
EITF75 Systems and Signals 

Some more DFT 

What is 
645275638537458374747857845576578213012365107658014
273651820375647817891457498274584365784236571248684
172394403692032305868704230214928536574812345676574
830109476802058837567382212001039376843492838692329
483285746748239293901092056008076054328762456475867
868457387489436789546738427432659843768578456776876
548257210436903291498547654541859627376578908283675 
            * 
769823768923758241040350524048376572365746572364736
573625748563723657465723654726357463257674326547236
574633265723865743652736574832652738657843652783562
785627856237865873465723865723657286527836527865872
365827652738657326523981524002496084867542736572357
843827489237584672890310927483975653238443027902951 
990240068265668920847567896524123988764536895600263 
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Some more DFT 

For any number  

The sequence {ak} has a z-transform (it is a finite signal) 
 
 
 
Thus,  

To get C: 
• Write down ck without spaces 

To get {ck}: 
• Convolution of long signals 
• Zero-pad 
• Take DFTs 
• Multiply 
• Take IDFT   

If some ck>9: 
• Subtract 10 
• Add 1 to ck+1 

Complexity: Nlog2(N) 
N being size of DFT, i.e., number 
of digits of numbers to be 
multiplied. 
 
Matlab handles N=100000 EASILY 
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Some implementation aspects 

Start with FIR filters 

(notation for difference equation) 

Easy to see that this is an implementation. Direct form I 

Slight problem: If we need to add another zero, all taps change 
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Some implementation aspects 

IIR filters (More to come on FIR filters) 

Same signal 

Direct form II 
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Some implementation aspects 

IIR filters 

Second order filter 

Find the transfer function 
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IIR filters 

Second order filter 

IIR part 

FIR part 

Number of delay elements = max (degree(numerator),degree(denominator)) 
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Some implementation aspects 

IIR filters 

Second order filter 

Assume  processor with clock frequency 1 MHz 
 
At what rate do we output y(n) ? 
 
First we need to do parallell multiplications 
 
Then, can perform parallell additions  
 
Then, another addition 
 
 
 

Clock cycles between updating 
memory elements: 
 
1 + 1 + 1 + … 
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Some implementation aspects 

IIR filters 

Second order filter 

Assume  processor with clock frequency 1 MHz 
 
At what rate do we output y(n) ? 
 
First we need to do parallell multiplications 
 
Then, can perform parallell additions  
 
Then, another addition 
 
Then one more 
 
 
 

Clock cycles between updating 
memory elements: 
 
1 + 1 + 1 + 1 = 4 
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Some implementation aspects 

IIR filters 

Second order filter 

Assume  processor with clock frequency 1 MHz 
 
At what rate do we output y(n) ? 250kHz 
 
Assuming 1 cycle per operation  
(In reality, multiplications are more time 
consuming than additions.) 
 
 
 
 

Clock cycles between updating 
memory elements: 
 
1 + 1 + 1 + 1 = 4 
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Some implementation aspects 

IIR filters 

Second order filter 

Transposition of systems: 
 
For any block diagram, we obtain an equivalent 
if we, 
 
• Reverse direction of each interconnection 
• Reverse direction of each multiplier 
• Change junctions to adders and vice-versa 
• Interchange input and output 
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Some implementation aspects 

IIR filters 

Second order filter 

Transposition of systems: 
 
For any block diagram, we obtain an equivalent 
if we, 
 
• Reverse direction of each interconnection 
• Reverse direction of each multiplier 
• Change junctions to adders and vice-versa 
• Interchange input and output 

 
 
 
 
 

Assume  processor with clock frequency 1 MHz 
 
At what rate do we output y(n) ? 500kHz 
 
 
First parallell multiplications 
 
Then parallell additions 
 
Then done! 
 
 

Clock cycles between updating 
memory elements: 
 
1 + 1 = 2 
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Typical model: Represent these effects as noise 
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Some implementation aspects 

Numerical precision issues 
Coefficient precision: Coefficients are stored with finite 
precision. So implementation is not exact 
 
Arithmetic precision: Done with finite precision, 
So not exact. 
 
Typical model: Represent these effects as noise 
 
 
Example: Wilkinson’s polynomial 
 

Zeros: on real axis, well separated 
 
Assume imprecision: coefficient of x19 is 210.00021  (1.000001 times the real one) 

Red: zeros of exact Wilkinson 
Blue: zeros of imprecise Wilkinson 

͞SƉeakiŶg fŽƌ mǇƐelf I ƌegaƌd iƚ aƐ ƚhe mŽƐƚ 
traumatic experience in my career as a 
ŶƵmeƌical aŶalǇƐƚ͕͟  JameƐ WilkiŶƐŽŶ ϭϵϴϰ 
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Some implementation aspects 

Numerical precision issues 
Consider a desired transfer function 

General rule: Not wise to implement this as a one-stage filter, i.e., using direct form II (or its transposed version) 
 
 
Better solution. Typical case: each filWeU iV Vecond oUdeU (µbiquadµ). M· = M/2 

« 

Two questions:  
 
1. Which poles to pair with which zeros ? 
2. In which order should the filters appear ? 
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Some implementation aspects 

Model: Each filter produces noise that is being added to the input of itself 

Rationale: The marked sections will not produce exact results 
This can be modelled by adding a signal e(n) at the input 
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Some implementation aspects 

Numerical precision issues 
Consider a desired transfer function 

General rule: Not wise to implement this as a one-stage filter, i.e., using direct form II (or its transposed version) 
 
 
Better solution. Typical case: each filWeU iV Vecond oUdeU (µbiquadµ). M· = M/2 

« 

Model: Each filter produces noise that is being added to the input of itself 
 
This noise will get amplified by later stages 
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Some implementation aspects 

Numerical precision issues 

This option would greatly amplify any 
source of noise we have. Not suitable. 

We have to options for zero-pole combination 
 
 
 

Magnitude response 

Option 2 

f 
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Some implementation aspects 

Numerical precision issues 

We choose option 1. Remains to discuss their order. 

We have to options for zero-pole combination 
 
 
 

Magnitude response 

Option 1 

f 
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Numerical precision issues 

Magnitude response 

f 
Or 

? 
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Numerical precision issues 

Study a general model 

Compute the average output power if the 
noise sources are unit power random signals 

µTheorem.µ Average output power of the below is 
 
 

Output power 
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Some implementation aspects 

Numerical precision issues 

Study a general model 

Place the box with least power last in the chain 

µTheorem.µ Average output power of the below is 
 
 

Output power 
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Numerical precision issues 

Magnitude response 

f 
Or 
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Some implementation aspects 

Numerical precision issues 

Magnitude response 

f 

Place H2(z) last 


