Lund University Department of Electrical and Information Technology

Systems and Signals, EITF75 Task 2 (out of 2)

Observe:

Deadline: Complete the task, and hand it in the course mailbox at the third floor no later than October 12, 23.59.

To simplify the grading procedure:
Solve one problem per paper sheet
Write your name on every paper
Statements must be well motivated by reasoning and/or equations
Points from the tasks will be added to the examination score
Maximum total score (exam + 2 tasks) = 5.0+0.5+0.5=6.0p
Grading: 3 (>2.9p), 4 (>3.9p), 4 (>4.9p)

Problem 1. The following signals and difference equations are given. All variables are real valued

Difference equation 1: $y(n) = -a_1y(n-1) - a_2y(n-2) + x(n)$, $a_2 > 0$

Difference equation 2: $y(n) = -2y(n-1) - 4y(n-2) + b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$,

Signal 1: $y_1(n) = [2 -1 5 -1 2]$

Signal 2: $y_2(n) = [5 \ 0 \ 0 \ 0 \ 0]$

Signal 3: $y_3(n) = [4 \ 3 \ 2 \ 1]$

(Correctly solving 5 of the problems gives 0.2p. Solving at least 3 gives 0.1p.)

- a. Which signal(s) have linear phase ?
- b. Which signal(s) are minimum phase ?
- c. Provide conditions for a_1 and a_2 so that Difference equation 1 is: (i) decaying to 0, (ii) has magnitude growing unbounded, (iii) oscillating
- d. Provide condition(s) for (b₀, b₁, b₂) so that Difference equation 2 has stable output for stable input signal (BIBO)
- e. Can any of the 3 signals be the output of any of the difference equations? If, yes, which pairs, and what inputs x(n) are required?
- f. Determine the linear convolution of signal 1 and 3
- g. Make a plot of the Fourier transform (both phase and amplitude) of signal 1.

Problem 2 (0.1p). Consider an analog signal x(t), and assume that its Fourier transform satisfies

$$|X(F)| > A, |F| \le F_{0}, \qquad |X(F)| = 0, |F| > 2F_{0}$$

but that no other conditions on X(F) are given. Sample the signal with sampling rate $F_s=1.5F_0$ and denote the output as x(n). Provide an example of a Fourier transform X(F) such that $x(n)=\delta(n)$.

Problem 2 (0.1p). Consider the sampling of a signal x(t) at a sampling rate of F_s =10000Hz. Let the highest frequency component of X(F) be F_{max} , i.e.,

$$|X(F)| = 0, |F| > F_{max}.$$

Provide a necessary condition on the relation between F_{max} and F_s for $x(n)=\delta(n)$ to happen.

Problem 3 (0.1p). Consider the three signals

$$x_1(n) = 0.8^n u(n)$$
 $x_2(n) = 0.5^n u(n)$ $x_3(n) = 0.2^n u(n)$

Find

$$y(n) = x_1(n) * x_2(n) * x_3(n)$$