to be a zero Last expression must also be zero Can it be zero due to the first term NO Thus, $H(z_0^{-1}) = 0$

Pole-Zero diagram for linear phase FIR filters Let us continue with TYPE 1 (others are similar) $H(z_0) = 1 + 2z_0^{-1} + 3z_0^{-2} + 2z_0^{-3} + z_0^{-4}$ $= z_0^{-4} \cdot \left(z_0^4 + 2z_0^3 + 3z_0^2 + 2z_0 + 1 \right)$ $= z_0^{-4} \cdot H(z_0^{-1})$ Conclusions
Assume z_0 to be a zero Last expression must also be zero Can it be zero due to the first term NO Thus, $H(z_0^{-1}) = 0$ Z_0^{-1} also a zero

Pole-Zero diagram for linear phase FIR filters

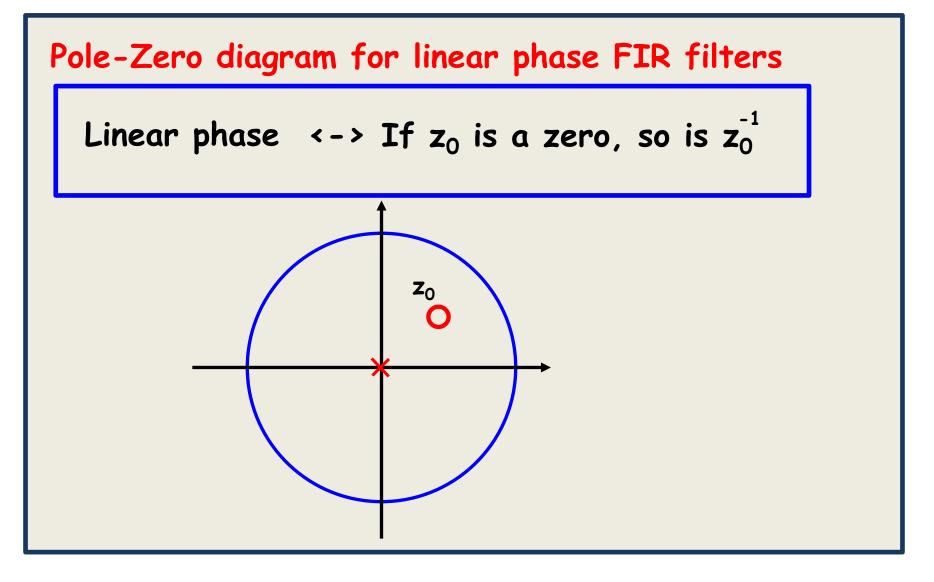
Let us continue with TYPE 1 (others are similar)

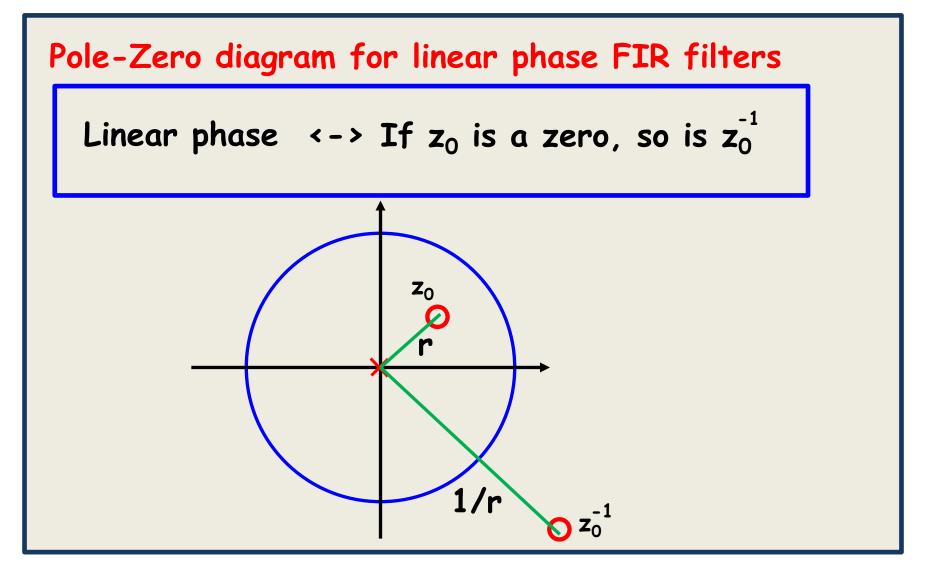
Linear phase
$$\langle - \rangle$$
 If z_0 is a zero, so is z_0^{-1}

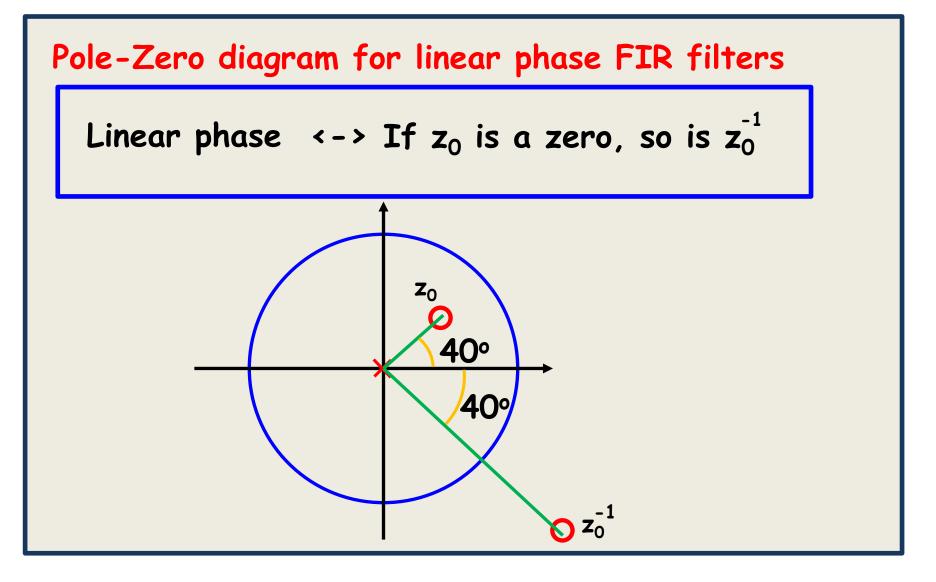
Conclusions

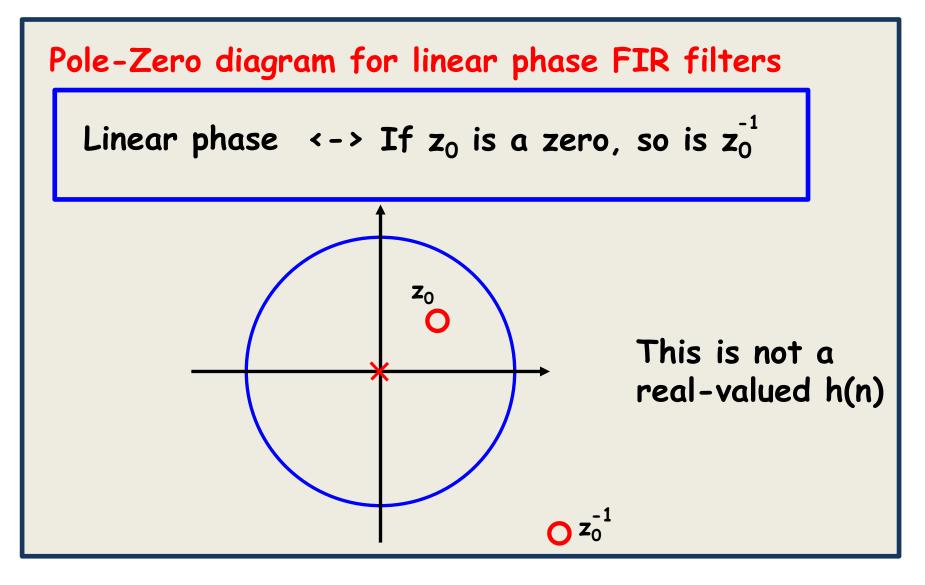
Assume z_0 to be a zero

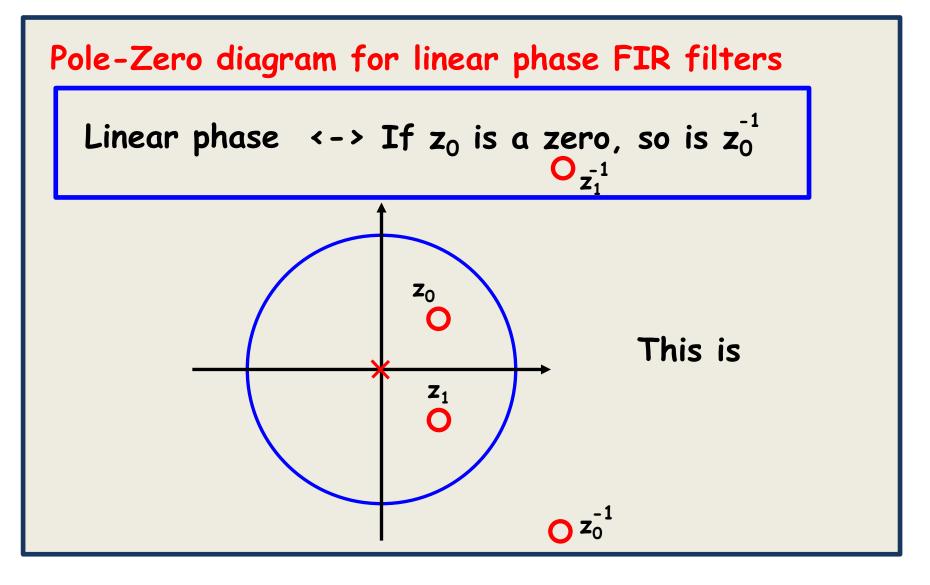
Last expression must also be zero Can it be zero due to the first term NO Thus, $H(z_0^{-1}) = 0$ Z_0^{-1} also a zero

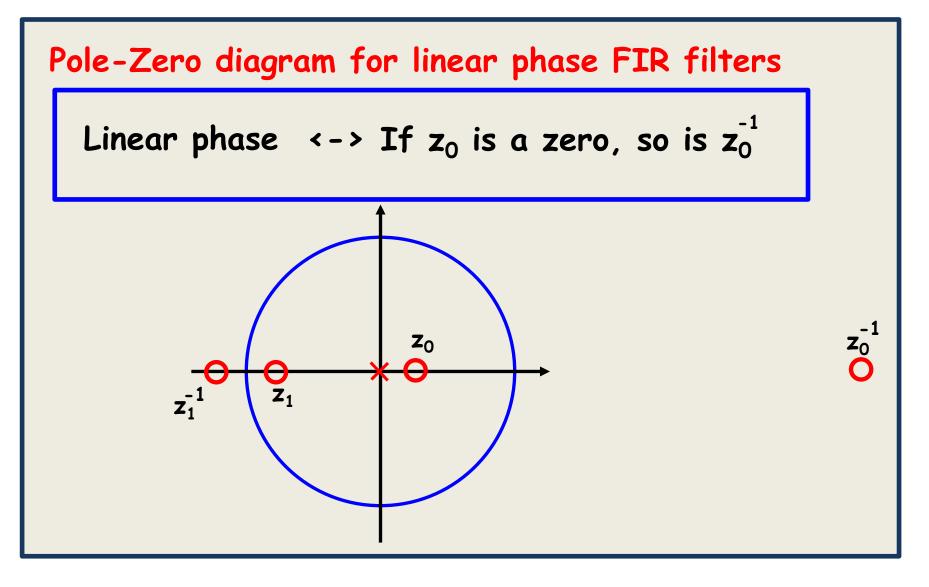












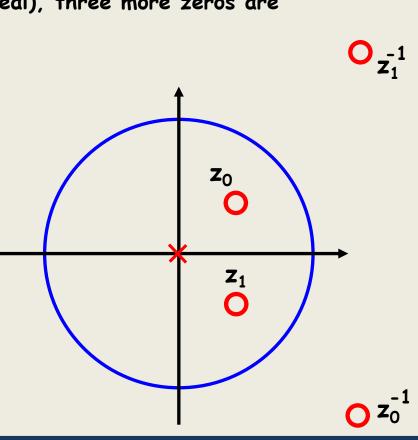
Dimensionality considerations

When one zero is selected (assume not real), three more zeros are automatically placed.

```
Assume a 5 tap TYPE 1 filter
```

```
h(n) = \{ a b c b a \}
```

We then have 4 zeros



Dimensionality considerations

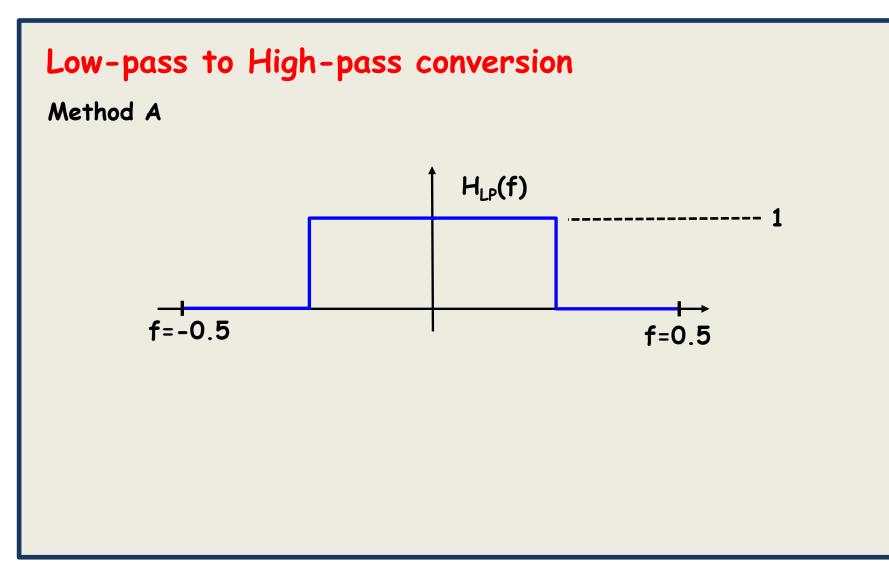
When one zero is selected (assume not real), three more zeros are automatically placed.

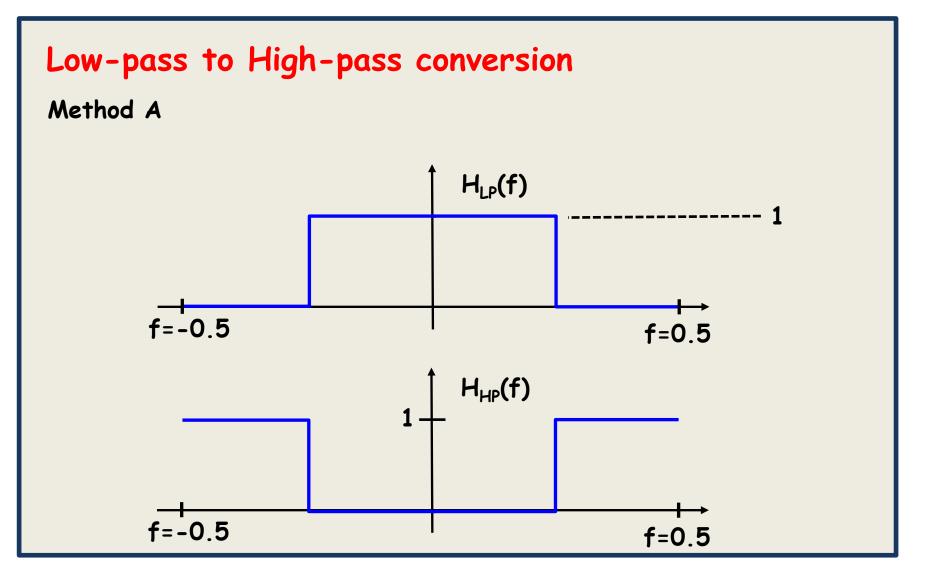
-1Assume a 5 tap TYPE 1 filter $h(n) = \{ a b c b a \}$ **Z**0 We then have 4 zeros We have 3 real numbers to pick (a,b,c) but only 1 zero to place z_1 Seems as there is a dimensionality mismatch More DoFs with a,b,c than with one zero

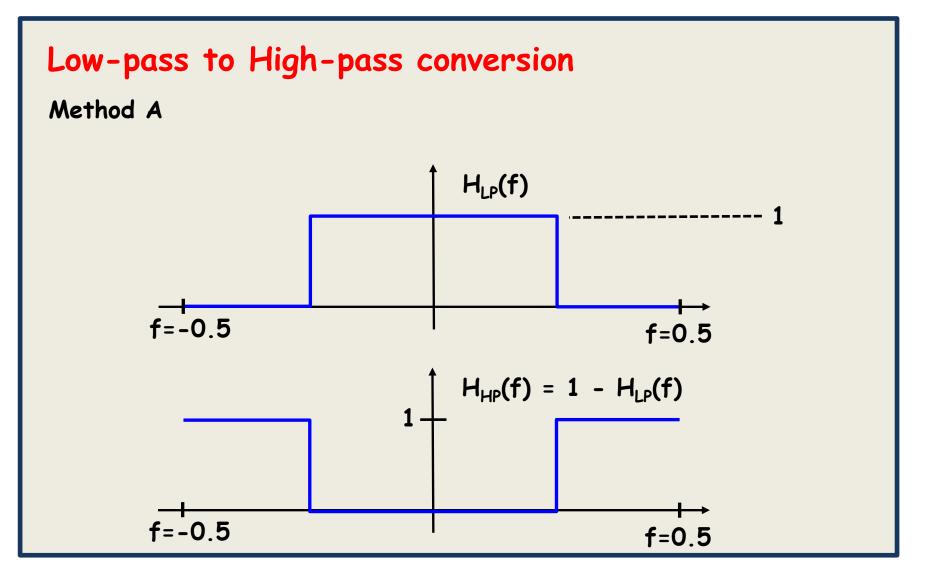
Dimensionality considerations

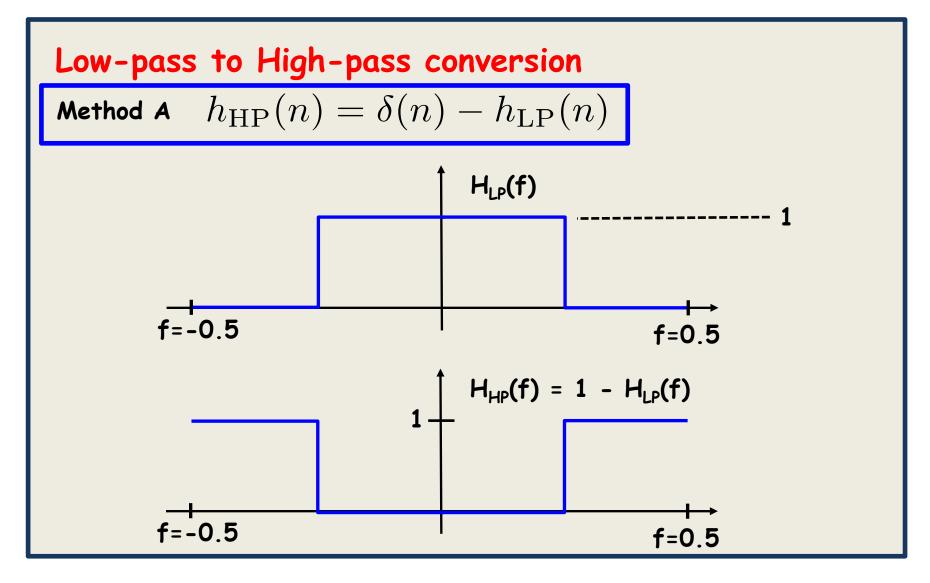
When one zero is selected (assume not real), three more zeros are automatically placed.

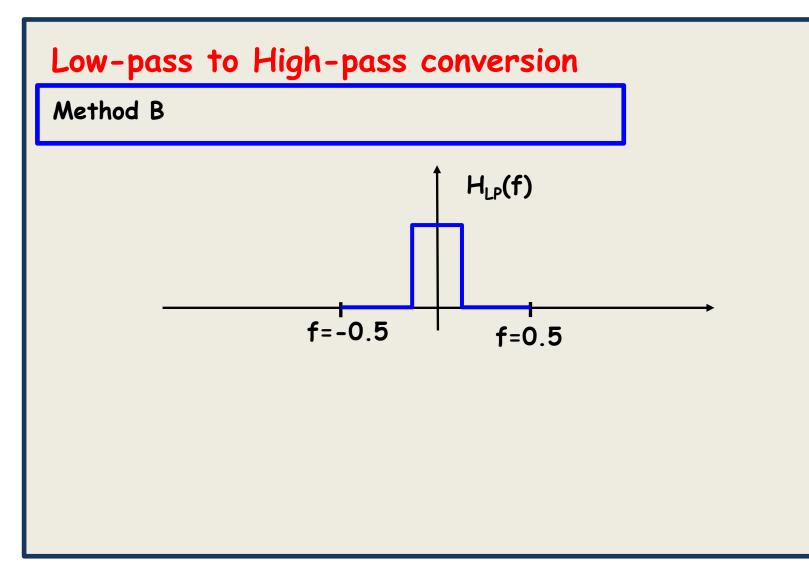
```
)_-1
Z₁
Assume a 5 tap TYPE 1 filter
h(n) = \{abcba\}
                                                           Z0
We then have 4 zeros
We have 3 real numbers to pick (a,b,c)
but only 1 zero to place
                                                             z_1
Seems as there is a dimensionality mismatch
More DoFs with a,b,c than with one zero
However, one zero is 2 numbers, radius and angle
Then we can scale H(z) by a constant, so 3 numbers
```

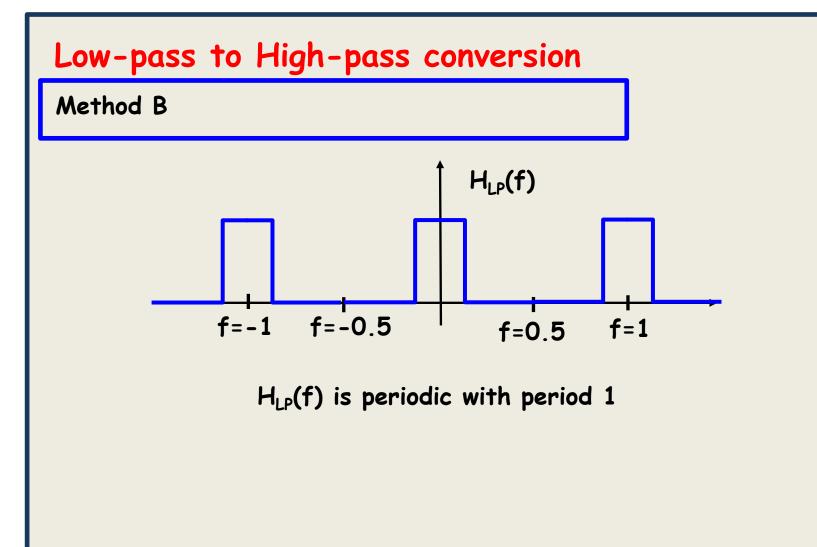


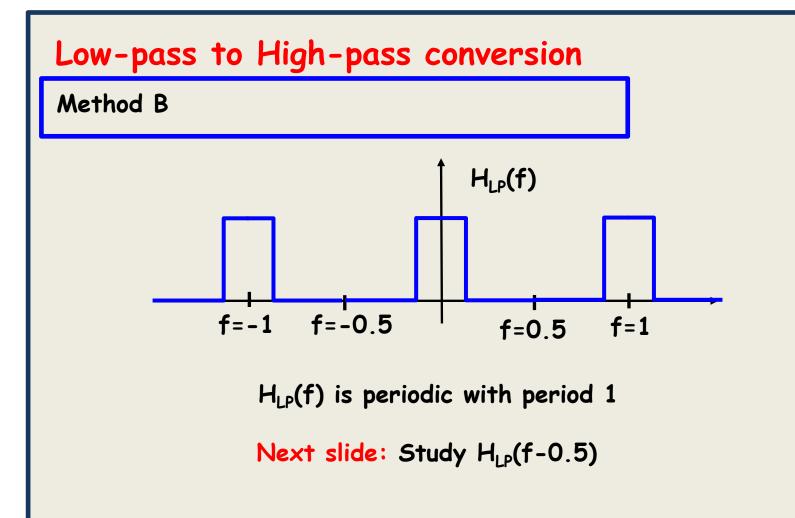


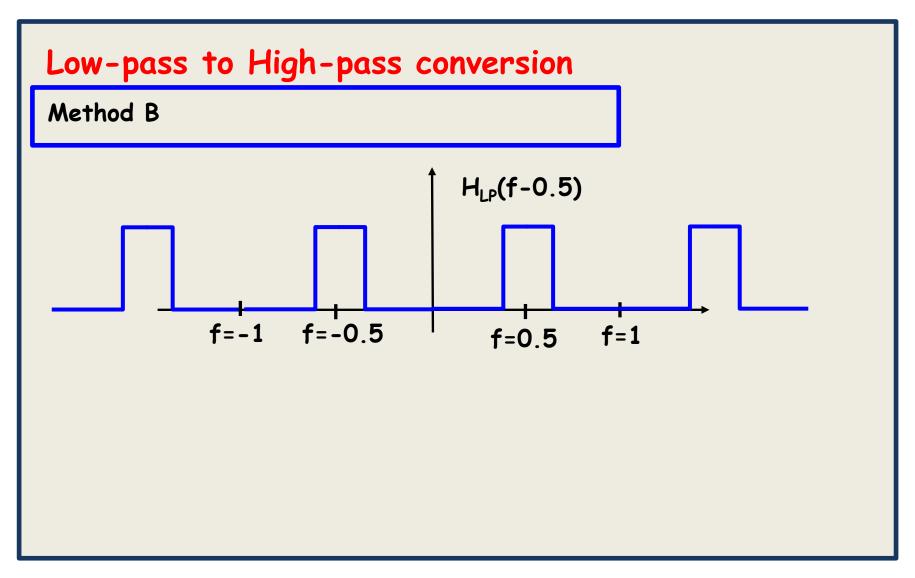


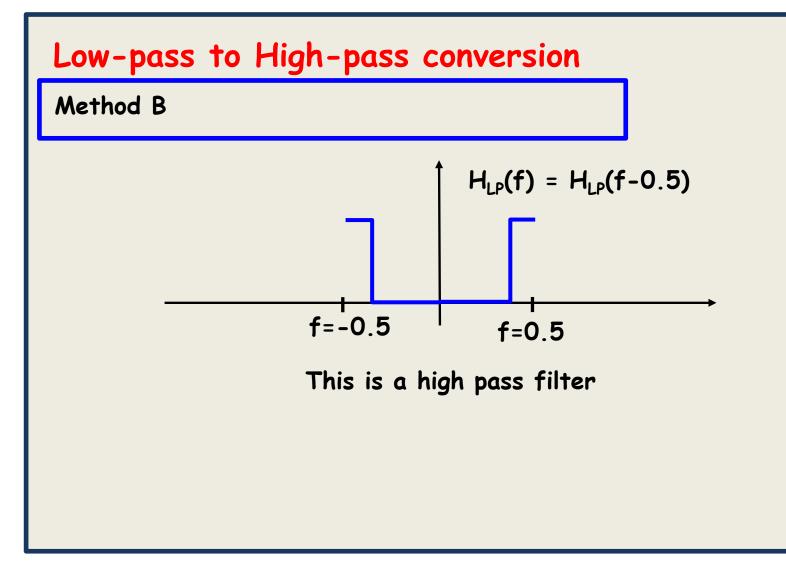


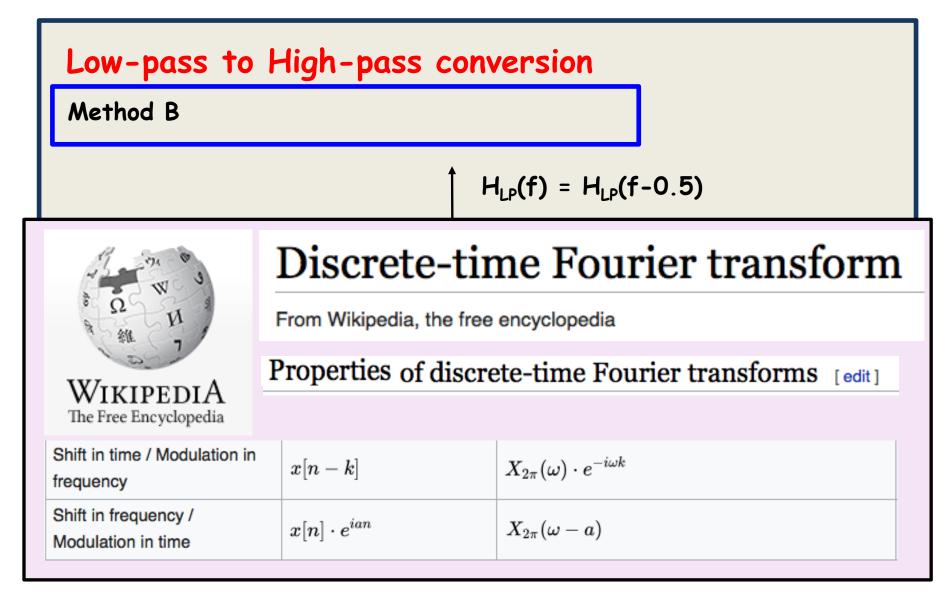


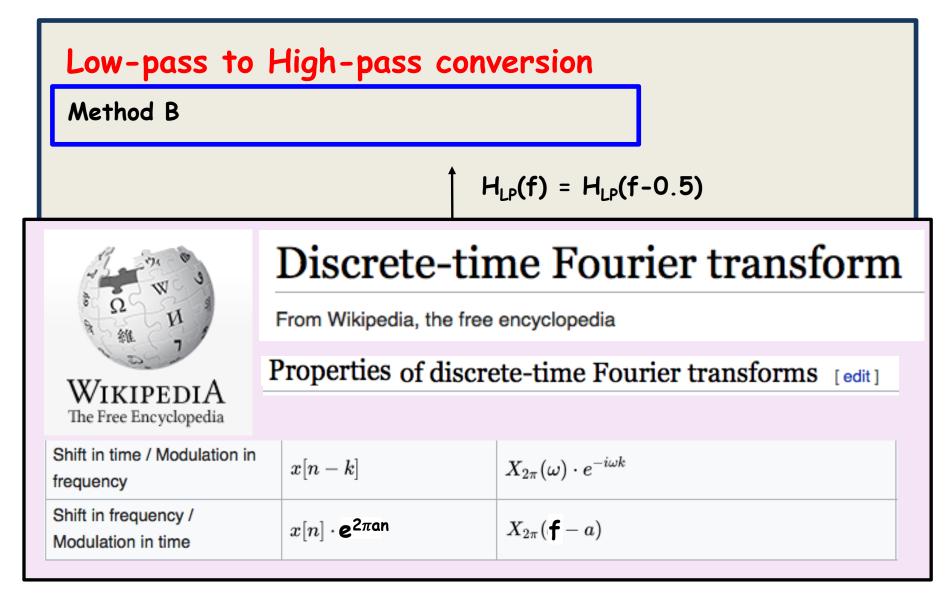


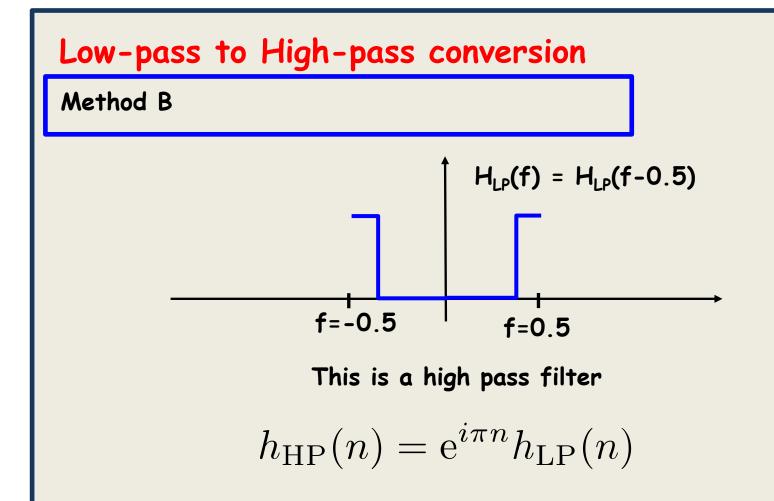


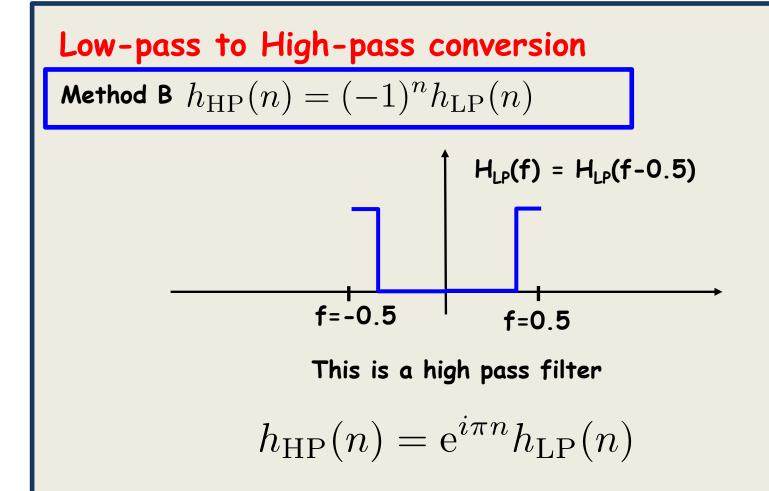












Viewed in another way

If $h_{\rm HP}(n) = (-1)^n h_{\rm LP}(n)$ then $h_{\rm LP}(n) = (-1)^n h_{\rm HP}(n)$

Viewed in another way

If $h_{
m HP}(n) = (-1)^n h_{
m LP}(n)$ then $h_{
m LP}(n) = (-1)^n h_{
m HP}(n)$ "high pass" z₀ = 1 $H(z) = (z - 1) = \frac{1 - z^{-1}}{z^{-1}}$ $h(n) = \{1 - 1\}$

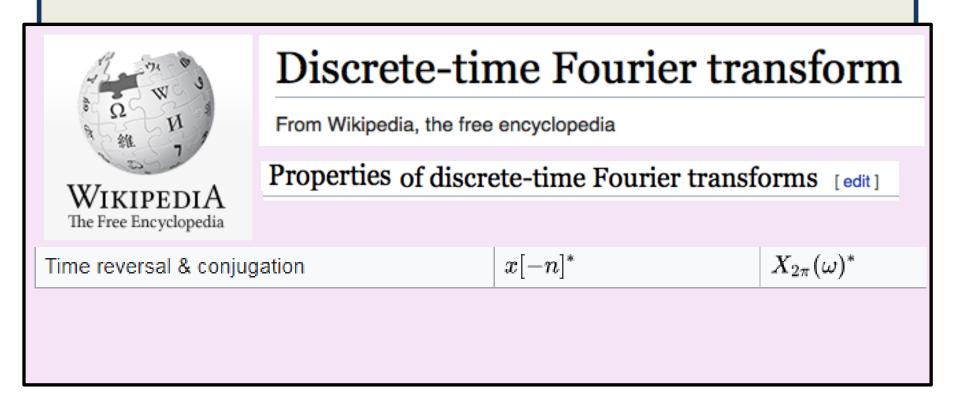
Viewed in another way If $h_{
m HP}(n) = (-1)^n h_{
m LP}(n)$ then $h_{
m LP}(n) = (-1)^n h_{
m HP}(n)$ "low pass" $z_0 = -1$ "high pass" $z_0 = 1$ $H(z) = (z - 1) = \frac{1 - z^{-1}}{z^{-1}}$ $h(n) = \{1 - 1\}$ $H(z) = (z+1) = \frac{1+z^{-1}}{z^{-1}}$ $h(n) = \{1 \ 1\}$

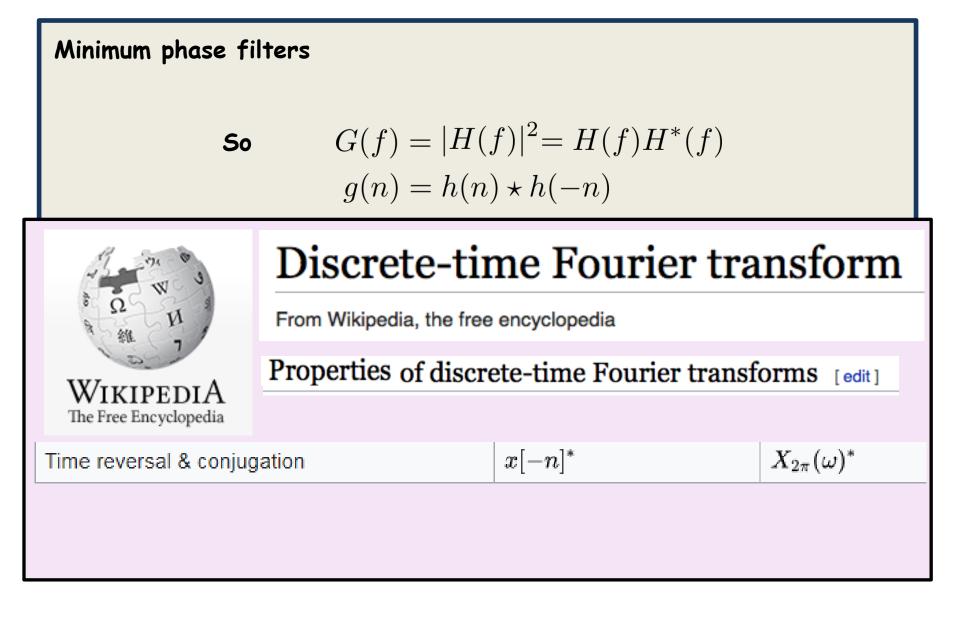
Assume some h(n) and compute $|H(f)|^2 = H(f)H^*(f)$

$$|H(f)| = |H^*(f)|$$

Minimum phase filters

Assume some h(n) and compute $|H(f)|^2 = H(f)H^*(f)$





Minimum phase filters

So $G(f) = |H(f)|^2 = H(f)H^*(f)$ $g(n) = h(n) \star h(-n)$

Minimum phase filters

So

$$G(f) = |H(f)|^2 = H(f)H^*(f)$$

$$g(n) = h(n) \star h(-n)$$

$$G(z) = H(z)H(z^{-1})$$

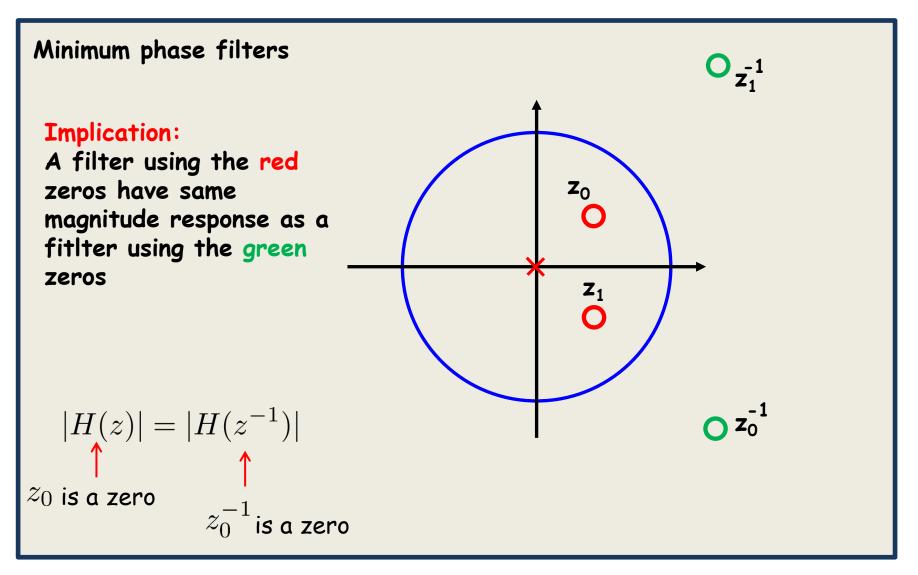
$$|H(z)| = |H(z^{-1})|$$

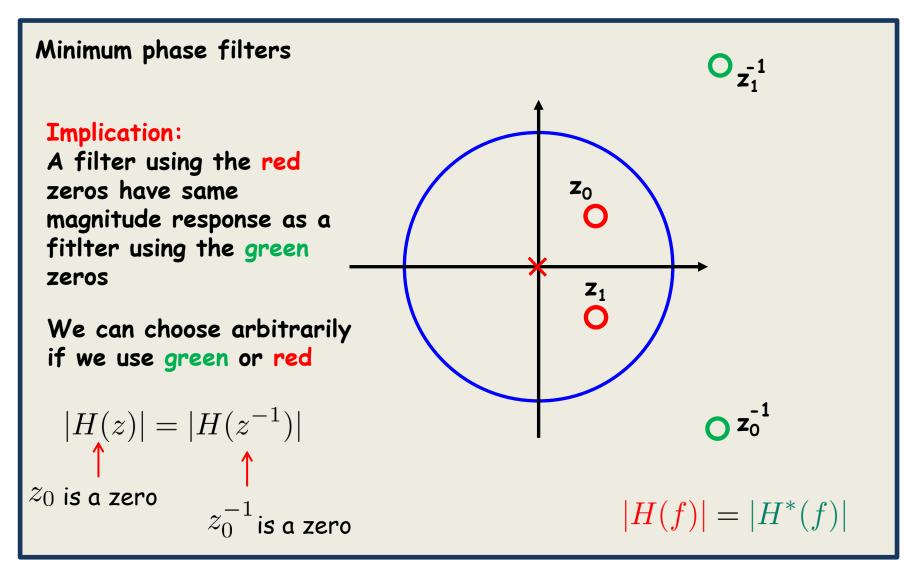
$$|H(f)| = |H^*(f)|$$

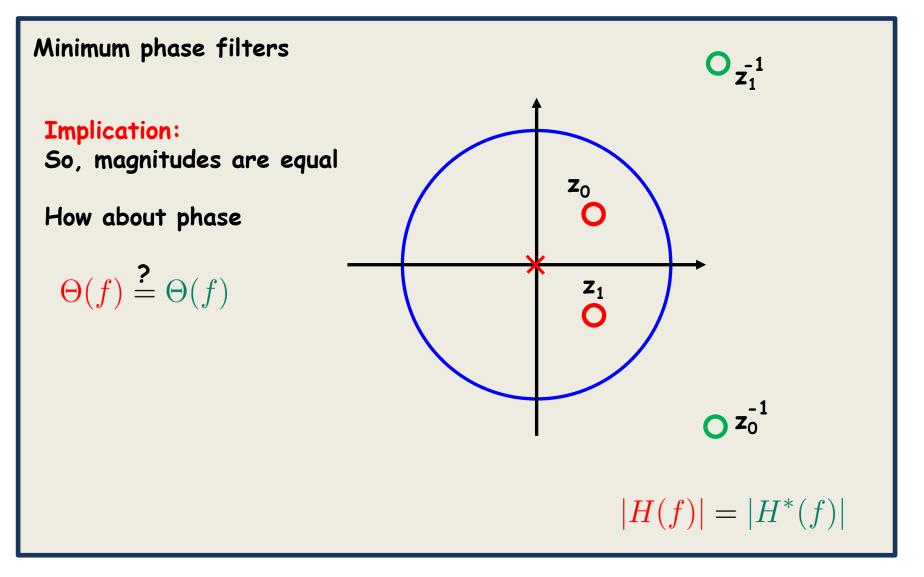
Minimum phase filters

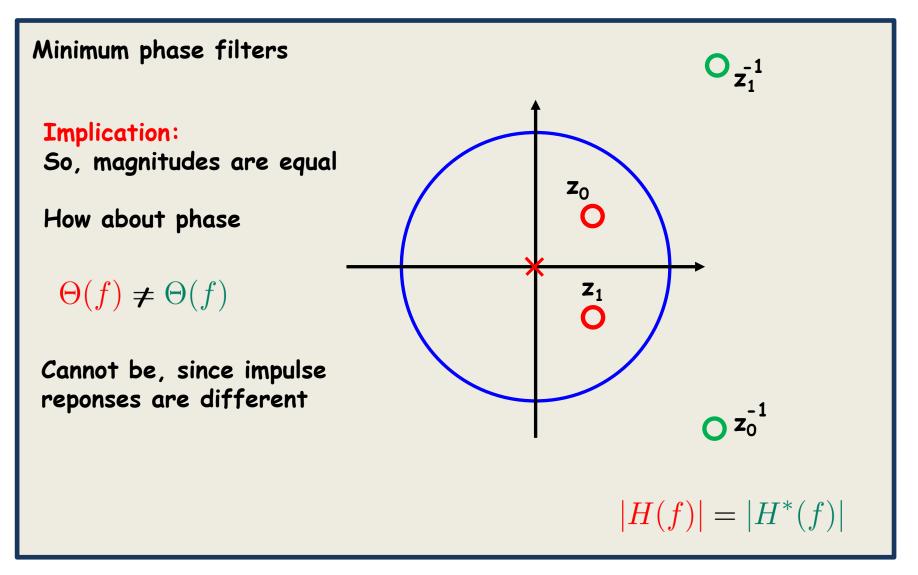
So
$$G(f) = |H(f)|^2 = H(f)H^*(f)$$

 $g(n) = h(n) \star h(-n)$
 $G(z) = H(z)H(z^{-1})$
 $|H(z)| = |H(z^{-1})|$
 \uparrow
From before z_0 is a zero z_0^{-1} is a zero
 $|H(f)| = |H^*(f)|$









 $\mathbf{o} \bar{\mathbf{z}_0}^1$

