EITF75 Systems and Signals

Lecture 2
LTI systems: convolutions,
impulse responses (and more)

Fredrik Rusek
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LTI systems. recap
A system is LTI if-and-only if:

x(n) —> system —>y(n)| |+ TItis linear
 Itis time-invariant

Linear system Time invariant system
x(n) = axi(n) + Pra(n) x(n) replaced by x(n — D)
— <~
y(n) = ayi (n) + Bya(n) y(n) replaced by y(n — D)

7 J
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LTI systems Today we will show that these are equivalent

z(n)— LTL |—y(n)

We start here

Alt method at the end

|

(V/C C. Q/@(_ For some h(k)

v Conval vivem

> ak)y(n—k) = b(0)z(n - ¢) Fl friag
k Y4

For some a(k), b(k)
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A system is LTI if-and-only if:
z(n) —> s:jszm —>y(n)| |+ TItis linear
« It is time-invariant
&(n)
Input signal Output signal 7
S(n) h(n) Impulse 7esponse s&%’"""
d(n-k) h(n-k) LTL
X(i)- 5 (n-0) Mhin-©) 7y .
X(“\’? X (k) S(n-k) ZX(UL\(M—H LTI
k . = C_Ovlvo’m"\
= ¢l w) = 3 X(k) h(n-k)
é-—a:
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Summar'y

([ —’)

h(n) |— )

Input/Output relation
(Convolution)

=Y " a(k)h(n -

Short-hand notation

- [@’Aﬁw

y(n)

= x(n) * h(n)

B
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Next (Today)

Get familiar with y(n) = x(n) * h(n) through some examples

For what h(n) do we have BIBO stability?

Prove equivalence between h(n) and Z a(k)y(n — k) = Z b(0)x(n — £)
0

Some notes on correlation functions

In the long run (Loosely speaking)

Study ) "a(k)y(n—k) => b(@)x(n—¢) in detail via z-transform, and 2 types
k ¢ of Fourier transforms

The sampling-reconstruction issues
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Given: Input signal and impulse response

z(n)={24642}

h(n) ={321}
Find: Output signal y(n) = Z x(k) . h(n — k)
k
“Home work 1" “Home work 2" “Home work 3"
Verify that causal x(n) and causal If x(n) starts at -3, and h(n) at -4. etc

h(n) yields causal y(n) When does y(n) start?



EITF75 Systems and Signals

Example Three more methods
Method 1

Given: Input signal and impulse response WA= °

r(n)={24642}

A(n) = {321} "7

Find: Output signal y(n) = Y (k) - h(n — k)
k

=\
. \AU:)
W)™

=3z(n) +2zx(n—1) + x(n — 2)
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Example Three more methods
Method 1

Given: Input signal and impulse response n=o0

x(n)={24642} “?sz {52‘:@

Lh(n) = {321}

([ 2 3
Find: Output signal y(n) = Zx(k’) . h(n — k) 1 = BL u 6 12
n ~

_ _ _ “W s le
y(©) 3z(n)+2zx(n—1) + x(n — 2) . <l
n=1_ = @
— h(0—k) 1 213l 0 o0 o o ) 1)

x(k) O o|2/4 6 4 2

h(0 —k)x(k) 6 ) =6=y(0)
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Example Three more methods
Method 1

Given: Input signal and impulse response

z(n)={24642}

h(n) ={321}

Find: Output signal y(n) = Y (k) - h(n — k)
k

=3z(n) +2zx(n—1) + x(n — 2)

n=1

S}
IS8

h(l—-k) 1
x(k)

[t
e
o
e
()

h(1 —k)x(k) 4 12 Yy =16=yp(1)
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Example Three more methods
Method 1

Given: Input signal and impulse response

z(n)={24642}

h(n) ={321}

Find: Output signal y(n) = Y (k) - h(n — k)
k

=3z(n) +2zx(n—1) + x(n — 2)

n=2

e
P
[}
W
(o)
W
ro
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Example Three more methods
Method 1

Given: Input signal and impulse response

z(n)={24642}

h(n) ={321}

Find: Output signal y(n) = Y (k) - h(n — k)
k

— —1 —
, 3z(n) + 2x(n —1) +Q:§:(7£ : 7)) e
n=5 g ‘ Y (e) #
N~ | . z 3, -
11(3—]\’) 1 Z ’_5 - | a (;),’o
V\;Z\“.) =10 x(k) 2 4 6 4 @ ! »
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Given: Input signal and impulse response

z(n)={24642}

h(n) ={321}

Three more methods
Method 2

Put numbers in a table and multiply

(>

4

6

4

2 xX(wn)

(]

h(w

@)
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Example Three more methods
Method 2

Given: Input signal and impulse response

z(n)={24642}

h(n) — {3 2 1} Put numbers in a table and multiply
2 4 6 4 2
3 6 12 18 12 6
2 4 8 12 8 4
1 2 4 6 4 2
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Example Three more methods
Method 2

Given: Input signal and impulse response
z(n)={24642}

h(n) — {3 2 1} Sum the diagonals
4 6 4

[ho
)

(3 ](

/
/

|

(]

//
//
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Example Three more methods
Method 2

Given: Input signal and impulse response _2
-
r(n)={24642} 5 o 2
h(n)={321} 3 y(n) = {6 16 28 28 20 8 2}
D 4 6 4 2

16 28 28 20 Result

E
//
//

3 |

(]

/
//
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Make sure that you understand why a convolution
of a length K signal with a length L signal has length K+L-1

e
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Three more methods

Method 3: Analytical solution

1 " e —— o
H hin) >0 ,¥n2o
3 o I) [ Y T C“)
‘ l _ 11y, ? X (W) — :ti—-(%i\u("‘\ -5
Y(n = S x(Hhv-k) = 2 hik)x-k) = - o
k=-00 \OY - k=-c 2 a = l-a
e lc =
h-k = lc / k = ‘( = %cof"\- sSerics
P k nook 1-(;')M 2
= Z LLZ) O(k) vu(n-k) = kZ ('{) = 1 = 2"'Gz> N 2zo
lc:'ﬁ °
[») ( <0
o< 8 G
() = {1-@"°, nwo = AV
(6' i o , neo ég \a_(vﬂ = L’L _L)JULV"
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Standard Properties

Commutativity

r1(n) x x2(n) = x9(n) * x1(n)

Associativity

z1(n) * [2a(n) x z3(n)] = [21(n) * 22(n)] * 23(n)

Distributivity

r1(n) * [zo(n) + x3(n)] = x1(n) x x2(n) + x1(n) * £3(N)




EITF75 Systems and Signals

z1(n) * x2(n) = x2(n) x x1(n) | Commutativity

z1(n) x [x2(n) * x3(n)] = [x1(n) * x2(N)] * £3(n) | Associativity

r1(n) * [z2(n) + x3(n)] = x1(n) x x2(n) + 1(n) * £3(n) | Distributivity

Some consequences

z(n)—= h(n) |—yn)| < |h(n) =] =z(n) [—yn)
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z1(n) * x2(n) = x2(n) x x1(n) | Commutativity

z1(n) x [x2(n) * x3(n)] = [x1(n) * x2(N)] * £3(n) | Associativity

r1(n) * [z2(n) + x3(n)] = x1(n) x x2(n) + 1(n) * £3(n) | Distributivity

Some consequences

z(n)=| hn) |—=| ho(n) |—yn)|<=|z(n)—| h(n) = hi(n)xhs(n) > y(n)

TV‘} ) T‘\zw{ oV -
whichh  properties w\wen

weve uqec(
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z1(n) * x2(n) = x2(n) x x1(n) | Commutativity

z1(n) x [x2(n) * x3(n)] = [x1(n) * x2(n)] * 3(N)

Associativity

r1(n) * [z2(n) + x3(n)] = x1(n) x x2(n) + 1(n) * £3(n) | Distributivity

Some consequences

z(n)— —yn) | <= |z(n)=f h(n) = hi(n) + ha(n) [ y(n)
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BIBO stability

A system is BIBO stable if |aj(n)‘ <M, = |y(n)\ < My < 00

e LTT
[40)]= S x(k) h(n-k) la+b] = |a] + b
b= —0o
¢ 2 |x(hlw-B) = S x| h(n-1)
k=-0 le=-e éMK
N P>~
& M, 2 |hn-B)| = M, 2 k(L)
lt:-b L-=-¢D

A LTI sysben 05 shle PP Zln() <
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LTI systems Today we will show that these are equivalent

z(n)— LTL |—y(n)

R \

For some h(k)

v

We now show this

> ak)y(n—k)=>_ b()z(n— 1)
Y4

k

For some a(k), b(k)
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Relation to difference equations

k

> ak)y(n—k)=>_b()z(n— 1)
Y4

assvywal

ale)= 7' k=° bld) - © 252, &<o
o ke 40

Resu l4:
L -~

ta'(n) = Z b(‘Q')X(VL"K.) O\QP, ConuoluNen
=0
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Relation to difference equations

> ak)y(n—k)=>_b()z(n— 1)
Y4

k

Considernow  a(0) =1, a(1) =a; b(0) = by

Wethenget  y(n) = —a1y(n — 1) + boz(n)

4(0) = - o y(-) + bex(0)
\30) = = O\'j(o) + by x(1) = = (—0\.)1}(4)—\- b, x(1) + (==, )b, x(0)

‘}(2’) = = 0\\\3(') & bo ’((7/) =...= (‘0‘\)}3(") +box(2) (—a)boxlD) +
< L—c\t)Lbb X(_O)
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ey - e -
Relation to difference equations IR Flter . {“ P. resp hlv)
o

(af doretion
> ak)y(n—k)=>_b(O)z(n—10) | FIR fifte  ROW) of fuke
& £ d e Y
(-1)= O : No ihital
Considernow  a(0) =1, a(1) =a; b(0) = by ¢ C:"ti::’v‘m{_
rest

We then get y(n) — —aly(n — 1) + bogj(n) ta(_‘) 40 1 Has inital cond,
noe+ ot rest

Pattern recognition, suitably done at home, gives

n 4 X~

ylm) = 3 (o) toaln =)+ () M)y e
k
\aU\\ = % h(k) XU\-I‘), hik) = E&') bo UU{') 2
k= -0 Mie: hik) 20 vle2o




EITF75 Systems and Signals /

KW)=0 (W)=0
Yn) | <) g ) (al>

AN LTI SYSTEM “A" is equivalent to R —
A CONVOLUTION WITH IMPULSE RESPONSE "h(n)" which is equivalent to
A RECURSION EQUATION WITH COEFFICIENTS “a(k), b(k)"

. (, k=o . .
e ol - ’10( ol |ue gi‘fﬁ@”

4'
z(n)—s| LTL |—y(n)|4— y(n) =Y x(k)-h(n— k)

I / 6(“):;" (__o\)nﬂal—l)
o —>[uz)— o

> ak)y(n—k)=>_ b()z(n— 1)
k ) b«E] — (=a) 9t

No+ st (:'HS LTT
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Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals
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Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation Cross correlation
rex(k) = ) x(n)z(n—k) =x(n) xz(-n)| ry(k) = > y(n)z(n—k) = y(n) *z(—n)

Measures similarity between time shifted =~ Measures similarity between time shifted
versions of the same signal versions of different signals
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Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation Cross correlation
ree(k) = ) x(n)z(n—k) =z(n)xz(-n)| ry(k) = Y ym)z(n—k) = y(n) xz(-n)
Measures similarity between time shifted =~ Measures similarity between time shifted
versions of the same signal versions of different signals
Example: 56 communication system When a user (UE) wants to connect,
s x1(n) it sends a known signal, x;(n) or x,(n) oo ®

®
UE1 WfBSI
(-]
e
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Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation Cross correlation
ree(k) = ) x(n)z(n—k) =z(n)xz(-n)| ry(k) = Y ym)z(n—k) = y(n) xz(-n)
Measures similarity between time shifted =~ Measures similarity between time shifted
versions of the same signal versions of different signals
Example: 56 communication system When a user (UE) wants to connect,
e (R) s x1(n) it sends a known signal, x;(n) or x,(n) e0®®

UE: W' BSI
°
o

x2(n)

Cross correlation between x;(n) and x,(n) should be small (to know who is connecting)
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Brief info on correlation

Not focal point of course, but highly important in signal processing

Correlation measures similarity between two signals

Auto correlation Cross correlation
ree(k) = ) x(n)z(n—k) =z(n)xz(-n)| ry(k) = Y ym)z(n—k) = y(n) xz(-n)
Measures similarity between time shifted =~ Measures similarity between time shifted
versions of the same signal versions of different signals
Example: 56 communication system When a user (UE) wants to connect,
v (R) s x1(n) it sends a known signal, x;(n) or x,(n) e0®®

UE: W' BSI
°
o

x2(n)

Auto correlation of x;(n) (and x,(n)) should be delta (to know when a user is connecting)
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Brief info on correlation

Cross correlation for input and output signals

z(n)— h(n) |—y(n)

Tyy(k) = y(k) *y(—k)
= x(k) x h(k) x x(—k) x h(—k)

= Thh(k) * me(]{?)




Appendix

A system is LTI if-and-only if:
r(n)— —>y(n)| |- Itislinear

sys'rem . . A o
e It is time-invariant

Method II (not in book, but I find it illuminating)

Input x(n): A sequence of numbers Output y(n): A sequence of numbers

..., 04, 03,12, 08, ... ..., —0.6, —0.34, 3.8, —1.8, ...

In the Linear algebra course, how did we
represent a sequence of numbers?

L(W&o\l a\ﬁ{b'f\o\ :“ EI(TEF?S — T1 :
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LTI
system

—> y(n)

A system is LTI if-and-only if:
« TItislinear
e It is time-invariant

Method II (not in book, but I find it illuminating)

Input x(n): A sequence of numbers
..., 0.4, —0.3, 1.2, 0.8, ...

Output y(n): A sequence of numbers

..., —0.6, —0.34, 3.8, —18, ...

In the Linear algebra course, how did we
represent a sequence of numbers? With a vector

ouT

—0.6
—0.34
3.8
—1.8

IN

0.4
-0.3
1.2
0.8
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A system is LTI if-and-only if:
r(n)— —>y(n)| |- Itislinear

sys‘rem . . A o
e It is time-invariant

Method II (not in book, but I find it illuminating)

IHPUT x(n): A sequence of numbers Ou‘l’pu‘r y(n): A sequence of numbers
., 04, —0.3,12,08, ... ., —0.6, —0.34, 3.8, —1.8, ...

In the Linear algebra course, how did we
represent a sequence of numbers? With a vector

ouT IN . .
_ - _ - Why is the linear algebra course
o e dealing so much with matrices?
—0.6 0.4
-0.34 | —0.3
3.8 B 1.2
—1.8 0.8
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
e It is time-invariant

Method II (not in book, but I find it illuminating)

IHPUT x(n): A sequence of numbers Ou‘l’pu‘r y(n): A sequence of numbers
., 04, —0.3,12,08, ... ., —0.6, —0.34, 3.8, —1.8, ...

In the Linear algebra course, how did we
represent a sequence of numbers? With a vector

ouT IN , ,
_ - _ - Why is the linear algebra course
o e dealing so much with matrices?
—0.6 0.4 Because every linear function can
—0.34 | _ A —0.3 be represented by a matrix
3.8 1.2
—1.8 0.8
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z(n)—f{ LT
system

—> y(n)

A system is LTI if-and-only if:

« TItislinear
e It is time-invariant

Summary so far: A linear system can be represented as

where x =

[ z(0)

z(1)
z(2)

y(0) |
y(1)
y(2)

y = Ax
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z(n)—f{ LT
system

—> y(n)

A system is LTI if-and-only if:
It is linear
It is time-invariant

A linear system can be representedas y = Ax

where x =

[ z(0)

z(1)
z(2) | Y=

y(0) |
y(1)
y(2)

But, our system is LTI, not only linear,
so this imposes restrictionson A
i.e., Awust have a special structure
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A system is LTI if-and-only if:
x(n)—{ LTI —> y(n)  TItislinear
It is time-invariant

A linear system can be representedas y = Ax

[ y(0) ] [ Ay A Ais oo | 2(0) ]
y(1) Ay Agp Axz .- z(1)
y(2) | =| As1 Ay Aszz - z(2)

Let us understand this special structure
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zr(n)—| LM — y(n)

A system is LTI if-and-only if:

It is linear
It is time-invariant

A linear system can be representedas y = Ax

[ y(0) ] [ A A Az - 1T
y(1) Ay Agp Axz .- 0
y(2) | 7| As1 Asy Azz - 0

Let us understand this special structure

Assume z(n) = §(n)
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z(n)—f{ LT
system

—> y(n)

A system is LTI if-and-only if:

It is linear
It is time-invariant

A linear system can be representedas y = Ax

A | A2 Az - | T
Ao | Aa Ags - 0
Asgi | A2 Aszz - 0

Let us understand this special structure

Assume z(n) = §(n)

The output must be
the first column of
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—> y(n)

A system is LTI if-and-only if:

It is linear
It is time-invariant

A linear system can be representedas y = Ax
[ y(0) ] [ A1 A Az - [T 0]
y(1) Agy Age Ao 1
y(2) | 7| As1 Ay Azz - 0

Let us understand this special structure

Assume z(n) =d(n —1)
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z(n)—f{ LT
system

—> y(n)

A system is LTI if-and-only if:

It is linear

It is time-invariant

A linear system can be represented as

A1 A2
As1 |Aa
Az | Aso

y = Ax

0

1
0

Assume z(n) = d(n — 1)

The output must be
the second columnof A

Let us understand this special structure
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
It is time-invariant

[ A | An| Az Az o T 1] Now recall that system
Ax Agi| Azp Azz -+ 0 is time-invariant
A1 | =|| Az Az Aszz - || O Implication?
Ajs Ay |Ar2 | Ass [0
Az Az |Aza | A2 1
Ay | =| As1 |Aszz| Ass 0
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LTI
system

—> y(n)

A system is LTI if-and-only if:
It is linear
It is time-invariant

A1l Apo
Ao1| Aao
As1| Aso
A1 |42
Agr |Ag

Aus | L Now recall that system
Az - 0 is time-invariant
fleg oo 0 Implication?
; The outputs should be
15 - The same, but one step
delayed
A1z 1707
A23 1
Ass
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
It is time-invariant

[ A | A A Az oo 11 Now recall that system
Az Agy Agp Az - 0 is time-invariant
Asi | =| As; Azy Asg -+ || 0 Implication?
: ) ) . ) : The outputs should be
Lo R : : s - The same, but one step

delayed

i.e.

=
S
'
S
'
N
'
&
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
It is time-invariant

[ A | An o A Ay o 1 Now recall that system
A A9y Agg Az -+ || O is time-invariant
As1 | =| Az Aszg Azz - || O Implication?

; ; The outputs should be
- - The same, but one step
delayed

1 | ie. equal values along
all diagonals
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
It is time-invariant

Method II (not in book, but I find it illuminating)

Summary. An LTI system is any discrete-time
system that can be described by

o — L [~ =
y(0) 5|ls x((ll)
y(1) 3|55 [ (1)
— Q||+
vy | = [12[I3][8][E || 5 z(2)
o g >3 Ll s .
. nilsll eIzl o]+ .
. (%) Ello|l>]]9 | : _
- - SIIE ] 2|2
L 3 || §llel _
vl §
V)
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A system is LTI if-and-only if:
r(n)—> SLTI —> y(n) « Itislinear
ystem . . . .
e It is time-invariant

Method II (not in book, but I find it illuminating)

Summary. An LTI system is any discrete-time Alternative formulation

system that can be described by <L>}f (ciour:e—%oal: es of
nderstand properties o

a matrix of the form

p— — L_
B 5 L
ORI +(0) 8[|
—
o | |18(18l5]z (1) 318(5|I2
2) | = ||l 2[I5]|e]l = z(2) off>3[|= |5
& E“’gtgL §”>8+L
HIERIFN R : A5l ][> 8]]L
. Nl 0|+ ello | 2T
. WEN>8 . WUEN@
- - SlIE| 0|2 L o | |5 >
Nills £
EN = Wg“’__
- nlls _ g
£ "))
Vs (5]
(s n
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LTI
()= hem [V

—

—

The LTI system is FULLY characterized
by one vector/sequence of numbers/discrete signal

|

[ y(0) ] S|l
(1) 8|[5]|5
ol = I5]18](8
y() Ew%’
: S||El| e
L i w||§
(Vp]

-

-513(0)-

- (1)
2l 117(2)
5112
>3 X
QIil>]]9Q
Bl |-

ol _

'p]




