
EITF75 Systems and Signals

Summary of Course

Fredrik Rusek

EITF75 Systems and Signals

Sampling and reconstruction

EITF75 Systems and Signals

A/D and D/A

Key step is to understand what X(f) looks like in terms of

Signal sampling

Xa(F) X(f)

Xa(F)

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

f = �0.5 ! F = �Fs

2

f = 0.5 ! F =
Fs

2

1

If sampling is to sparse, there is aliasing.

We find X(f) by the ”folding technique”

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0
Fold again

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0
Fold again

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0
Fold again

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0
Fold again

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

If this happens:
Stop at 0
Fold again
Done

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Xa(F)

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

|

Folding

F=5000 Hz

1 -
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

|

Folding

F=5000 Hz

4000-
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
Fs/2 = 2000 Hz

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

Folding

4000-
Step 1: Identify Fs/2
Step 2: Fold at Fs/2
Step 3: Add
Step 4: repeat at lhs
Step 5: multiply with Fs
Step 6: change F to f

|
f=0.5

Example: Folding
Signal sampling

Xa(F) X(f)

Fs = 4000 Hz

EITF75 Systems and Signals

A/D and D/A

Key step is to understand what X(f) looks like in terms of

Signal sampling

Xa(F) X(f)

Xa(F)

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

f = �0.5 ! F = �Fs

2

f = 0.5 ! F =
Fs

2

1

If no aliasing
(e.g., sampling
Theorem fulfilled)

Sampling Theorem (Shannon 1948)

If Fs>2B, where B is the highest frequency of the
analog signal, then the analog signal can be
recovered from its sampled version

k=0

Z Fs/2

�Fs/2
G(x+ Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

f = �0.5 ! F = �Fs

2

f = 0.5 ! F =
Fs

2

1

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

X(1/8) = Fs [· · ·+Xa(�17500) +Xa(2500) +Xa(22500) + · · ·]

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

1

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

X(1/8) = Fs [· · ·+Xa(�17500) +Xa(2500) +Xa(22500) + · · ·]

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

1

If aliasing: In general not possible to revocer x(t) from x(n)

EITF75 Systems and Signals

A/D and D/A

Reconstruction.

Signal sampling

Xa(F) X(f)

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

f = �0.5 ! F = �Fs

2

f = 0.5 ! F =
Fs

2

1

k=0

Z Fs/2

�Fs/2
G(x+ Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

f = �0.5 ! F = �Fs

2

f = 0.5 ! F =
Fs

2

1

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

X(1/8) = Fs [· · ·+Xa(�17500) +Xa(2500) +Xa(22500) + · · ·]

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

1

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

X(1/8) = Fs [· · ·+Xa(�17500) +Xa(2500) +Xa(22500) + · · ·]

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡nF/FsdF

=

Z Fs/2

�Fs/2

" 1X

k=�1
Xa(F � kFs)

#
ei2⇡nF/FsdF

Z 1

�1
G(x)dx =

1X

k=�1

Z Fs/2

�Fs/2
G(x+ kFs)dx

Z Fs/2

�Fs/2
G(x+Fs)dx

Z Fs/2

�Fs/2
G(x�Fs)dx

Z Fs/2

�Fs/2
G(x� Fs)dx

=

Z Fs/2

�Fs/2
G(x)dx+

Z 3Fs/2

Fs/2
G(x)dx+

Z �Fs/2

�3Fs/2
G(x)dx

Z 1

�1
G(x)dx

1

Fs

Z Fs/2

�Fs/2
X

✓
F

Fs

◆
ei2⇡nF/FsdF

f =
F

Fs

df = dF
1

Fs

1

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

X(1/8) = Fs [· · ·+Xa(�17500) +Xa(2500) +Xa(22500) + · · ·]

X(f) = Fs

1X

k=�1
Xa((f � k)Fs)

=
1X

k=�1

Z Fs/2

�Fs/2
Xa(F � kFs)e

i2⇡n(F�kFs)/FsdF

1

Reconstruction

No aliasing

Aliasing

F1 Hz F2 Hz
Note: sampling and reconstruction frequencies can differ. See lecture 9-10

EITF75 Systems and Signals

LTI systems and z-transforms

EITF75 Systems and Signals

system

LTI systems

• It is linear
• It is time-invariant

Linear system Time invariant system

A system is LTI if-and-only if:

An LTI system is fully characterized by a
difference equation ….or… an Impulse response

Output if input is

and system at rest

EITF75 Systems and Signals

system

LTI systems

• It is linear
• It is time-invariant

A system is LTI if-and-only if:

An LTI system is fully characterized by a
difference equation ….or… an Impulse response

Output if input is

and system at rest

Assume that we turn on the circuit at n=0

System at rest if Not at rest if (has initial conditions)

EITF75 Systems and Signals

system Found by z-transform
What is output for a given input

The z-transform of is
defined as

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2

What is the z-transform?
• A map from sequences to

complex valued functions

What is H(z)?
• A complex function of a

complex number

1 2 3

z-transforms
We define the z-transform of an impulse response h(n) as

H(z) =

1X

n=�1
h(n)z

�n
(1)

We assume a causal impulse response h(n). Causal means that h(n) = 0 for n < 0. The

sum is therefore limited to

H(z) =

1X

n=0

h(n)z
�n

(2)

where z = r · ej! is a complex number. Complex numbers are often written as a mag-

nitude and a phase. The transform H(z) is therefore a complex valued function of a

complex valued variable.

Example
Some examples of z-transforms directly from the definition:

Function , z-transform

h(n) , H(z) = h(0) + h(1)z
�1

+ h(2)z
�2

+ · · ·
�(n) =

n
1 0 . . .

o
, 1

�(n� k) , z
�k

h(n� k) , z
�k
H(z)

h1(n) =

n
3 2 1

o
, H1(z) = 3+2z

�1
+ z
�2

h2(n) =

n
0 3 2 1

o
, H2(z) = 0+3z

�1
+ 2z

�2
+ z
�3

= z
�1

⇣
3+2z

�1
+ z
�2
⌘

Proof for the time delay.

y(n) = x(n� 1) , Y (z) =

X

n

y(n)z
�n

(3)

=

X

n

x(n� 1)z�n (4)

= z
�1

X

n

x(n� 1)z�(n�1) (5)

= z
�1

X

m

x(m)z
�m

(6)

= z
�1
X(z) (7)

2

z-transform

If we want to plot H(z), we need 2 plots, one for the real part, one for the imaginary

Z-transforms are not meant for ”plotting and obtaining insights”

EITF75 Systems and Signals

An important example

1 2 3

0.5

1

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

-1-2-3

-0.5

-1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

Different signals,
Same z-transform
Different ROC

Anti-causal step

Let’s specify the ROC

|z| < 1

H(z) =
1X

n=�1
�u(�n� 1)z�n

= �
�1X

n=�1
z
�n

= �
1X

n=1

z
n

= �
1X

n=0

z
n + 1

= � 1

1� z
+ 1 = . . . =

�z

1� z

=
1

1� z�1

h(n) = �u(�n� 1)

()

1

Example
An IIR-system and its z-transform.

h(n) = u(n) , H(z) =

1X

n=0

z
�n

(8)

=
1� (z�1)1+1

1� z�1 (9)

=
1

1� z�1 if |z| > 1 (ROC) (10)

h(n) = a
n ·u(n) , H(z) =

1X

n=0

a
n · z�n (11)

=

1X

n=0

⇣
a · z�1

⌘n
(12)

=
1� (a · z�1)1+1

1� z�1 (13)

=
1

1� a · z�1 if |z| > |a| (ROC) (14)

ROC means region of convergence: for which z the sum converges. For a causal signal

the ROC becomes a region |z| � Rmin. This is the normal case in this course.

Example of z-transform of non-causal signal (page 154)
Given:

x(n) =

✓
1

2

◆|n|
for all n (15)

Find: The z-transform X(z) of x(n).

3

EITF75, z-transform

If we are given an X(z), and assume that the signal
x(n) is causal, then we can be sloppy with the ROC

There are many x(n) for the same X(z), and the ROC
specifies the particular one. However, there is only
one that is causal.

Convention

EITF75 Systems and Signals

system

LTI systems

Found by z-transform
What is output for a given input

EITF75 Systems and Signals

Expression for general
difference equation

Change y(n-k) to z-k Y(z)

Step 1:

Change x(n-k) to z-k X(z)

Step 2:

Express Y(z) as H(z)X(z)

Step 3:

Solution for general
difference equation (at rest)

Analyzing a general difference equation (at rest)

EITF75 Systems and Signals

Expression for general
difference equation

Solution for general
difference equation (at rest)

Analyzing a general difference equation (at rest)

Find the roots of the
denominator and nominator of
H(z). Roots should be in terms
of z, not z-1

Step 4:

zeros

poles

EITF75 Systems and Signals

Expression for general
difference equation

Solution for general
difference equation (at rest)

Analyzing a general difference equation (at rest)

Find the roots of the
denominator and nominator of
H(z). Roots should be in terms
of z, not z-1

Step 4:

zeros

poles

If degree of numerator >= degree of
denominator. Perform polynomial division

EITF75 Systems and Signals

Expression for general
difference equation

Solution for general
difference equation (at rest)

Analyzing a general difference equation (at rest)

Find the roots of the
denominator and nominator of
H(z). Roots should be in terms
of z, not z-1

Step 4:

zeros

poles

Will turn up in the time-domain as a delay
(can be negative delay)

EITF75 Systems and Signals

Expression for general
difference equation

Analyzing a general difference equation (at rest)

Some polynomial in z

Assume

Assuming all poles are real and distinct
Assuming deg(num) < deg(denom)

Perform partial fraction expansion

EITF75 Systems and Signals

Expression for general
difference equation

Analyzing a general difference equation (at rest)

Some polynomial in z

Assume

Assuming all poles are real and distinct
Assuming deg(num) < deg(denom)

Invert

EITF75 Systems and Signals

Expression for general
difference equation

Analyzing a general difference equation (at rest)

This…

…generates that

EITF75 Systems and Signals

Important: poles in H(z) and in
X(z) determines the output
structure:
”You can never get a term in
y(n) that doesn’t exist in either
X(z) or H(z)”

Analyzing a general difference equation (at rest)

Some polynomial in z

AssumeImportant: To get stable
output, all poles must be inside
the unit circle

EITF75 Systems and Signals

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

e j!0
U1

U2

V1

�1

�2

↵1

�1

0

1 �1

0

1
0

2

4

6

1

Real Imaginary

|H
(z
)|

The amplitude response is:

|H(!0)| =
Q |Vn|Q |Un|

=
|V1|

|U1| · |U2|
(18)

The phase response is:

\H(!0) =

X
\Vn �

X
\Un = \V1 � \U1 � \U2 = ↵1 � �1 � �2 (19)

z-transform of second order system
Second order system with complex roots..

Sine

h(n) = r
n · sin(!n)u(n) (20)

= r
n · 1

2j
·
⇣
e
j!n � e�j!n

⌘
u(n) (21)

H(z) =
1

2j
·
✓

1

1� rej!z�1 �
1

1� re�j!z�1
◆

(22)

=
r sin(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(23)

Cosine

h(n) = r
n · cos(!n)u(n) (24)

= r
n · 1

2
·
⇣
e
j!n

+ e
�j!n

⌘
u(n) (25)

H(z) =
1

2
·
✓

1

1� rej!z�1 +
1

1� re�j!z�1
◆

(26)

=
1� r cos(!)z

�1

1� 2r cos(!)z�1 + r2z�2
(27)

4

A complex conjugated pair of poles

Polar coordinates: r is ”length” and w is angle of the pole.
To get stable output: r<1 (poles inside the unit circle)

Example Quite messy to invert a mixture of the two above: Make sure you
know how to do that.

Example
We had

H(z) =
z
�1 � z�2

1� 1.27z�1 + 0.81z�2
(28)

= z
�1 · 1� z�1

1� 1.27z�1 + 0.81z�2
(29)

Now determine h(n), the inverse z-transform of H(z), with the help of the transforms

for the sine and the cosine. Rewrite H(z) so that we can identify the sine and cosine

terms.

H(z) = z
�1 · 1� z�1

1� 1.27z�1 + 0.81z�2
(30)

Identify 1.27 = 2r cos(!0) and 0.81 = r
2
. Therefore !0 = ⇡/4 and r = 0.9.

H(z) = z
�1 ·

1� r cos(!0)z
�1

+

⇣
r cos(!0)z

�1 � z�1
⌘
· r sin(!0)

r sin(!0)

1� 1.27z�1 + 0.81z�2
(31)

The transforms for the sine and the cosine now gives

h(n) = r
n�1 ·

"
cos(!0 · (n� 1)) +

r cos(!0)� 1
r sin(!0)

· sin(!0 · (n� 1))
#
·u(n� 1) (32)

= 0.9
n�1 ·

cos

✓
⇡

4
· (n� 1)

◆
� 0.57sin

✓
⇡

4
· (n� 1)

◆�
·u(n� 1) (33)

5 10 15 20 25 30 35 40

�1

�0.5

0

0.5

1

Time [n]

Stability
A system is stable of an input signal of limited amplitude yields an output signal that

is also of limited amplitude. This is called BIBO-stability (bounded input, bounded

output). A su�cient requirement is that

X

n

|h(n)| <1 (34)

This is equivalent to all poles being inside the unit circle in the pole-zero diagram.

FIR-filter
FIR filters have all their poles at the origin and are always BIBO-stable: h(n) has a

finite duration and
P

n |h(n)| is always limited.

5

Example
We had

H(z) =
z
�1 � z�2

1� 1.27z�1 + 0.81z�2
(28)

= z
�1 · 1� z�1

1� 1.27z�1 + 0.81z�2
(29)

Now determine h(n), the inverse z-transform of H(z), with the help of the transforms

for the sine and the cosine. Rewrite H(z) so that we can identify the sine and cosine

terms.

H(z) = z
�1 · 1� z�1

1� 1.27z�1 + 0.81z�2
(30)

Identify 1.27 = 2r cos(!0) and 0.81 = r
2
. Therefore !0 = ⇡/4 and r = 0.9.

H(z) = z
�1 ·

1� r cos(!0)z
�1

+

⇣
r cos(!0)z

�1 � z�1
⌘
· r sin(!0)

r sin(!0)

1� 1.27z�1 + 0.81z�2
(31)

The transforms for the sine and the cosine now gives

h(n) = r
n�1 ·

"
cos(!0 · (n� 1)) +

r cos(!0)� 1
r sin(!0)

· sin(!0 · (n� 1))
#
·u(n� 1) (32)

= 0.9
n�1 ·

cos

✓
⇡

4
· (n� 1)

◆
� 0.57sin

✓
⇡

4
· (n� 1)

◆�
·u(n� 1) (33)

5 10 15 20 25 30 35 40

�1

�0.5

0

0.5

1

Time [n]

Stability
A system is stable of an input signal of limited amplitude yields an output signal that

is also of limited amplitude. This is called BIBO-stability (bounded input, bounded

output). A su�cient requirement is that

X

n

|h(n)| <1 (34)

This is equivalent to all poles being inside the unit circle in the pole-zero diagram.

FIR-filter
FIR filters have all their poles at the origin and are always BIBO-stable: h(n) has a

finite duration and
P

n |h(n)| is always limited.

5

Invert

EITF75 Systems and Signals
Systems not at rest

Use the one-sided z-transform

EITF75 Systems and Signals
Systems not at rest

Use the one-sided z-transform

End result: The solution at rest + contribution from initial conditions

N: highest power of z-1 in A(z)

EITF75 Systems and Signals

Fourier analysis. 4 cases

Periodic/aperiodic signal
Continuous/discrete signal

Continuous and periodic

4 different type of signals

Continuous and aperiodic

Discrete and periodic Discrete and aperiodic

Continuous spectraDiscrete spectra

EITF75, Fourier transforms

Time signals shown, not Fourier transforms

Continuous and periodic

4 different type of signals

Continuous and aperiodic

Discrete and periodic Discrete and aperiodic

Periodic spectra

Aperiodic spectra

EITF75, Fourier transforms

Continuous and periodic

4 different type of signals

Continuous and aperiodic

Discrete and periodic Discrete and aperiodic

Periodic spectra

Aperiodic spectra

EITF75, Fourier transforms

Transform of this is DTFT

EITF75 Systems and Signals

Z-transform

X(f) =
1X

n=�1
x(n) exp(�i2⇡nf) = X(z|z = exp(i2⇡f))

X(z) =
1X

n=�1
x(n)z�n

1

DTFT
(discrete time
Fourier transform)

X(f) =
1X

n=�1
x(n) exp(�i2⇡nf) = X(z|z = exp(i2⇡f))

X(z) =
1X

n=�1
x(n)z�n

1

X(f) =
1X

n=�1
x(n) exp(�i2⇡nf) = X(z|z = exp(i2⇡f))

X(z) =
1X

n=�1
x(n)z�n

1

Important: DTFT is z-transform evaluated
at unit circle

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Book makes a big deal out of this. But quite easy….

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Recall

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Recall

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

0.125

Value of H(z) here

Is
 H

(f
) h

er
e

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Recall

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

0.25

Value of H(z) here

Is
 H

(f
) h

er
e

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Recall

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

Va
lu

e
of

H
(z

) h
er

e

an
d

he
re

Is
 H

(f
) h

er
e

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Recall

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

How big is
H(z) here?

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

We are at a zero

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

How big is
H(z) here? 0

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

How big is
H(z) here?

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circle

How big is
H(z) here? BIG

We are close to a pole

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circleHow big is

H(z) here?

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

x(n) $ X(f)

x(n� n0) $ exp(�i2⇡fn0)X(f)

y(n) = x(n) ? h(n) $ Y (f) = H(f)X(f)

H(z) =

1

is H(z) at unit
circleHow big is

H(z) here?
small

We are close to a zero

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Non-zero everywhere else, since
no further zeros at unit circle

EITF75, DTFT

DTFTPole-zero plot

f
0.5-0.5

Observe

Unstable

”Ka-boom”

EITF75, DTFT

f

DTFT

0.5-0.5

Final remark: X(f) is periodic

-1.5

EITF75 Systems and Signals

DTFT Z-transform

Important: An LTI system cannot create frequencies not
present in the input signal

EITF75 Systems and Signals

DTFT Z-transform

Important: An LTI system cannot create frequencies not
present in the input signal

For cos/sin

EITF75 Systems and Signals

Assume oscillating input, but turned on at n=0

Steady state solution (i.e., y(n) at big n) is the same as
before. At small n, there is a transient behavior.

Transient (if all poles inside unit circle) Steady state (same as for infinite cos)

EITF75 Systems and Signals

Parseval’s formula

Special case:

EITF75 Systems and Signals

Some filter design

EITF75 Systems and Signals

x2

Notch FIR filter
An FIR filter has all its poles at the origin. We place two poles at the origin which

yields the filter

H(z) =

⇣
z � e�j!0

⌘⇣
z � ej!0

⌘

z2
= 1� 2cos(!0)z

�1
+ z
�2

(22)

Pole-zero diagram and amplitude response:

�0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

Frequency [f]

Notch IIR-filter
The poles of an IIR filter can be placed arbitrarily inside the unit circle. We place two

poles just inside the unit circle near the zeros, yielding the following filter:

H(z) =

⇣
z � e�j!0

⌘⇣
z � ej!0

⌘

⇣
z �↵e�j!0

⌘⇣
z �↵ej!0

⌘ =
1� 2cos(!0)z

�1
+ z
�2

1� 2 · 0.95 · cos(!0)z
�1 + 0.952 · z�2 (23)

where 0 ↵ < 1 but is typically chosen near 1. Pole-zero diagram and amplitude

response:

�0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

Frequency [f]

This will be explored further during the labs.

FIR filter with linear phase
An FIR filter with linear phase has a symmetric impulse response.

4

Magnitude
response

FIASCO

h(n) = { 1 -2cos(w0) 1 }

An attempt to cancel f=0.125 by
using two zeros

EITF75 Systems and Signals

Let us try

EITF75 Systems and Signals

Notch FIR filter
An FIR filter has all its poles at the origin. We place two poles at the origin which

yields the filter

H(z) =

⇣
z � e�j!0

⌘⇣
z � ej!0

⌘

z2
= 1� 2cos(!0)z

�1
+ z
�2

(22)

Pole-zero diagram and amplitude response:

�0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

Frequency [f]

Notch IIR-filter
The poles of an IIR filter can be placed arbitrarily inside the unit circle. We place two

poles just inside the unit circle near the zeros, yielding the following filter:

H(z) =

⇣
z � e�j!0

⌘⇣
z � ej!0

⌘

⇣
z �↵e�j!0

⌘⇣
z �↵ej!0

⌘ =
1� 2cos(!0)z

�1
+ z
�2

1� 2 · 0.95 · cos(!0)z
�1 + 0.952 · z�2 (23)

where 0 ↵ < 1 but is typically chosen near 1. Pole-zero diagram and amplitude

response:

�0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

Frequency [f]

This will be explored further during the labs.

FIR filter with linear phase
An FIR filter with linear phase has a symmetric impulse response.

4

Much better

Magnitude
response

NOTCH filter

EITF75 Systems and Signals

FIR filters with linear phase

Linear phase is desirable since it delays all frequencies equally much

Linear phase is defined as

Whenever there is a phase jump with , this should be seen as a
magnitude response that is negative

H(!) = A(!)ei⇥(!)

⇥(!) = ! + 2⇡`

h(n) $ H(f)

h(n� n0) $ e�i2⇡n0fH(f)

H(f) = H(z)
���
z=exp(i2⇡f)

|H(f)| =
��ei4⇡f � 2 cos(!0)e

i2⇡f + 1
��

|H(f)| =
��1� 2 cos(!0)e

�i2⇡f + e�i4⇡f
��

=

��ei4⇡f � 2 cos(!0)ei2⇡f + 1
��

|ei4⇡f |

1

H(!) = A(!)ei⇥(!)

⇥(!) = ! + 2⇡`

h(n) $ H(f)

h(n� n0) $ e�i2⇡n0fH(f)

H(f) = H(z)
���
z=exp(i2⇡f)

|H(f)| =
��ei4⇡f � 2 cos(!0)e

i2⇡f + 1
��

|H(f)| =
��1� 2 cos(!0)e

�i2⇡f + e�i4⇡f
��

=

��ei4⇡f � 2 cos(!0)ei2⇡f + 1
��

|ei4⇡f |

1

h(n) = h(�n)

H(f) =
1X

n=�1
h(n)ei2⇡nf

= h(0) +
1X

n=1

h(n)
�
ei2⇡nf + e�i2⇡nf

�

= h(0) + 2
1X

n=1

h(n) cos(2⇡fn)

1

Symmetry around n=0. Not causal

Symmetry around n=(N-1)/2. h(n) = h(N � n)

H(f) =
1X

n=�1
h(n)ei2⇡nf

= h(0) +
1X

n=1

h(n)
�
ei2⇡nf + e�i2⇡nf

�

= h(0) + 2
1X

n=1

h(n) cos(2⇡fn)

⇥(f) = tan�1 Im(H(f))

Re(H(f))
+ ⇡ ·

1

2
� 1

2
sign(H(f))

�

⇥(f) = tan�1 0

Re(H(f))
+ ⇡ ·

1

2
� 1

2
sign(H(f))

�

⇥(f) = ⇡ · ⇡ ·

1

2
� 1

2
sign(H(f))

�

tan�1 0 = 0

1

Anti-symmetry around n=(N-1)/2.

Symmetry Description Filter property

h(n) = h(�n) Symmetry around 0. H(!) real.

h(n) = h(N �n) Symmetry around N/2. H(!) linear phase.

h(n) = �h(N �n) Anti-symmetry around N/2. H(!) linear phase.

Example:

• Symmetric impulse response around n = 0.

h(n) =

n
1 2 3 2 1

o
(24)

• Causal symmetric impulse response.

h(n) =

n
1 2 3 2 1

o
(25)

• Causal anti-symmetric impulse response.

h(n) =

n
1 2 0 �2 �1

o
(26)

Show that H(!) has a linear phase. Assume a causal symmetric impulse response:

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(27)

H(!) = 1+2e
�j!

+3e
�j2!

+2e
�j3!

+ e
�j4!

(28)

=

⇣
e
j2!

+2e
j!
+3+2e

�j!
+ e
�j2!⌘ · e�j2! (29)

= (3+ 4cos! +2cos2!) · e�j2! (30)

= |(3 + 4cos! +2cos2!)| · e�j2!+j⇡·k
for k integer (31)

where k are eventual phase jumps in ⇡. The first factor is real values and the second

factor is linear phase.

Pole-zero diagram
What does linear phase look like in a pole-zero diagram?

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(32)

= z
�4 ·

⇣
z
4
+ 2z

3
+ 3z

2
+ 2z +1

⌘
(33)

= z
�4 ·H(z

�1
) (34)

H(z) and H(z
�1
) must therefore be zero for the same values of z. If z is a zero then z

�1

must also be a zero.

5

Three types of linear phase filters

EITF75 Systems and Signals

Example TYPE 1

Symmetry Description Filter property

h(n) = h(�n) Symmetry around 0. H(!) real.

h(n) = h(N �n) Symmetry around N/2. H(!) linear phase.

h(n) = �h(N �n) Anti-symmetry around N/2. H(!) linear phase.

Example:

• Symmetric impulse response around n = 0.

h(n) =

n
1 2 3 2 1

o
(24)

• Causal symmetric impulse response.

h(n) =

n
1 2 3 2 1

o
(25)

• Causal anti-symmetric impulse response.

h(n) =

n
1 2 0 �2 �1

o
(26)

Show that H(!) has a linear phase. Assume a causal symmetric impulse response:

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(27)

H(!) = 1+2e
�j!

+3e
�j2!

+2e
�j3!

+ e
�j4!

(28)

=

⇣
e
j2!

+2e
j!
+3+2e

�j!
+ e
�j2!⌘ · e�j2! (29)

= (3+ 4cos! +2cos2!) · e�j2! (30)

= |(3 + 4cos! +2cos2!)| · e�j2!+j⇡·k
for k integer (31)

where k are eventual phase jumps in ⇡. The first factor is real values and the second

factor is linear phase.

Pole-zero diagram
What does linear phase look like in a pole-zero diagram?

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(32)

= z
�4 ·

⇣
z
4
+ 2z

3
+ 3z

2
+ 2z +1

⌘
(33)

= z
�4 ·H(z

�1
) (34)

H(z) and H(z
�1
) must therefore be zero for the same values of z. If z is a zero then z

�1

must also be a zero.

5

Symmetry Description Filter property

h(n) = h(�n) Symmetry around 0. H(!) real.

h(n) = h(N �n) Symmetry around N/2. H(!) linear phase.

h(n) = �h(N �n) Anti-symmetry around N/2. H(!) linear phase.

Example:

• Symmetric impulse response around n = 0.

h(n) =

n
1 2 3 2 1

o
(24)

• Causal symmetric impulse response.

h(n) =

n
1 2 3 2 1

o
(25)

• Causal anti-symmetric impulse response.

h(n) =

n
1 2 0 �2 �1

o
(26)

Show that H(!) has a linear phase. Assume a causal symmetric impulse response:

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(27)

H(!) = 1+2e
�j!

+3e
�j2!

+2e
�j3!

+ e
�j4!

(28)

=

⇣
e
j2!

+2e
j!
+3+2e

�j!
+ e
�j2!⌘ · e�j2! (29)

= (3+ 4cos! +2cos2!) · e�j2! (30)

= |(3 + 4cos! +2cos2!)| · e�j2!+j⇡·k
for k integer (31)

where k are eventual phase jumps in ⇡. The first factor is real values and the second

factor is linear phase.

Pole-zero diagram
What does linear phase look like in a pole-zero diagram?

H(z) = 1+2z
�1

+ 3z
�2

+ 2z
�3

+ z
�4

(32)

= z
�4 ·

⇣
z
4
+ 2z

3
+ 3z

2
+ 2z +1

⌘
(33)

= z
�4 ·H(z

�1
) (34)

H(z) and H(z
�1
) must therefore be zero for the same values of z. If z is a zero then z

�1

must also be a zero.

5

EITF75 Systems and Signals

Pole-Zero diagram for linear phase FIR filters

Linear phase <-> If z0 is a zero, so is z0
-1

z0

z0
-1

z1

z1
-1

EITF75 Systems and Signals

Pole-Zero diagram for linear phase FIR filters

Linear phase <-> If z0 is a zero, so is z0
-1

z0 z0
-1

z1z1
-1

EITF75 Systems and Signals
Minimum phase filters

z0

z0
-1

z1

z1
-1

f

This is a general rule:
A filter with all zeros
inside the unit circle
has smaller phase.

Minimum phase filter
Maximum phase filter

EITF75 Systems and Signals

The DFT

EITF75 Systems and Signals
Background and motivation for yet another transform

1 2 3 4 50

Besides, the DTFT is
terribly inefficient

These 6 numbers, are in
the frequency domain
represened by
a continuous curve ! f=0.5

|

It should be possible to Fourier
represent x(n) by 6 numbers as well

The discrete Fourier Transform (DFT) in one sentence:
A Fourier version of x(n) with 6 numbers

EITF75 Systems and Signals
Formal definition

Linear convolution and the DFT
The convolution between x(n) and h(n) yields y(n) of length 4 + 4 � 1. Choose a DFT
length of N = 8.

h(k) 1 1 2 2 !
x(k) 0 0 0 1 2 3 4 0 0 0 0 1 2 3

yL(k) 2 6 11 17 13 7 4 0

>> x = [1 2 3 4];
>> h = [2 2 1 1];
>> yl = ifft(fft(x,8).* fft(h,8))
yl =

2 6 11 17 13 7 4 0

The linear convolution is closely related to the circular convolution.

yC(n) =
n
yL(0) + yL(4) yL(1) + yL(5) yL(2) + yL(6) yL(3) + yL(7)

o
(27)

=
n
2+13 6+7 11+4 17+0

o
(28)

=
n
15 13 15 17

o
(29)

The linear convolution wrap around modulo-4 and sum to form the circular convolu-
tion.

Sampling the spectrum
Let

x(n) = an ·u(n)) X(!) =
1

1� ae�j! (30)

Read X(!) at N frequencies and form X(k) = X(! | ! = 2⇡k/N).

The signal x(n) is an infinitely long sequence, but the invers-DFT of X(k) yields a
finitely long sequence of length N .

What is xDFT(n) = IDFT {X(k)}?

X(k) =
1

1� ae�j2⇡· kN
(31)

6

For a sequence of arbitrary length, the
N-point DFT is defined as

and the inverse transform (IDFT) as

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Linear convolution and the DFT
The convolution between x(n) and h(n) yields y(n) of length 4 + 4 � 1. Choose a DFT
length of N = 8.

h(k) 1 1 2 2 !
x(k) 0 0 0 1 2 3 4 0 0 0 0 1 2 3

yL(k) 2 6 11 17 13 7 4 0

>> x = [1 2 3 4];
>> h = [2 2 1 1];
>> yl = ifft(fft(x,8).* fft(h,8))
yl =

2 6 11 17 13 7 4 0

The linear convolution is closely related to the circular convolution.

yC(n) =
n
yL(0) + yL(4) yL(1) + yL(5) yL(2) + yL(6) yL(3) + yL(7)

o
(27)

=
n
2+13 6+7 11+4 17+0

o
(28)

=
n
15 13 15 17

o
(29)

The linear convolution wrap around modulo-4 and sum to form the circular convolu-
tion.

Sampling the spectrum
Let

x(n) = an ·u(n)) X(!) =
1

1� ae�j! (30)

Read X(!) at N frequencies and form X(k) = X(! | ! = 2⇡k/N).

The signal x(n) is an infinitely long sequence, but the invers-DFT of X(k) yields a
finitely long sequence of length N .

What is xDFT(n) = IDFT {X(k)}?

X(k) =
1

1� ae�j2⇡· kN
(31)

6

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Linear convolution and the DFT
The convolution between x(n) and h(n) yields y(n) of length 4 + 4 � 1. Choose a DFT
length of N = 8.

h(k) 1 1 2 2 !
x(k) 0 0 0 1 2 3 4 0 0 0 0 1 2 3

yL(k) 2 6 11 17 13 7 4 0

>> x = [1 2 3 4];
>> h = [2 2 1 1];
>> yl = ifft(fft(x,8).* fft(h,8))
yl =

2 6 11 17 13 7 4 0

The linear convolution is closely related to the circular convolution.

yC(n) =
n
yL(0) + yL(4) yL(1) + yL(5) yL(2) + yL(6) yL(3) + yL(7)

o
(27)

=
n
2+13 6+7 11+4 17+0

o
(28)

=
n
15 13 15 17

o
(29)

The linear convolution wrap around modulo-4 and sum to form the circular convolu-
tion.

Sampling the spectrum
Let

x(n) = an ·u(n)) X(!) =
1

1� ae�j! (30)

Read X(!) at N frequencies and form X(k) = X(! | ! = 2⇡k/N).

The signal x(n) is an infinitely long sequence, but the invers-DFT of X(k) yields a
finitely long sequence of length N .

What is xDFT(n) = IDFT {X(k)}?

X(k) =
1

1� ae�j2⇡· kN
(31)

6

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

X(f | f = k/N)

y(n) = x(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

1

if the length of is N, then

and

Result

EITF75 Systems and Signals

1 2 3 4 50

The DTFT is periodic

f=0.5
|

We can represent it like this
f=0.5 ||

f=1

EITF75 Systems and Signals

1 2 3 4 50

A 6-point DFT would compute the samples of the DTFT

This is sufficient to represent x(n)

Important: The DFT size must be at least as long as the
signal, otherwise there is a loss (aliasing in time)

f=0.5
||

f=1

EITF75 Systems and Signals

Assume a DTFT of a 6-tap signal

f

EITF75 Systems and Signals

Sample it

f

EITF75 Systems and Signals

Sample it

1 2 3 4 50
f

Compute the ”other domain” representation from
samples. In this case, the time domain

EITF75 Systems and Signals

1 2 3 4 50
f

But if sample spacing
is too small…

There is aliasing

Inverse-DFT yields:

xDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
n
N ·k (32)

=
1
N
·
N�1X

k=0

1X

m=�1
x(m)e�j2⇡·

m
N ·k · ej2⇡· nN ·k (33)

=
1
N
·
1X

m=�1
x(m) ·

N�1X

k=0

ej2⇡·
n�m
N ·k (34)

=
1
N
·
1X

m=�1
x(m) ·N · �(n�m modN) (35)

=
1X

m=�1
x(n�mN) (36)

The signal x(n) extends to +1.

5 10 15 20 25 30
0

0.5

1

1.5

2

Time [n]

The signal xDFT(n) is the sum of all shifted and repeated x(n). The DFT size is N = 8.

5 10 15 20 25 30
0

0.5

1

1.5

2

xDFT(n)

Time [n]

Periodicity in time
A square pulse of length L is

x(n) =
n
1 1 1 . . . 1

o
(37)

7

x(3)

y(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

1

x(3)

y(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

1

Aliasing No aliasing

x(3)

y(n) = x(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

X(1/8) = Fs [· · ·+Xa(�7Fs/8) +Xa(Fs/8) +Xa(9Fs/8) + · · ·]

1

Periodically extended

The time-aliasing only occurs if we are
not careful with the DFT size. If it is
equal or larger than the length of the
signal, there is no time-aliasing

EITF75 Systems and Signals
Computational complexity

Test in Matlab

Significant speed-up
possible for N=2k

NA
ve

ra
ge

ti
m

e
to

co
m

pu
te

an
 N

-p
oi

nt
D

FT

2048 is 211

EITF75 Systems and Signals
Computational complexity

Fast Fourier transform (FFT)

If N=2k , then N log2(N) complexity to compute

Choose a length N and calculate the normal DTFT at the frequencies

! = 2⇡ ·
n
0 1

N
2
N

3
N . . . N�1

N

o
(10)

This yields the Discrete Fourier Transform (DFT)

XDFT(k) =
N�1X

n=0

x(n)e�j2⇡·
k
N ·n for k = 0,1, . . . ,N � 1 (11)

and the inverse transform (IDFT)

xIDFT(n) =
1
N
·
N�1X

k=0

X(k)ej2⇡·
k
N ·n for n = 0,1, . . . ,N � 1 (12)

Periodicity

The Fourier transform (DTFT)
X(!) is periodic in ! since ej!n = ej(!+2⇡)n.

The Discrete Fourier transform (DFT)
Both x(n) and X(k) are periodic with period N since n0 = n+ pN and k0 = k + pN for p
integers and yields the same numerical values.

ej2⇡·
k
N ·(n+pN) = ej2⇡·

k
N ·n · ej2⇡kp (13)

ej2⇡·
k+pN
N ·n = ej2⇡·

k
N ·n · ej2⇡np (14)

Indices are calculated modulo-N .

If x(n) is defined only for 0 n < N (length N) we get

XDFT(k) = X(! | ! = 2⇡ · k
N
) (15)

which is the same as sampling X(!) in N uniformly distributed frequencies.

If N is an even power-of-2, the calculations can be made e�ciently, on the order of
O(NlogN) instead of O(N2) for the direct DFT implementation. The algorithm is
caleld the Fast Fourier Transform (FFT) and is described in chapter 8 but is not a part
of the course.

Roots of unity

N�1X

k=0

ej2⇡·
k
N ·(n�l) =

8>><>>:
N if n� l = 0+ pN

0 if n� l , 0+ pN
(16)

=N · �(n� l modN) (17)

⌘N · �((n� l))N (18)

The sum of the points evenly distributed around the unit circle is 0.

3

Made possible by some algebraic manipulations and tricks.

The importance of the FFT cannot be underestimated. WIFI and 4G, etc
could not been implemented without the FFT

For a computer,
1. It can avoid the continuous DTFT
2. It can compute the DFT extremely fast

FFT not included in course, but good to know about

Cooley and Tukey 1965

Method known to, and used by, Gauss in 1805

EITF75 Systems and Signals
Properties

For DTFTs, we have

x(n) ? y(n) $ X(f)Y (f)

x(n) $ X(f) x(n� n0) $ X(f)e�i2⇡fn0

y(n) = x(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

1

x(n) ? y(n) $ X(f)Y (f)

x(n) $ X(f) x(n� n0) $ X(f)e�i2⇡fn0

y(n) = x(n)

n = m

f =
k

N

X(k) =
1X

m=�1
x(m)e�i2⇡mk/N

k = 0, 1, . . . , N � 1

x(n) = x(n/Fs)

x(t) =
1X

n=�1
x(n)sinc(Fs(t� n/Fs))

sin(⇡Fs(t� n/Fs))

⇡Fs(t� n/Fs))

X(f) =
1X

n=�1
x(n)e�i2⇡nf

=

Z 0.5

�0.5
FsXa(fFs)e

i2⇡fFstdf

=

Z 0.5

�0.5

" 1X

n=�1
x(n)e�i2⇡nf

#
ei2⇡fFstdf

=
1X

n=�1
x(n)

Z 0.5

�0.5
ei2⇡f(Fst�n)df

x(t) =

Z 1

�1
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

x(t) =

Z �Fs/2

�Fs/2
Xa(F)ei2⇡FtdF

f =
F

Fs

X(f) = Xa(fFs)

X(1/8) = Fs [· · ·+Xa((1/8� 1)Fs) +Xa(Fs/8) +Xa((1/8 + 1)Fs) + · · ·]

1

For DFTs, we have

where

Circular convolution

EITF75 Systems and Signals
Example

Linear convolution computed via DFTs

Given: Two length N sequences, x(n), y(n)

Task: Compute their linear convolution by
using DFT and its inverse IDFT

This is the result, But
not computed via DFT

Still a circular convolution carried out, but due to zero-padding, it behaves linear.

EITF75 Systems and Signals
More examples: Resolution increase

Compute DFT (N=6)

k/N

EITF75 Systems and Signals

Compute DFT (N=8)

k/N

More examples: Resolution increase

EITF75 Systems and Signals

Compute DFT (N=8)

k/N

More examples: Resolution increase

EITF75 Systems and Signals

Compute DFT (N=16)

k/N

More examples: Resolution increase

EITF75 Systems and Signals

Compute DFT (N=16)

k/N

What is this line?

DFT size larger-or-equal to
the length of x(n)

Therefore, DFT samples of DTFT

More examples: Resolution increase

