Lecture 7
The DTFT and LTI systems

Fredrik Rusek

Recap

In general, a signal y(n) generated

from
$$x(n)$$
 via \oplus $\boxed{z^{-1}}$

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$
 Difference equation

Recap

In general, a signal y(n) generated

In general, a signal
$$y(n)$$
 general, a signal $y(n)$ general $y(n$

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

Recap

In general, a signal y(n) generated

In general, a signal
$$y(n)$$
 general, a signal $y(n)$ general $y(n)$ general

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \qquad Y(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}} \cdot X(z) = H(z) X(z)$$

Recap

In general, a signal y(n) generated

In general, a signal
$$y(n)$$
 general, a signal $y(n)$ general $y(n)$

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \qquad Y(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}} \cdot X(z) = H(z) X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Recap

In general, a signal y(n) generated

In general, a signal
$$y(n)$$
 general, a signal $y(n)$ general $y(n)$

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \qquad Y(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}} \cdot X(z) = H(z) X(z)$$
 System describes a convolution FIR filter: $\mathbf{a_k} = \mathbf{0}$, k>0
$$y(n) = h(n) * x(n) = \sum_{k=0}^{M} h(k) x(n-k) \qquad \text{IIR filter: otherwise}$$

$$y(n) = h(n) * x(n) = \sum_{k=1}^{n} h(k)x(n-k)$$
 IIR filter: otherwise

Recap

In general, a signal y(n) generated

from
$$x(n)$$
 via \oplus z^{-1}

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

Alternative way to reach the convolution

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

The difference equation describes an LTI system

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Recap

In general, a signal y(n) generated

from
$$x(n)$$
 via \oplus z^{-1}

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Alternative way to reach the convolution

The difference equation describes an LTI system

For an LTI system, the input-output relation is a convolution (see lecture 2)

Recap

In general, a signal y(n) generated

from
$$x(n)$$
 via \oplus z^{-1}

can be mathematically described by

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

For stable h(n)
$$H(f) = H\left(\mathrm{e}^{i2\pi f}\right)$$

ROC includes unit circle

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

For stable h(n)
$$H(f)=H\left(\mathrm{e}^{i2\pi f}\right)$$
 ROC includes unit circle All poles inside the unit circle

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

ROC includes unit circle

→ All poles inside the unit circle

Videos claim that h(n) must be causal which is false

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

For stable h(n)
$$H(f) = H\left(e^{i2\pi f}\right)$$

For input
$$x(n) = \exp(i2\pi f_0 n)$$

We get the output
$$y(n) = H(f_0) \exp(i2\pi f_0 n)$$

For systems at rest: z-transform

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

System describes a convolution

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k)$$

Systems not at rest: one-sided z-transform

Recap

For stable h(n)
$$H(f) = H\left(e^{i2\pi f}\right)$$

For input
$$x(n) = \exp(i2\pi f_0 n)$$

We get the output $y(n) = H(f_0) \exp(i2\pi f_0 n)$

Today:

1.
$$x(n) = \cos(2\pi f_0 n)$$
 $x(n) = \sin(2\pi f_0 n)$

2.
$$x(n) = \cos(2\pi f_0 n) u(n)$$

3. Phase/group delay

Input

$$x(n) = \cos(2\pi f_0 n)$$

$$= \frac{1}{2} \left[\exp(i2\pi f_0 n) + \exp(-i2\pi f_0 n) \right]$$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

Input

$$x(n) = \cos(2\pi f_0 n)$$

= $\frac{1}{2} \left[\exp(i2\pi f_0 n) + \exp(-i2\pi f_0 n) \right]$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the relation between $H(f_0)$ and $H(-f_0)$

Relation between $H(f_0)$ and $H(-f_0)$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the relation between $H(f_0)$ and $H(-f_0)$

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$H_{R}(f) \qquad H_{I}(f)$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

Assume h(n) real-valued

$$H_{\rm R}(f)$$

 $H_{\rm I}(f)$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

Assume h(n) real-valued

real-valued

real-valued

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$=H_{\rm R}(f)+iH_{\rm I}(f)$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$=H_{\rm R}(f)+iH_{\rm I}(f)$$

$$H_{\rm R}(f) = \sum_{k} h(k) \cos(2\pi f k)$$

$$H_{\rm I}(f) = \sum_{k} h(k) \sin 2\pi f k$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$=H_{\rm R}(f)+iH_{\rm I}(f)$$

$$H_{\rm R}(f) = \sum_{k} h(k) \cos(2\pi f k) = \sum_{k} h(k) \cos(-2\pi f k)$$
 $H_{\rm I}(f) = \sum_{k} h(k) \sin(2\pi f k) = -\sum_{k} h(k) \sin(-2\pi f k)$

$$H_{\rm I}(f) = \sum_{k} h(k) \sin 2\pi f k = -\sum_{k} h(k) \sin(-2\pi f k)$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$=H_{\rm R}(f)+iH_{\rm I}(f)$$

$$H_{R}(f) = \sum_{k} h(k) \cos(2\pi f k) = \sum_{k} h(k) \cos(-2\pi f k) = H_{R}(-f)$$

$$H_{I}(f) = \sum_{k} h(k) \sin(2\pi f k) = -\sum_{k} h(k) \sin(-2\pi f k) = -H_{I}(-f)$$

$$H_{\rm I}(f) = \sum_{k} h(k) \sin 2\pi f k = -\sum_{k} h(k) \sin(-2\pi f k) = -H_{\rm I}(-f)$$

To continue, we need to investigate the

Relation between $H(f_0)$ and $H(-f_0)$

$$H(f) = \sum_{k} h(k) \exp(i2\pi f k) = \sum_{k} h(k) \cos(2\pi f k) + i \sum_{k} h(k) \sin(2\pi f k)$$

$$=H_{\rm R}(f)+iH_{\rm I}(f)$$

$$H_{\rm R}(f) = \sum_{k} h(k)\cos(2\pi f k) = \sum_{k} h(k)\cos(-2\pi f k) = H_{\rm R}(-f)$$

$$H_{\rm I}(f) = \sum_{k} h(k)\sin(2\pi f k) = -\sum_{k} h(k)\sin(-2\pi f k) = -H_{\rm I}(-f)$$

$$H_{\rm I}(f) = \sum_{k} h(k) \sin 2\pi f k = -\sum_{k} h(k) \sin(-2\pi f k) = -H_{\rm I}(-f)$$

Collect in a single equation: $H(f) = H^*(-f)$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

Always possible to write a complex number in this way

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

$$H(-f) = |H(-f)| \exp(i2\pi\Theta(-f))$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

Relation between $H(f_0)$ and $H(-f_0)\colon H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

$$H(-f) = |H(-f)| \exp(i2\pi\Theta(-f)) = |H(f)| \exp(-i2\pi\Theta(f))$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

$$H(-f) = |H(-f)| \exp(i2\pi\Theta(-f)) = |H(f)| \exp(-i2\pi\Theta(f))$$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$
$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

$$H(-f) = |H(-f)| \exp(i2\pi\Theta(-f)) = |H(f)| \exp(-i2\pi\Theta(f))$$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

$$= \underbrace{|H(f_0)|}_{2} \exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n)]$$

Relation between $H(f_0)$ and $H(-f_0)\colon\ H(f)=H^*(-f)$

$$H(f) = |H(f)| \exp(i2\pi\Theta(f))$$

$$H(-f) = |H(-f)| \exp(i2\pi\Theta(-f)) = |H(f)| \exp(-i2\pi\Theta(f))$$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

Input

$$x(n) = \cos(2\pi f_0 n)$$

= $\frac{1}{2} \left[\exp(i2\pi f_0 n) + \exp(-i2\pi f_0 n) \right]$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$

$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

$$y(n) = |H(f_0)| \cos(2\pi f_0 n + \Theta(f_0))$$

Input Changes ? $x(n) = \sin{(2\pi f_0 n)}$ $= \frac{1}{2} \left[\exp(i2\pi f_0 n) + \exp(-i2\pi f_0 n) \right]$

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$
$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi \Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi \Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

$$y(n) = |H(f_0)| \cos(2\pi f_0 n + \Theta(f_0))$$

Input Changes ?
$$x(n) = \sin\left(2\pi f_0 n\right)$$

$$= \frac{1}{2i} [\exp(i2\pi f_0 n) - \exp(-i2\pi f_0 n)]$$

Output (LTI system)

$$y(n) = \frac{1}{2} \left[H(f_0) \exp(i2\pi f_0 n) + H(-f_0) \exp(-i2\pi f_0 n) \right]$$
$$= \frac{|H(f_0)|}{2} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

$$y(n) = |H(f_0)| \cos(2\pi f_0 n + \Theta(f_0))$$

Input Changes?
$$x(n) = \sin{(2\pi f_0 n)}$$

$$= \frac{1}{2i} [\exp(i2\pi f_0 n) - \exp(-i2\pi f_0 n)]$$

Output (LTI system) Changes?

$$y(n) = \frac{1}{2i} [H(f_0) \exp(i2\pi f_0 n) - H(-f_0) \exp(-i2\pi f_0 n)]$$

$$= \frac{|H(f_0)|}{2} [\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) + \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n)]$$

$$[Oxp(v2n \circ (j0)) \circ xp(v2n j0vv) + oxp(v2n \circ (j0)) \circ xp(v2n j0vv)$$

$$y(n) = |H(f_0)| \cos(2\pi f_0 n + \Theta(f_0))$$

Input Changes?
$$x(n) = \sin\left(2\pi f_0 n\right)$$

$$= \frac{1}{2i} [\exp(i2\pi f_0 n) - \exp(-i2\pi f_0 n)]$$

Output (LTI system) Changes?

$$y(n) = \frac{1}{2i} [H(f_0) \exp(i2\pi f_0 n) - H(-f_0) \exp(-i2\pi f_0 n)]$$

$$= \frac{|H(f_0)|}{2i} \left[\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) - \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n) \right]$$

$$y(n) = |H(f_0)| \cos(2\pi f_0 n + \Theta(f_0))$$

Input Changes?
$$x(n) = \sin\left(2\pi f_0 n\right)$$

$$= \frac{1}{2i} [\exp(i2\pi f_0 n) - \exp(-i2\pi f_0 n)]$$

Output (LTI system) Changes?

$$y(n) = \frac{1}{2i} [H(f_0) \exp(i2\pi f_0 n) - H(-f_0) \exp(-i2\pi f_0 n)]$$

$$= \frac{|H(f_0)|}{2i} [\exp(i2\pi\Theta(f_0)) \exp(i2\pi f_0 n) - \exp(-i2\pi\Theta(f_0)) \exp(-i2\pi f_0 n)]$$

$$y(n) = |H(f_0)| \sin(2\pi f_0 n + \Theta(f_0))$$

Inputs

$$x(n) = \cos(2\pi f_0 n)$$

$$x(n) = \sin\left(2\pi f_0 n\right)$$

Outputs (LTI system)

$$y(n) = |H(f_0)|\cos(2\pi f_0 + \Theta(f_0))$$

$$y(n) = |H(f_0)| \sin(2\pi f_0 + \Theta(f_0))$$

EXAMPLE y(n)=ay(n-1)+bx(n)

Find H(f)

Find b such that max|H(f)|=1

Find y(n) for x(n)=5 + $12\sin(\pi n/2)$ - $20\cos(\pi n + \pi/4)$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find $H(f)$

$$Y(z)=az^{-1}Y(z)+bX(z)$$
 Start by z-transform

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find $H(f)$

$$Y(z)=az^{-1}Y(z)+bX(z)$$
 Start by z-transform

$$Y(z)(1 - az) = bX(z)$$
 Minor (standard) manipulation

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find H(f)

$$Y(z)=\alpha z^{-1}Y(z)+bX(z)$$

Start by z-transform

$$Y(z)(1 - \alpha z^{-1}) = b X(z)$$

Minor (standard) manipulation

$$Y(z) = {b \over (1 - \alpha z^{-1})} X(z)$$

Minor (standard) manipulation

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find H(f)

$$Y(z)=\alpha z^{-1}Y(z)+bX(z)$$

Start by z-transform

$$Y(z)(1 - az^{-1}) = bX(z)$$

Minor (standard) manipulation

$$Y(z) = \frac{b}{(1 - az^{-1})} X(z)$$

Minor (standard) manipulation

$$H(z) = \frac{b}{(1 - az^{-1})}$$

Identify system

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find H(f)

$$Y(z)=\alpha z^{-1}Y(z)+bX(z)$$

Start by z-transform

$$Y(z)(1-\alpha z^{-1})=bX(z)$$

Minor (standard) manipulation

$$Y(z) = \frac{b}{(1 - az^{-1})} X(z)$$

Minor (standard) manipulation

$$H(z) = \frac{b}{(1 - az^{-1})}$$

Identify system
Stable if |a|<1

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find H(f)

$$Y(z)=\alpha z^{-1}Y(z)+bX(z)$$

Start by z-transform

$$Y(z)(1 - az^{-1}) = bX(z)$$

Minor (standard) manipulation

$$Y(z) = {b \over (1 - \alpha z^{-1})} X(z)$$

Minor (standard) manipulation

$$H(z) = \frac{b}{(1 - \alpha z^{-1})}$$

Identify system
Stable if |a|<1

$$H(f) = \frac{b}{(1 - ae^{-i2\pi f})}$$

Find DTFT

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find $H(f)$

$$1 - ae^{-i2\pi f} = [1 - a \cos(2\pi f)] + i \sin(2\pi f)$$

$$H(f) = \frac{b}{(1 - ae^{-i2\pi f})}$$

Find DTFT

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find $H(f)$

$$1 - ae^{-i2\pi f} = [1 - a\cos(2\pi f)] + ia\sin(2\pi f)$$

$$|1 - ae^{-i2\pi f}| = \sqrt{[1 - a\cos(2\pi f)]^2 + [a\sin(2\pi f)]^2}$$

$$H(f) = \frac{b}{(1 - ae^{-i2\pi f})}$$

Find DTFT

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find $H(f)$

$$1 - ae^{-i2\pi f} = [1 - a\cos(2\pi f)] + ia\sin(2\pi f)$$

$$|1 - ae^{-i2\pi f}| = \sqrt{[1 - a\cos(2\pi f)]^2 + [a\sin(2\pi f)]^2}$$

$$|H(f)| = \frac{|b|}{\sqrt{[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$
 (assume b > 0)

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a>0$

$$|H(f)| = \frac{|b|}{\sqrt{[1 - a\cos(2\pi f)]^2 + [a\sin(2\pi f)]^2}}$$

$$\theta(f) = -\tan^{-1} \frac{a\sin(2\pi f)}{1 - a\cos(2\pi f)}$$

EXAMPLE y(n)=ay(n-1)+bx(n) Find b such that max|H(f)|=1Assume a > 0

$$[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2 = 1 + a^2 - 2a \cos(2\pi f)$$

$$|H(f)| = \frac{|b|}{\sqrt{[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2}}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a > 0$

$$[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2 = 1 + a^2 - 2a \cos(2\pi f)$$

maximized
$$|H(f)| = \frac{|b|}{\sqrt{1 + a^2 - 2a\cos(2\pi f)}} \leftarrow When minimized$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a > 0$

$$[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2 = 1 + a^2 - 2a \cos(2\pi f)$$

maximized
$$|H(f)| = \frac{|b|}{\sqrt{1 + a^2 - 2a\cos(2\pi f)}} \leftarrow \text{Minimized when f=0}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a>0$

$$[1-a\cos(2\pi f)]^2 + [a\sin(2\pi f)]^2 = 1+a^2-2a\cos(2\pi f)$$

$$max|H(f)| = |H(0)| = \frac{|b|}{\sqrt{1+a^2-2a}}$$

maximized
$$|H(f)| = \frac{|b|}{\sqrt{1 + a^2 - 2a\cos(2\pi f)}}$$
 Minimized when f=0

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a>0$

$$[1 - a \cos(2\pi f)]^2 + [a \sin(2\pi f)]^2 = 1 + a^2 - 2a \cos(2\pi f)$$

$$\max_{f} |H(f)| = |H(0)| = \frac{|b|}{\sqrt{1 + a^2 - 2a}} = \frac{|b|}{1 - a}$$

maximized
$$|H(f)| = \frac{|b|}{\sqrt{1 + a^2 - 2a\cos(2\pi f)}}$$
Minimized when f=0

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$
 Find b such that $max|H(f)|=1$
Assume $a > 0$

$$[1 - a cos(2\pi f)]^2 + [a sin(2\pi f)]^2 = 1 + a^2 - 2a cos(2\pi f)$$

$$max|H(f)| = |H(0)| = \frac{|b|}{\sqrt{1 + a^2 - 2a}} = \frac{|b|}{1 - a}$$

$$max|H(f)| = 1 \rightarrow b = 1 - a$$

maximized
$$|H(f)| = \frac{|b|}{\sqrt{1 + a^2 - 2a\cos(2\pi f)}} \leftarrow \text{Minimized when f=0}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

$$|H(f)| = \frac{1-\alpha}{\sqrt{1 + \alpha^2 - 2\alpha \cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{\alpha \sin(2\pi f)}{1 - \alpha \cos(2\pi f)}$$

Relation between $H(f_0)$ and $H(-f_0)\colon\thinspace H(f)=H^*(-f)$

Relation between
$$H(f_0)$$
 and $H(-f_0)\colon\thinspace H(f)=H^*(-f)$

EXAMPLE y(n)=ay(n-1)+bx(n)

Find y(n) for x(n)=5 + $12\sin(\pi n/2)$ - $20\cos(\pi n + \pi/4)$

Step 1: Identify the frequencies

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find y(n) for x(n)=5 +
$$12\sin(\pi n/2)$$
 - $20\cos(\pi n + \pi/4)$
f=0 f=1/4 f=1/2

Step 1: Identify the frequencies

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find y(n) for x(n)=5 +
$$12\sin(\pi n/2)$$
 - $20\cos(\pi n + \pi/4)$
f=0 f=1/4 f=1/2

Step 2: How to handle delay in input?

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find y(n) for x(n)=5 +
$$12\sin(\pi n/2)$$
 - $20\cos(\pi n + \pi/4)$
f=0 f=1/4 f=1/2

Step 2: How to handle delay in input? LTI systems, so delays are remain in output

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find y(n) for x(n)=5 +
$$12\sin(\pi n/2)$$
 - $20\cos(\pi n + \pi/4)$
f=0 f=1/4 f=1/2

Step 3: Compute |H(f)| for above frequencies. (assume a=0.9)

$$|H(0)| = ... = 1$$
 $|H(0.25)| = ... = 0.074$ $|H(0.5)| = ... = 0.053$

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

EXAMPLE
$$y(n)=ay(n-1)+bx(n)$$

Find $y(n)$ for $x(n)=5+12sin(\pi n/2)-20cos(\pi n+\pi/4)$
 $f=0$ $f=1/4$ $f=1/2$
 $|H(0)|=...=1$ $|H(0.25)|=...=0.074$ $|H(0.5)|=...=0.053$
Step 3: Compute $\theta(f)$ for above frequencies. (assume a=0.9)
 $\theta(0)=0$ $\theta(0.25)=...=-42^{\circ}$ $\theta(0.5)=...=0$

$$|H(f)| = \frac{1-a}{\sqrt{1+a^2-2a\cos(2\pi f)}}$$

$$\theta(f) = -\tan^{-1} \frac{a \sin(2\pi f)}{1 - a \cos(2\pi f)}$$

```
EXAMPLE y(n)=ay(n-1)+bx(n)
Find y(n) for x(n) + 5 + 12\sin(\pi n/2) - 20\cos(\pi n + \pi/4)
                              f=1/4 f=1/2
|H(0)| = ... = 1 |H(0.25)| = ... = 0.074 |H(0.5)| = ... = 0.053
                 \theta(0.25) = ... = -42°
                                  \theta(0.5) = ... = 0
Step 4: "Modify" x(n) to obtain y(n)
```

```
EXAMPLE y(n)=ay(n-1)+bx(n)
Find y(n) for x(n)=5 + 12\sin(\pi n/2)-
                                                     20\cos(\pi n + \pi/4)
                                                               f=1/2
                          f=0
                       |H(0.25)| = ... = 0.074
|H(0)| = ... = 1
                                                        |H(0.5)| = ... = 0.053
                        \theta(0.25) = ... = -42^{\circ}
                                                          \theta(0.5) = ... = 0
 \theta(0) = 0
Step 4: "Modify" x(n) to obtain y(n)
y(n) = 5 + (0.888 \sin(\pi n/2 - 42^{\circ}) - (0.888 \sin(\pi n/2 - 42^{\circ}))
12 \times 0.074 = 0.888
```

```
EXAMPLE y(n)=ay(n-1)+bx(n)
Find y(n) for x(n)=5 + 12\sin(\pi n/2) - 20\cos(\pi n + \pi/4)
                                  f=1/4
|H(0)| = ... = 1 |H(0.25)| = ... = 0.074
                                                 |H(0.5)| = ... = 0.053
                                                   \theta(0.5) = ... = 0
                  \theta(0.25) = ... = -42^{\circ}
 \theta(0) = 0
Step 4: "Modify" x(n) to obtain y(n)
y(n) = 5 + 0.888 \sin(\pi n/2 - 42^{\circ}) - 1.06 \cos(\pi n + \pi/4)
20 \times 0.053 = 1.06
```

```
EXAMPLE y(n)=ay(n-1)+bx(n)
Find y(n) for x(n)=5 + 12sin(\pin/2) - 20cos(\pin + \pi/4)
                          f=1/4
|H(0)| = ... = 1 |H(0.25)| = ... = 0.074 |H(0.5)| = ... = 0.053
                                    \theta(0.5) = ... = 0
              \theta(0.25) = ... = -42^{\circ}
 \theta(0) = 0
Step 4: "Modify" x(n) to obtain y(n)
y(n) = 5 + 0.888 \sin(\pi n/2 - 42^{\circ}) - 1.06 \cos(\pi n + \pi/4)
```

Note: this is due to LTI

Next case to study

$$x(n) = \cos(2\pi f_0 n)u(n)$$

What can we say before starting?

Next case to study

$$x(n) = \cos(2\pi f_0 n)u(n)$$

What can we say before starting?

- 1. More realistic, so important
- 2. For a causal h(n), y(n) also causal

Next case to study

$$x(n) = \cos(2\pi f_0 n)u(n)$$

What can we say before starting?

- 1. More realistic, so important
- 2. For a causal h(n), y(n) also causal
- 3. For a stable h(n), let us think about why the y(n) from before was periodic.

Input

Next case to study

$$x(n) = \cos(2\pi f_0 n)u(n)$$

What can we say before starting?

- 1. More realistic, so important
- 2. For a causal h(n), y(n) also causal
- 3. For a stable h(n), let us think about why the y(n) from before was periodic.

Input

(Should be seen as a discrete time signal)

Next case to study

$$x(n) = \cos(2\pi f_0 n)u(n)$$

What can we say before starting?

- 1. More realistic, so important
- 2. For a causal h(n), y(n) also causal
- 3. For a stable h(n), let us think about why the y(n) from before was periodic.

Input

h(n)

Integrate (sum for us)

Integrate (sum for us)

1.45 (ex)

Integrate (sum for us)

Integrate (sum for us)

= 1.45 (ex)

Integrate (sum for us)

We have encountered a transient behavior once before. When?

We have encountered a transient behavior once before. When? For systems not at rest (has initial conditions)

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$
 $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$
 $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

A pair of complex conjugated poles at the unit circle

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$
 $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

A pair of complex conjugated poles at the unit circle

Because "1" is multiplying z-2

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$
 $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

A pair of complex conjugated poles at the unit circle

Because $2\cos(w_0)$ < "two times square root of whatever multiplies z-2 "

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$
 $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

A pair of complex conjugated poles at the unit circle

Requires "1" as constant term

$$x(n) = \cos(\omega_0 n) \cdot u(n) \ \omega_0 = \frac{2\pi}{16}$$

$$x(n) = \cos(\omega_0 n) \cdot u(n)$$
 $\omega_0 = \frac{2\pi}{16}$ $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

"1" as constant term: Satisfied

1.27 < "two times square root of 0.81" : satisfied

$$x(n) = \cos(\omega_0 n) \cdot u(n) \ \omega_0 = \frac{2\pi}{16}$$

$$x(n) = \cos(\omega_0 n) \cdot u(n) \quad \omega_0 = \frac{2\pi}{16}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book
$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

"1" as constant term: Satisfied

1.27 < "two times square root of 0.81" : satisfied

Implies pair of complex conjugated poles

$$x(n) = \cos(\omega_0 n) \cdot u(n)$$
 $\omega_0 = \frac{2\pi}{16}$ $H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81}$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 1: Copy from book $X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$

"1" as constant term: Satisfied

1.27 < "two times square root of 0.81" : satisfied

Implies pair of complex conjugated poles

"1" is multiplying z^{-2} : No, so poles not at unit circle

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Step 3: Perform PFE

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Verify at home

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \qquad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$
$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Step 4: Take a break and study the above.

What properties can we identify?

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \boxed{\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}}$$

Poles at the unit circle

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Poles at the unit circle Will be inversely transformed into a causal oscillating signal

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Poles at the unit circle Will be inversely transformed into a causal oscillating signal

Steady state solution !!

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Will it be a pure cosine? (input was)

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Will it be a pure cosine?

(input was)

No, since $1.896 \neq \cos(w_0)$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Will it be a pure cosine?

(input was)

No, since $1.896 \neq \cos(w_0)$ Therefore phase shift

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$\frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Will it be a pure cosine?

(input was)

No, since $1.896 \neq \cos(w_0)$ Therefore phase shift $\theta(w_0) \neq 0$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$
$$= -0.35 \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Poles inside the unit circle (r=0.9)

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Poles inside the unit circle (r=0.9)

Will decay to 0 as n grows

Transient

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \qquad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

Step 2: Form z-transform of output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$
$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

Step 5: Perform inverse transform (messy, needs practice)

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} - 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 1.27/2 z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{(4.177 - 1.27/2)z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} - 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 1.27/2 z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{(4.177 - 1.27/2)z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$-0.35 \cdot 0.9^n \cdot \cos\left(2\pi \cdot \frac{1}{8} \cdot n\right) \qquad 0.35 \cdot 5.562 \cdot 0.9^n \sin\left(2\pi \cdot \frac{1}{8} \cdot n\right)$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} - 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 1.27/2 z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{(4.177 - 1.27/2)z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$-0.35 \cdot 0.9^n \cdot \cos\left(2\pi \cdot \frac{1}{8} \cdot n\right) \qquad 0.35 \cdot 5.562 \cdot 0.9^n \sin\left(2\pi \cdot \frac{1}{8} \cdot n\right) \text{ Transients}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \qquad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$
$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$+0.35 \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} + 0.35 \cdot \frac{(\cos(\omega_0) - 1.896)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \qquad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Output

$$Y(z) = H(z)X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}} \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$= -0.35 \cdot \frac{1 - 4.177z^{-1}}{1 - 1.27z^{-1} + 0.81z^{-2}} + 0.35 \cdot \frac{1 - 1.896z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$+0.35 \cdot \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} + 0.35 \cdot \frac{(\cos(\omega_0) - 1.896)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16} \quad H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Steady state

$$X(z) = \frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \quad \omega_0 = \frac{2\pi}{16}$$
$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

$$H(z) = \frac{z^{-1} - z^{-2}}{1 - 1.27z^{-1} + 0.81z^{-2}}$$

Group and phase delay

Remark: In videos/old lecture notes/book, the material on group delay is incomplete and becomes confusing

Group and phase delay

Motivation:

We have seen that a pure tone becomes phase delayed after a filter

Any interesting signal comprices several tones

What if these would be phase delayed differently?

Group and phase delay

Motivation:

We have seen that a pure tone becomes phase delayed after a filter

Any interesting signal comprices several tones

What if these would be phase delayed differently?

For example: Human speech has frequencies 20-5000 Hz

If we filter a sound signal, we would like all frequencies to be phase delayed equally much

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$
 (ignore transients)

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

We know
$$y(n) = A(\omega_0)\sin(\omega_0 n + \Phi(\omega_0))$$

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

We know
$$y(n) = A(\omega_0) \sin(\omega_0 n + \Phi(\omega_0))$$

$$= A(\omega_0) \sin\left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0}\right)\right)$$

$$P_0\left(n+\frac{\Gamma\left(\omega_0\right)}{C}\right)$$
 Mai

Manipulation

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

We know
$$y(n) = A(\omega_0) \sin(\omega_0 n + \Phi(\omega_0))$$

$$= A(\omega_0) \sin\left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0}\right)\right)$$

Time-Delay Tolerable if equal for all wo

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$x(n) = \sin(\omega_0 n)$$

We know
$$y(n) = A(\omega_0) \sin(\omega_0 n + \Phi(\omega_0))$$

$$= A(\omega_0) \sin\left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0}\right)\right)$$

$$\frac{\Phi(\omega_0)}{\omega_0}$$
 equal for all w₀ if $\Phi(\omega_0)$ is a straight line

Group and phase delay

$$x(n) \longrightarrow H(\omega) = A(\omega)e^{j\Phi(\omega)} \longrightarrow y(n)$$

$$\Phi(\omega_0)$$
 = $C \omega_0$ Linear phase filter

$$y(n) = A(\omega_0)\sin(\omega_0 n + \Phi(\omega_0))$$

$$y(n) = A(\omega_0)\sin(\omega_0 n + \Phi(\omega_0))$$
$$= A(\omega_0)\sin\left(\omega_0 \left(n + \frac{\Phi(\omega_0)}{\omega_0}\right)\right)$$

$$\frac{\Phi(\omega_0)}{\omega_0}$$
 equal for all w₀ if $\Phi(\omega_0)$ is a straight line

Group and phase delay

$$h(n) = \left\{ \begin{array}{ccc} 1 & 2 & 1 \end{array} \right\}$$
 Linear phase filter?

 $\Phi(\omega_0)$ = $C \omega_0$ Linear phase filter

Group and phase delay

$$h(n) = \left\{ \begin{array}{cc} 1 & 2 & 1 \end{array} \right\} \quad \mbox{Linear phase filter ?}$$

$$H(\omega) = 1 + 2 {\rm e}^{-{\rm j}\omega} + {\rm e}^{-{\rm j}2\omega}$$

 $\Phi(\omega_0)$ = $C \omega_0$ Linear phase filter

Group and phase delay

$$h(n) = \left\{ \begin{array}{ll} 1 & 2 & 1 \end{array} \right\}$$
 Linear phase filter?
$$H(\omega) = 1 + 2 \mathrm{e}^{-\mathrm{j}\omega} + \mathrm{e}^{-\mathrm{j}2\omega}$$

$$= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(\mathrm{e}^{\mathrm{j}\omega} + 2 + \mathrm{e}^{-\mathrm{j}\omega} \right)$$

$$\Phi(\omega_0)$$
 = $C \omega_0$ Linear phase filter

Group and phase delay

$$h(n) = \left\{ \begin{array}{l} 1 & 2 & 1 \end{array} \right\} \quad \text{Linear phase filter ?}$$

$$H(\omega) = 1 + 2e^{-j\omega} + e^{-j2\omega}$$

$$= e^{-j\omega} \cdot \left(e^{j\omega} + 2 + e^{-j\omega} \right)$$

$$= e^{-j\omega} \cdot (2 + 2\cos(\omega))$$

 $\Phi(\omega_0)$ = $C \omega_0$ Linear phase filter

Group and phase delay

$$h(n) = \left\{ \begin{array}{l} 1 & 2 & 1 \end{array} \right\} \quad \text{Linear phase filter ?}$$

$$H(\omega) = 1 + 2\mathrm{e}^{-\mathrm{j}\omega} + \mathrm{e}^{-\mathrm{j}2\omega}$$

$$= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(\mathrm{e}^{\mathrm{j}\omega} + 2 + \mathrm{e}^{-\mathrm{j}\omega} \right)$$

$$= \mathrm{e}^{-\mathrm{j}\omega} \cdot (2 + 2\cos(\omega))$$

$$= A(\omega) \cdot \mathrm{e}^{\mathrm{j}\Phi(\omega)}$$

 $\Phi(\omega_0)$ = $C \omega_0$ Linear phase filter

Group and phase delay

$$h(n) = \left\{\begin{array}{ll} 1 & 2 & 1 \end{array}\right\} \quad \text{Linear phase filter?}$$

$$H(\omega) = 1 + 2\mathrm{e}^{-\mathrm{j}\omega} + \mathrm{e}^{-\mathrm{j}2\omega}$$

$$= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(\mathrm{e}^{\mathrm{j}\omega} + 2 + \mathrm{e}^{-\mathrm{j}\omega}\right)$$

$$= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(2 + 2\cos(\omega)\right) \quad \text{Non-negative.}$$
 NOT ENOUGH IF REAL-VALUED
$$= A(\omega) \cdot \mathrm{e}^{\mathrm{j}\Phi(\omega)}$$

$$\Phi(\omega_0)$$
 = $C \omega_0$ Linear phase filter

Group and phase delay

$$\begin{split} h(n) &= \left\{ \begin{array}{l} 1 & 2 & 1 \end{array} \right\} \quad \text{Linear phase filter? YES.} \\ H(\omega) &= 1 + 2\mathrm{e}^{-\mathrm{j}\omega} + \mathrm{e}^{-\mathrm{j}2\omega} \\ &= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(\mathrm{e}^{\mathrm{j}\omega} + 2 + \mathrm{e}^{-\mathrm{j}\omega} \right) \\ &= \mathrm{e}^{-\mathrm{j}\omega} \cdot \left(2 + 2\cos(\omega) \right) \\ &= A(\omega) \cdot \mathrm{e}^{\mathrm{j}\Phi(\omega)} \end{split}$$

$$\Phi(\omega) = -\omega$$

 $\Phi(\omega_0)$ = $C \omega_0$ Linear phase filter

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$

Not the same. Book is highly unclear about what this is

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$

$$\frac{\Phi(\omega_0)}{\omega_0}$$
 Constant

All wo have same delay

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$
 = constant

$$\frac{\Phi(\omega_0)}{\omega_0}$$
 Constant

All wo have same delay

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$
 = constant

$$\frac{\Phi(\omega_0)}{\omega_0} \, \, \frac{\text{Not}}{\text{Constant}}$$

All w₀ don't have same delay

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$

What is group delay? Assume $x(n) = A(n) \sin(wn)$

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$

What is group delay? Assume $x(n) = A(n) \sin(wn)$

sin(wn) acts as a carrier frequency

A(t) is a data signal. Assumed that A(n) changes slowly compared with sin(wn)

Group and phase delay

Definition
$$\tau_g = -\frac{\mathrm{d}\Phi(\omega)}{\mathrm{d}\omega}$$

What is group delay? Assume $x(n) = A(n) \sin(wn)$

sin(wn) acts as a carrier frequency

A(t) is a data signal. Assumed that A(n) changes slowly compared with sin(wn)

Output is $y(n) = |H(w)|A(n-\tau_g) \sin(w(n-\tau_p))$

Group delay is NOT in the core of the course