Exam in Multiple Antenna systems, EITF75

Wednesday October 31

Problem 1 (1.0p)

We are given a circuit which we know implements a difference equation having at most 2 poles and an at most 2 zeros. We give an input signal x(n) to the circuit, turn on the circuit at time n = 0, and investigate the output signal.

a)

Suppose that x(n) = 0, for all n. The output signal is, however, $y(n) = (-1)^n$, $n \ge 0$. Provide as much information about the circuit as you can.

b)

Based on the information provided in a), is it possible to determine the exact input signal x(n) for which the steady state output would become y(n) = 0? (With "exact", is meant that it should not be given in terms of some unknown variables).

c)

We apply the input signal x(n) = u(n) (step function). The output signal is, for large values of n, y(n) = 0. What information about the circuit does this provide?

d)

We again apply the input signal x(n) = u(n) (step function), but now observes the output signal y(n) at all n. Surprisingly, we find that x(n) = 0 for all n. What information about the circuit does this provide?

Problem 2 (1.0p)

Assume an LTI system at rest (zero-state) with system equation

$$H(z) = \frac{2 + z^{-1} + 0.5z^{-2}}{1 + 0.5z^{-1} - 0.25z^{-2}}.$$

Assume that the output signal is

$$y(n) = [(0.5)^{n} + (-0.5)^{n}] u(n) + (0.5)^{n-1} u(n-1).$$

What is the input signal?

Problem 3 (1.0p)

Assume a two-user communication system in which two users are sending signals $x_1(t)$ and $x_2(t)$ to a receiving device. We further assume a noise-free universe. The receiving device is sampling its input signal $x(t) = x_1(t) + x_2(t)$ at a sampling frequency of F_s Hz.

a)

The two users are said to be "separable" if two time-discrete ideal filters \mathcal{F}_1 and \mathcal{F}_2 can be found such that the output of \mathcal{F}_1 is sufficient to reconstruct $x_1(t)$ perfectly - possibly with further processing necessary - without any interference from $x_2(t)$, and similarly for \mathcal{F}_2 . Suppose that

$$\begin{cases} X_1(F) > 0, & 2000 \le |F| \le 4000 \\ X_1(F) = 0, & \text{otherwise} \end{cases}$$
$$\begin{cases} X_2(F) > 0, & 6000 \le |F| \le 8000 \\ X_2(F) = 0, & \text{otherwise} \\ X_2(7000 + \delta) = X_2(7000 - \delta) & 0 \le \delta \le 1000 \end{cases}$$

What is the smallest possible value for F_s such that the two users are separable?

b)

Assume now that $F_s = 20000$ Hz, and define "separability" as in a). Design, by selecting the zero-pole structure, a practical filter implementation of \mathcal{F}_1 . (Note: Here, I am mostly interested in checking your understanding on the effect of zero-pole placement and filter characteristics - not to check whether you remember how to get a very good filter. However, your methodology for designing the filter should be clear).

c)

Continuation of b). Suppose now that the filter \mathcal{F}_1 has been ideally implemented, and that D/A reconstruction of $x_1(t)$ is desired. Unfortunately, there is no D/A converter available with such a high sampling rate as 20000 Hz. Show how successful reconstruction can be obtained nonetheless using downsampling and a D/A converter with sampling rate < 20000 Hz.

Problem 4 (1.0)p

An acoustic company would like to implement an echo functionality to its devices. Two options are on the table, circuit I and circuit II. It is assumed that $\alpha > 0$. In both cases, D = 1000.

a)

Calculate the system functions for both cases, and compute zeros and poles.

b)

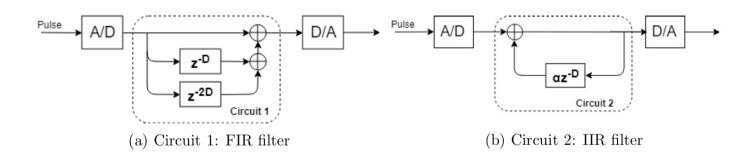
For circuit I, assume that a very short input signal x(t) is used and that the first echo can be heard with a delay of 0.5 seconds. What is the sampling frequency F_s ?

C)

For circuit II, provide a necessary and sufficient condition for the echo to fade out with time for a very short input signal x(t).

D

For circuit II, assume that the echo can be heard by a human as long as the power of the echo is less than 20dB attenuated compared with the original signal. Provide a formula for the number of echos that one can hear for a short input signal x(t).



Problem 5 (1.0)p

Assume that you have a signal x(n) that satisfies x(n) = 0, n < 0 and x(n) = 0, $n \ge L$. Let X_k denote the N-DFT of the sequence x(n), $N \ge L$.

a)

Assume that we construct $Y_k = H_k X_k$, $0 \le k \le N - 1$. Let y(n) be the IDFT of Y_k , and let h(n) be the IDFT of H_k . Under what conditions is it true that

$$y(n) = x(n) * h(n).$$

b)

Assume that we construct $Y_k = X_k^2$, $0 \le k \le N - 1$. Let y(n) be the IDFT of Y_k . Under what conditions is it true that

$$y(n) = x(n) * x(n).$$

c)

Assume that N = L = 5, and that a device is provided with the sequence X_k , but that it does not have ability of compute an IDFT. Can the device compute the value $X(\omega_1)$ for $\omega_1 = 3\pi/5$?

d)

Explain, briefly, why the DFT is important when we can do essentially the same using a DTFT. Be concise, but precise - no essays please.

e)

Suppose that we construct $Y_k = H_k X_k$, $0 \le k \le N - 1$ where

$$H_k = \frac{1 - \alpha \cos(\omega_0) \exp(-i2\pi k/N)}{1 - 2\alpha \cos(\omega_0) \exp(-i2\pi k/N) + \alpha^2 \exp(-i4\pi k/N)}.$$

Describe the effect on y(n).