

Schedule:

Lectures, F. Rusek, E:2377 12 lectures, 2/week 1 old exam solving 1 reserve

Exercises, G. Tian (E:2367), A. Sheikhi (E:2366) 14 exercises, 2/week

Labs, G. Tian, A. Sheikhi 2 Labs

Self-study time 96 hours

- Write clearly! If I cannot read what you write, I will consider it as not written at all. My decision on this matter is final, you cannot argue that I should have been able to read it later.
- It is important to show the intermediate steps in arriving at an answer, otherwise you may lose points.
- 3. When generating problems of the True/False form, I use Matlabs random number generator.
- 4. Providing two answers to a problem, where one of them is wrong, will result in points being deducted. Same holds for side-comments if you make side-comments that are not correct, points may be deducted. Same goes for writing too much about a problem. If you write down everything that you know, with the goal that at least something must be correct, points may be deducted for everything that is wrong.
- 5. Problems are not arranged in an order of ascending difficulty.
- Allowed tools: Pocket calculator, Course book, Lecture slides, printed versions of Nedo's slides.

Allowed tools: Whatever you want to bring that does not have internet access

Two retake exams: April, August

Exam gives maximum 5.0 points

Hand in assignement Nbr 1 (of 2)			
Deadline: September	Deadline: Complete the task, and hand it in in the course mailbox at the third floor no later than September 30, 23.59.		
Observe:	To simplify the grading procedure: - Solve one problem per paper theet - Write your name on weakly paper Statements must be well motivated by reasoning and/or equations Points from the tasks will be added to the examination score Maximum total score (exam + 2 tasks) = $5.0+0.5+0.5+0.5+0.5$ Grading 3 ($c.2p_{\rm P}$), $(c.4-p_{\rm P})$, $(c.4-p_{\rm P})$		
 Indicate which of the following statements are correct and which are false. (5 correct answers out of 6 gives 0.1p). 			
	a. The one-sided z-transform is only used when the signal is causal, since the normal z- transform then reduces to the one-sided.		
	b. The signal $h(n)$ cannot be uniquely obtained from $H(\mathbf{z})$ unless its ROC is specified.		
	c. A causal FIR filter has poles at z=0.		
	d. Even if the signal $h(n)$ is not BIBO stable, its Fourier transform may still exist.		
	e. Any linear system can be represented by an impulse response		
	 If the Fourier spectrum is discrete, it follows that the corresponding signal is time- continuous. 		
2. A	system is given by $v(n) = \frac{1}{2}v(n-1) + nv(n)$		
	$y(n) = \frac{1}{2}y(n-1) + nx(n)$		
	a. Is the system LTI? (0.1)		
	5. Provide the output for the input $x(n) = o(n)$. (0.1)		
	c. For x(n) = (¹ / ₂) u(n), find the z-transform Y(z) of the signal y(n). (0.1)		
	d. Let the output signal y(n) be the input to a FIR filter with impulse response {1,-1/5}. Find the output signal of the FIR filter. (0.1)		

Allowed tools: Whatever you want to bring that does not have internet access

Two retake exams: April, August

Exam gives maximum 5.0 points

There are two hand in assignements, these give 0.5p each

So, total points: 6.0

Grades: 3.0-3.9: 3 4.0-4.9: 4 5.0-6.0: 5

Hand in assignement Nbr 1 (of 2)			
Deadline: Complete the task, and hand it in in the course mailbox at the third floor no later than September 30, 23.59.			
Observe: To simplify the grading procedure: - Solve one problem per paper theet - Write your name on every paper Statements and the well motivated by reasoning and/or equations Points from the tasks will be added to the examination score Maximum total score (exam + 2 msks) = 5.0+0.5+0.5=0.5p Grading 3 (-2.5p), (-0.5p), (-0.5p)			
 Indicate which of the following statements are correct and which are false. (5 correct answers out of 6 gives 0.1p). 			
a. The one-tided z-transform is only used when the signal is causal, since the normal z-transform then reduces to the one-tided.			
b. The signal $h(\mathbf{n})$ cannot be uniquely obtained from $H(\mathbf{z})$ unless its ROC is specified.			
c. A causal FIR filter has poles at z=0.			
d. Even if the signal h(n) is not BIBO stable, its Fourier transform may still exist.			
e. Any linear system can be represented by an impulse response			
 If the Fourier spectrum is discrete, it follows that the corresponding signal is time- continuous. 			
2. A system is given by $y(n) = \frac{1}{2}y(n-1) + nx(n)$			
a. Is the system LTI ? (0.1)			
b. Provide the output for the input $x(n) = \delta(n)$. (0.1)			
c. For $x(n) = \left(\frac{1}{2}\right)^n u(n)$, find the z-transform $Y(z)$ of the signal $y(n)$. (0.1)			
d. Let the output signal y(n) be the input to a FIR filter with impulse response {1,-1/5}. Find the output signal of the FIR filter (0.1)			

Allowed tools: Whatever you want to bring that does not have internet access

Two retake exams: April, August

Exam gives maximum 5.0 points

There are two hand in assignements, these give 0.5p each

So, total points: 6.0

Points from hand-in assignements valid for 1 year, i.e., the October, April, and August exams

Hand in assignement Nbr 1 (of 2)			
Deadline: September 3	Complete the task, and hand it in in the course mailbox at the third floor no later than 0, 23.59.		
Observe:	To simplify the grading procedure: Solve one problem per paper theet Write your name on every paper Statement number will motivated by reasoning and/or equations Points from the tasks will be added to the examination score Maximum total score (asum + 2 task) = 2.0+0.5+0.5=6.0p Grading 3 (-2.0p), (-(-3.p), (-(-3.p))		
1. Indi ansi	icate which of the following statements are correct and which are false. (5 correct wers out of 6 gives 0.1p).		
,	 The one-sided z-transform is only used when the signal is causal, since the normal z- transform then reduces to the one-sided. 		
1). The signal $h(n)$ cannot be uniquely obtained from $H({\boldsymbol{z}})$ unless its ROC is specified.		
0	. A causal FIR filter has poles at z=0.		
	i. Even if the signal $h(n)$ is not BIBO stable, its Fourier transform may still exist.		
	. Any linear system can be represented by an impulse response		
f	 If the Fourier spectrum is discrete, it follows that the corresponding signal is time- continuous. 		
2. A sy	ystem is given by		
	$y(n) = \frac{1}{2}y(n-1) + nx(n)$		
	. Is the system LTI ? (0.1)		
1	Provide the output for the input $x(n) = \delta(n)$. (0.1)		
	:. For $x(n) = \left(\frac{1}{5}\right)^n u(n)$, find the z-transform $Y(z)$ of the signal $y(n)$. (0.1)		
	The the entropy simple of all he the input to a FTP filter with impulse surgeon (1, 1/5)		

Allowed tools: Whatever you want to bring that does not have internet access

Two retake exams: April, August

Exam gives maximum 5.0 points

There are two hand in assignements, these give 0.5p each

So, total points: 6.0

Deadline for handing in: end of September, mid-October (see web)

Discrete time signals					
 What is the difference between Continuous signals Discrete signals Digital signals 	Digital signals:				
Continuous signals:					
Discrete signals:					

Discrete time signals

What is the difference between

- Continuous signals
- Discrete signals
- Digital signals

Continuous signals: Simple...

Discrete signals: time is discrete, amplitude is continuous

Essentially not treated in course.

However, the class of digital signals is a subset of the class of Discrete signals, so everything we study applies to digital signals as well

Discrete time signals

What is the difference between

- Continuous signals
- Discrete signals
- Digital signals

Continuous signals: Simple...

Discrete signals: time is discrete, amplitude is continuous

Where does a discrete signal appear in nature?

Nowehere (that I know). All natural signals are continuous/analog.

Discrete signals are man-made.

Examples:

- Read temperature at constant interval
- Read stock-price once/sec
- Read an audio signal 44100 times/sec
- Let a cell-phone read an incoming wave 10000000 times/sec

In all cases (except maybe stock price), the underlying signal is continuous, not discrete

Discrete time signals

What is the difference between

- Continuous signals
- Discrete signals
- Digital signals

Continuous signals: Simple...

Discrete signals: time is discrete, amplitude is continuous

Digital signals come about since it is hard for a computer to store all possible values. So it quantizes them.

We will briefly touch upon the losses involved in quantization

How we express a discrete signal

$$x(n) = \sin\left(2\pi \frac{1}{8}n\right) \approx \{\dots -1 - 0.7 \ \underline{0} \ 0.7 \ 1 \ 0.7 \ \dots\}$$

The bar below "0" marks that this is at time n=0

$$x(n) = \{\underline{1} \ 4 \ 1\} = 1 \cdot \delta(n) + 4 \cdot \delta(n-1) + 1 \cdot \delta(n-2)$$

$$x(n) = \{\underline{1} \ 4 \ 1\} = 1 \cdot \delta(n) + 4 \cdot \delta(n-1) + 1 \cdot \delta(n-2) = \sum_{k} x(k)\delta(n-k)$$

Some recap, notation and other basics

Some important discrete signals and concepts

Systems: delay

Expression

$$y(n) = x(n-1)$$
 $x(n) \rightarrow z^{-1} \rightarrow y(n)$

Some recap, notation and other basics In general, a signal y(n) generated from $x(n) {\rm via} ~~ \oplus ~ z^{-1}$, can be mathematically described by $\sum_{k} a(k)y(n-k) = \sum_{\ell} b(\ell)x(n-\ell)$ We will study this type of systems in detail

Some recap, notation and other basics

Energy of signal

$$E = \sum_{n} |x(n)|^2$$

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2$$

Ohm's law: $U = R \cdot I$ Power of signal: $P = U \cdot I$

One measures the voltage using some equipment. Said equipment has a resistance, R, which does not change when the voltage changes.

Therefore, the power of two signals can be fairly compared using the square law.

Some recap, notation and other basics

Some recap, notation and other basics Energy of signal Average power of signal $P = \frac{1}{N} \sum^{N-1} |x(n)|^2$ $E = \sum |x(n)|^2$ nn=0In words: Odd symmetry Even symmetry The output at time 10⁶ depends on the input at x(n) = x(-n)x(n) = -x(-n)time 0 Infinite Memory Finite Memory y(n) depends on $x(n), x(n-1), \ldots, x(n-L)$ y(n) depends on but not on x(n - L - 1), x(n - L - 2), ... $x(n),\ldots,x(-\infty)$

$$\begin{split} y(n) &= 0.5 \cdot y(n-1) + x(n) \\ \text{We will study why later....} \end{split}$$

Some recap, notation and other basics

Linear system

$$x(n) = \alpha x_1(n) + \beta x_2(n)$$
$$\iff$$
$$y(n) = \alpha y_1(n) + \beta y_2(n)$$

$$x(n) \rightarrow system \rightarrow y(n)$$

Some recap, notation and other basics Linear system $x(n) = \alpha x_1(n) + \beta x_2(n)$ \iff $y(n) = \alpha y_1(n) + \beta y_2(n)$

$$x(n) \rightarrow system \rightarrow y(n)$$
Time invariant system
$$x(n) \text{ replaced by } x(n-D)$$

$$\iff$$

$$u(n) \text{ replaced by } u(n-D)$$

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi F t - \Phi)$$

- A Amplitude
- F Frequency [Hz]
- Φ Phase [Rad]

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi F t - \Phi)$$

- A Amplitude
- F Frequency [Hz]
- Φ Phase [Rad]
- $T = F^{-1}$ Period [s]

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi F t - \Phi) = A \cdot \sin(\Omega t - \Phi)$$

- A Amplitude
- F Frequency [Hz]
- Φ Phase [Rad]
- $T=F^{-1} \, \operatorname{Period} \, [s]$

 $\Omega=2\pi F~~{\rm Freg}~{\rm [Rad/s]}$

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi Ft - \Phi) = A \cdot \sin(\Omega t - \Phi) = A \cdot \sin\left(\Omega\left(t - \frac{\Phi}{\Omega}\right)\right)$$

$$A \quad \text{Amplitude}$$

$$F \quad \text{Frequency [Hz]}$$

$$\Phi \quad \text{Phase [Rad]}$$

$$T = F^{-1} \quad \text{Period [S]}$$

$$\Omega = 2\pi F \quad \text{Freq [Rad/s]}$$

$$\tau = \frac{\Phi}{\Omega} \quad \text{Delay [s]}$$

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi F t - \Phi) = A \cdot \sin(\Omega t - \Phi) = A \cdot \sin\left(\Omega \left(t - \frac{\Phi}{\Omega}\right)\right)$$

time (sec)

 $x(n) = A \cdot \sin(2\pi f n - \Phi)$

T

0.4 0.5

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi F t - \Phi) = A \cdot \sin(\Omega t - \Phi) = A \cdot \sin\left(\Omega\left(t - \frac{\Phi}{\Omega}\right)\right)$$

 $x(n) = A \cdot \sin(2\pi f n - \Phi)$

T

0.5

0.4

 Λ^A

time (sec)

Preliminaries of Sinusoids

$$x(t) = A \cdot \sin(2\pi Ft - \Phi) = A \cdot \sin(\Omega t - \Phi) = A \cdot \sin\left(\Omega \left(t - \frac{\Phi}{\Omega}\right)\right)$$

$$x(n) = A \cdot \sin(2\pi fn - \Phi) = A \cdot \sin(\omega n - \Phi)$$

$$f \qquad \text{Digital Freq [-]}$$

$$\omega = 2\pi f \qquad \text{Digital Freq [-]}$$

Preliminaries of Sinusoids

Explanation

$$x(n) = A \cdot \sin(2\pi f n) = A \cdot \sin(2\pi (f' + k)n)$$

$$f = (f' + k), \ -\frac{1}{2} \le f' < \frac{1}{2}, \ k \in \mathbb{Z}$$

Preliminaries of Sinusoids

Explanation

$$x(n) = A \cdot \sin(2\pi f n) = A \cdot \sin(2\pi (f' + k)n) = A \cdot \sin(2\pi f' n)$$

$$f = (f' + k), \ -\frac{1}{2} \le f' < \frac{1}{2}, \ k \in \mathbb{Z}$$

Preliminaries of Sinusoids

$$x(n) = A \cdot \sin(2\pi f'n)$$
$$-\frac{1}{2} \le f' < \frac{1}{2}$$

Important

Discrete sinusoid defined with a frequency of at most $\frac{1}{2}$ (or π rad) in magnitude

(Since higher frequencies than this don't make any sense)

