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EITF75, z-transform
Definition

The z-transform of is 
defined as

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2

What is the z-transform?
• A map from sequences to  

complex valued functions
What is H(z)?
• A complex function of a 

complex number

1 2 3
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IllustrationRe{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}
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Im{H(z)}

1

Re{z}

Im{z}
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Im{H(z)}

1

Important: h(n) and H(z) contain the
same information

Ht han

2 is complex
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Magnitude of H(z) is typically shown
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Im{z}

|H(z)|

Im{H(z)}

1

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2



HEE qhlmän
seat Z trans

omhl.nlHA hlolthLDZ hl27 EE
as s.hn is causal

Sdh too Htt I o 1

Sdn k E 010
Ipos

Htt z
K

Hh E e
JCM hln.tl

YA 2 yen Éhk HAI n

han E É
00

É Htt
hln 221 3t2É t.IR

hk I 321 z t.lt 3z tt2E2 z
3



Important um

O O O O

h1n1 vin Hl 1 10 0
no n

HA 2h1m En
h A

HA 2 En geon series
A 0

oo

if 12 1 1
I É

1 I
1

1 E

hln In HA 17171

Region of convergence
ROC



Important

Ä
00000 Ön

1111
anti causal step

Éäven DEN

DEN ÉÉ ö

Å ätt I

f 1714 ROC
ROC lZ

g

transform Rocfunction

n 121 I

utan 1 Akt

equal



hlnt ah.vn oo 144

Ilie
1471HL ÉoäÉ
Http

EGET
n 0

I
I

if
fattat

Result Homework

HA HA L
1 az 1 at

ROC 121 Iaf Halal hint



EITF75, z-transform
Some general rules about the ROC

X(z) = . . .+x(�1001)z1001+x(�1000)z1000+. . .+x(0)+. . .+x(1000)z�1000+x(1001)z�1001+. . .

1

Here is a formula for X(z) emphasizing x(n) far away from n=0
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EITF75, z-transform
Some general rules about the ROC

X(z) = . . .+x(�1001)z1001+x(�1000)z1000+. . .+x(0)+. . .+x(1000)z�1000+x(1001)z�1001+. . .

1

Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be causal

If X(z) exists (meaning that it is not infinity) then this cannot be too large

Thus, z, cannot be too small. 

How small? Depends on x(n) 

FN



EITF75, z-transform
Some general rules about the ROC
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1

Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be causal

If X(z) exists (meaning that it is not infinity) then this cannot be too large

Thus, z, cannot be too small. 

Hence, the ROC says that
”z should be larger than something”

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

ROC is outside disc

ROC

Roc
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Some general rules about the ROC
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1

Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be anti-causal
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EITF75, z-transform
Some general rules about the ROC
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Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be anti-causal

If X(z) exists (meaning that it is not infinity) then this cannot be too large

Thus, z, cannot be too large. 

Hence, the ROC says that
”z should be smaller than something”

Re{z}

Im{z}

Re{H(z)}
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Re{z}

Im{z}
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ROC is inside disc
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EITF75, z-transform
Some general rules about the ROC

X(z) = . . .+x(�1001)z1001+x(�1000)z1000+. . .+x(0)+. . .+x(1000)z�1000+x(1001)z�1001+. . .

1

Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be neither

If X(z) exists (meaning that it is not infinity) then these cannot be large

Thus, z, cannot be too large or too small 

t

p



EITF75, z-transform
Some general rules about the ROC

X(z) = . . .+x(�1001)z1001+x(�1000)z1000+. . .+x(0)+. . .+x(1000)z�1000+x(1001)z�1001+. . .

1

Here is a formula for X(z) emphasizing x(n) far away from n=0

Assume x(n) to be neither

If X(z) exists (meaning that it is not infinity) then these cannot be large

Thus, z, cannot be too large or too small 

Hence, the ROC says that
”z should be smaller than something,
but larger than something else”

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

ROC is the white area

w



EITF75, z-transform
Summary: What is the general shape of the ROC?

Causal signal Anti-causal signal Neither/Mix

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

Re{z}

Im{z}

Re{H(z)}

Im{H(z)}

1

ROC

ROC

ROC



EITF75, z-transform

Homework

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

o 9191

Including ROC



EITF75, z-transform

If we are given an X(z), and assume that the signal 
x(n) is causal, then we can be a bit sloppy with the 
ROC

This is what we do in this (most) of this course

In other words. There could be many x(n) for the 
same X(z), and the ROC specifies the particular one. 
However, there is only one that is causal.

Convention



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

x5(n)

x6(n)

x7(n)

Assume a bunch of
different sequences

Sequence Transform ROC



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

x5(n)

x6(n)

x7(n)

Assume a bunch of
different sequences

X1(z)

X2(z)

X1(z)

X1(z)

X1(z)

Sequence Transform ROC

X2(z)

X2(z)

Compute their transforms

M

ul n n



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

Assume a bunch of
different sequences

X1(z)

X1(z)

X1(z)

X1(z)

Sequence Transform ROC

Compute their transforms

S
am

e transform

Ignore others



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

Assume a bunch of
different sequences

X1(z)

X1(z)

X1(z)

X1(z)

Sequence Transform ROC

Compute their transforms    and ROCs

RO
Cs

CA
N

N
O

T be sam
e

Ignore others

R1

R2

R3

R4



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

X1(z)

X1(z)

X1(z)

X1(z)

Sequence Transform ROC

RO
Cs

CA
N

N
O

T be sam
e

Exactly one of the ROCs corresponds to a causal signal

R1

R2

R3

R4

Causal

Not
 ca

us
al



EITF75, z-transform
Illustration

x1(n)

x2(n)

x3(n)

x4(n)

X1(z)

X1(z)

X1(z)

X1(z)

Sequence Transform ROC

RO
Cs

CA
N

N
O

T be sam
e

Exactly one of the ROCs corresponds to a causal signal

So, if we know X1(z) and that we work with causal x(n), 
we can establish x4(n) without knowing the ROC

R1

R2

R3

R4

Causal

Not
 ca

us
al
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EITF75, z-transform

Summary: How to solve a difference equation in 6 simple steps
a.k.a recursion
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Step 3:

Find the roots of the 
denominator of H(z)
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EITF75, z-transform

Summary: How to solve a difference equation in 6 simple steps
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Solution to second order di↵erence equations
First order di↵erence equations were solved in chapter 2. Using the z-transform we

can now easily solve higher order di↵erence equations. We solve for n � 0 and assume

that both y(n) and x(n) are zero for negative n (system in rest).

Given a second order di↵erence equation:

y(n)� 1.27y(n� 1) + 0.81y(n� 2) = x(n� 1)� x(n� 2) (40)

We can z-transform each term in the equation and we get (assuming both x(n) and y(n)

are causal).

Y (z)� 1.27z�1Y (z) + 0.81z
�2
Y (z) = z

�1
X(z)� z�2X(z) (41)

Solve for Y (z).

Y (z) =
z
�1 � z�2

1� 1.27z�1 + 0.81z�2
·X(z) =H(z)X(z) (42)

Using tables of formulas for z-transforms we can also easily determine y(n) and h(n).

In most cases we are only looking for the system properties from H(z).

Example: Fibonacci sequence (page 210)
The Fibonacci sequence is a sequence where a value is the sum of the two previous

values.

x(n) =

n
1 1 2 3 5 8 13 . . .

o
(43)

Can we find a closed form equation for this sequence?

y(n) = y(n� 1) + y(n� 2) where y(0) = 1 and y(1) = 1 (44)

Solution using impulse response.

y(n) = y(n� 1) + y(n� 2) + �(n) (45)

Apply the z-transform.

Y (z) = z
�1
Y (z) + z

�2
Y (z) + 1 (46)

=
1

1� z�1 � z�2 (47)

Partial fraction expansion gives

Y (z) =
A1

1� p1z�1
+

A2

1� p2z�1
(48)

where

p1 =
1

2

⇣
1+

p
5

⌘
A1 =

1+
p
5

2
p
5

(49)

p2 =
1

2

⇣
1�
p
5

⌘
A2 = �

1�
p
5

2
p
5

(50)

6

All signals causal
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Next lecture…


