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Continuous time signal 

Data signal 

Interference 

Objective: Filter out the interference 

Step 1: Go to discrete time via sampling.  Step 2: Make a pole-zero diagram 

Step 3: Identify interference frequency 

Do we need any poles? A causal FIR filter has poles in the origin  

Step 4: Try something out. Makes sense to put 
zeros at unit circle (will cancel interference) 

x2 
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Filter  H(z) =   (z-ei2𝜋/8) (z-e-i2𝜋/8) 
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Continuous time signal 

Data signal 

Interference 

Objective: Filter out the interference 

Step 1: Go to discrete time via sampling.  Step 2: Make a pole-zero diagram 

Filter  H(z) =   (z-ei2𝜋/8) (z-e-i2𝜋/8) 

= z2 – 2cos(w0)z
 + 1 h(n) = { 1   -2cos(w0)    1}    FIR 

Not Causal 

Step 2: Make a pole-zero diagram for 
          filter 
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|H(f)| Magnitude response 

H(z) = z2 – 2cos(w0)z
 + 1 

h(n) = { 1   -2cos(w0)    1 } 

H(z) = 1 – 2cos(w0)z-1 + z-2 

h(n) = { 1   -2cos(w0)    1 } 

Method 2 

h(n) = h(n+2) 

Apply the below property 

Interlude 
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Same phase response? 

𝛳(f) Phase response 

H(z) = z2 – 2cos(w0)z
 + 1 

h(n) = { 1   -2cos(w0)    1 } 

H(z) = 1 – 2cos(w0)z-1 + z-2 
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3. Therefore, must have different phase responses 

𝛳(f) Phase response 

H(z) = z2 – 2cos(w0)z
 + 1 

h(n) = { 1   -2cos(w0)    1 } 

H(z) = 1 – 2cos(w0)z-1 + z-2 

h(n) = { 1   -2cos(w0)    1 } 

Interlude 
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x2 

Magnitude 

response 
 

FIASCO  
distorts s(n) 

h(n) = { 1   -2cos(w0)    1 } 
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Much better 

Magnitude 

response 
 

NOTCH filter 
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Why is it so much better? 

Arrow lengths are different 
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Summary: 
 
A pole close to a zero ”stabilizes” the magnitude response 
 
A causal FIR filter has poles at the origin 
 
If no poles at all, not a causal filter 
 
Indeed possible to remove interference digitally 
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Notch H(z)   
(Not FIR, but truncate to large length) 

f=0.5 

- 



EITF75 Systems and Signals 

FIR filters with linear phase 
 
Linear phase is desirable since it delays all frequencies equally much 
 
How to create it? 
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FIR filters with linear phase 
 
Recall 

System frequency response Linear phase iff 

Real-valued 

Let us accept this: 
”If I send sin(wn), I get sin(wn) out, but with a delay 
and multiplied by a real-valued number.”  

A phase shift with will flip sign of 
 
So still claimed as ”linear phase” 
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FIR filters with linear phase 
 
Recall 

System frequency response Linear phase iff 

Let us accept this: 
”If I send sin(wn), I get sin(wn) out, but with a delay 
and multiplied by a real-valued number.”  

Summary: Linear phase is defined as 
 
Whenever there is a phase jump with    , this should be seen as a 
magnitude response that is negative  
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FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Due to symmetry 

- 
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FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Euler 

- 



EITF75 Systems and Signals 

FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

0 if |H(f)|> 0 
1 if |H(f)|< 0 



EITF75 Systems and Signals 

FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

0 if |H(f)|> 0 
1 if |H(f)|< 0 

real-valued 



EITF75 Systems and Signals 

FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

0 if |H(f)|> 0 
1 if |H(f)|< 0 

real-valued 



EITF75 Systems and Signals 

FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

0 if |H(f)|> 0 
1 if |H(f)|< 0 

real-valued 

But a problem: If            <0, then     must be added to 
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FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

0 if H(f)> 0 
1 if H(f)< 0 

real-valued 

But a problem: If            <0, then     must be added to 
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FIR filters with linear phase: 3 types.   TYPE 1 
 

Symmetry around n=0. Not causal 

Phase response 

real-valued 

Summary: Linear phase is defined as 
 

Whenever there is a phase jump with    , this should be seen as a 
magnitude response that is negative  

In agreement. 
So linear phase 
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FIR filters with linear phase: 3 types.   TYPE 2 
 

Symmetry around n=(N-1)/2.  

Proof for odd N. Do even at home.  Ex: h(n) = [1 2 3 2 1] 

Ex: g(n) = [1 2 3 2 1] 

Symmetry around n=0. Type 1  

Linear phase 
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FIR filters with linear phase: 3 types.   TYPE 3 
 

Anti-symmetry around n=(N-1)/2.  

Proof for odd N. Do even at home.   Ex: h(n) = [1 2 0 -2 -1] 

Ex: g(n) = [1 2 0 -2 -1] 

Not strictly linear phase due to  

Sometimes called ”affine phase” 



EITF75 Systems and Signals 
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FIR filters with linear phase: 3 types.   TYPE 3 
 

Anti-symmetry around n=(N-1)/2.  

Proof for odd N. Do even at home.   Ex: h(n) = [1 2 0 -2 -1] 

Ex: g(n) = [1 2 0 -2 -1] 

Interpretation. Assume x(n) = sin(wn) 

Output is delayed equally much for all frequencies f 
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FIR filters with linear phase: 3 types.   TYPE 3 
 

Anti-symmetry around n=(N-1)/2.  

Proof for odd N. Do even at home.   Ex: h(n) = [1 2 0 -2 -1] 

Ex: g(n) = [1 2 0 -2 -1] 

Interpretation. Assume x(n) = sin(wn) 

For some frequencies, the signal is multiplied with ”-1” 
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FIR filters with linear phase: 3 types.   TYPE 3 
 

Anti-symmetry around n=(N-1)/2.  

Proof for odd N. Do even at home.   Ex: h(n) = [1 2 0 -2 -1] 

Ex: g(n) = [1 2 0 -2 -1] 

Interpretation. Assume x(n) = sin(wn) 

A sin(wn) comes out as a cos(wn), no matter the frequency 
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FIR filters with linear phase: 4 types.   TYPE 4 
 

Anti-symmetry around n=0.  

Ex: h(n) = [1 2 0 -2 -1] 
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Example TYPE 1 
 

Preparation for Euler 
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Example TYPE 1 
 

Application of Euler 
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Example TYPE 1 
 

If negative 

Activate this (k=1) 
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Pole-Zero diagram for linear phase FIR filters 
 
Let us continue with TYPE 1 (others are similar) 

 

4 poles at the origin 4 zeros 
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Pole-Zero diagram for linear phase FIR filters 
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Assume z0 to be a zero 
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0 0 0 0 0 

Last expression must also be zero 

0 0 

0 0 0 0 0 

Can it be zero due to the first term 
NO 
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Assume z0 to be a zero 
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Last expression must also be zero 
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Thus,  0 = 0 
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Pole-Zero diagram for linear phase FIR filters 
 
Let us continue with TYPE 1 (others are similar) 

 

Important property 

Conclusions 

Assume z0 to be a zero 

= 0 

0 0 0 0 0 

Last expression must also be zero 

0 0 

0 0 0 0 0 

Can it be zero due to the first term 
NO 
Thus,  0 = 0 

0 also a zero 
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Pole-Zero diagram for linear phase FIR filters 
 
Let us continue with TYPE 1 (others are similar) 

 

Important property 

Conclusions 

Assume z0 to be a zero 

Last expression must also be zero 
Can it be zero due to the first term 
NO 
Thus,  0 = 0 

0 also a zero 

Linear phase  <-> If z0 is a zero, so is z0  
-1 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

r 

1/r 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

40o 

40o 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

This is not a 
real-valued h(n) 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 

z0 
-1 

This is 
z1 

z1 
-1 
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Pole-Zero diagram for linear phase FIR filters 
 

Linear phase  <-> If z0 is a zero, so is z0  
-1 

z0 z0 
-1 

z1 z1 
-1 
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z0 

z0 
-1 

z1 

z1 
-1 

When one zero is selected (assume not real), three more zeros are 
automatically placed. 
 
Assume a 5 tap TYPE 1 filter 
 
h(n) = { a b c b a } 
 
We then have 4 zeros 
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Dimensionality considerations 
 

z0 

z0 
-1 

z1 

z1 
-1 

When one zero is selected (assume not real), three more zeros are 
automatically placed. 
 
Assume a 5 tap TYPE 1 filter 
 
h(n) = { a b c b a } 
 
We then have 4 zeros 
 
We have 3 real numbers to pick (a,b,c) 
but only 1 zero to place 
 
Seems as there is a dimensionality mismatch 
More DoFs with a,b,c than with one zero 
 
However, one zero is 2 numbers, radius and angle 
Then we can scale H(z) by a constant, so 3 numbers 
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Low-pass to High-pass conversion 
 
Method B 

f=0.5 f=-0.5 

HLP(f) 

HLP(f) is periodic with period 1 

f=1 f=-1 

Next slide: Study HLP(f-0.5) 



EITF75 Systems and Signals 

Low-pass to High-pass conversion 
 
Method B 

f=0.5 f=-0.5 

HLP(f-0.5) 

f=1 f=-1 



EITF75 Systems and Signals 

Low-pass to High-pass conversion 
 
Method B 

f=0.5 f=-0.5 

HLP(f) = HLP(f-0.5) 

This is a high pass filter 



EITF75 Systems and Signals 

Low-pass to High-pass conversion 
 
Method B 

f=0.5 f=-0.5 

HLP(f) = HLP(f-0.5) 

This is a high pass filter 



EITF75 Systems and Signals 

Low-pass to High-pass conversion 
 
Method B 

f=0.5 f=-0.5 

HLP(f) = HLP(f-0.5) 

This is a high pass filter 

f e2𝜋an 
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If 

Viewed in another way 

then 

”high pass” z0 = 1 ”low pass” z0 = -1 
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Minimum phase filters 

is a zero  
is a zero  

z0 

z0 
-1 

z1 

z1 
-1 

Implication: 
A filter using the red 
zeros have same 
magnitude response as a 
fitlter using the green 
zeros 
 
We can choose arbitrarily 
if we use green or red 
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Minimum phase filters 

z0 

z0 
-1 

z1 

z1 
-1 

Implication: 
So, magnitudes are equal 
 
How about phase 
 

/ 

Cannot be, since impulse 
reponses are different 
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Minimum phase filters 

z0 

z0 -1 

z1 

z1 
-1 

This is a general rule: 
A filter with all zeros 
inside the unit circle has 
smaller phase. 
 
Minimum phase filter 
Maximum phase filter 

Let         be any filter with magnitude response 

Let           be the minimum phase filter with magnitude 

Then 

Let              be the maximum phase filter with magnitude 

Then 
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Minimum phase filters 

This is a general rule: 
A filter with all zeros 
inside the unit circle has 
smaller phase. 
 
Minimum phase filter 
Maximum phase filter 

Let         be any filter with magnitude response 

Let           be the minimum phase filter with magnitude 

Then 

Let              be the maximum phase filter with magnitude 

Then 

Super-important for trunction 

1 2 3 1 2 3 

Min-phase Max-phase 

1 2 3 

Mix-phase 


