Computer Organization

EITF70

Goals
e Get an understanding of how a CPU works
Low Level Programming » Understanding the basics of assembly programming
¢ Be able to mix C and assembly code
e Understanding when and why assembly language should be
used

Sidra Muneer, Steffen Malkowsky and Erik Larsson
2020
Christoffer Cederberg and Jonathan Sénnerup
2019

Contents

Introduction 2
Purpose e e 2
Organization e e e 2

Assembly Programming 3
A Simple Program 3
Conditional EXpressions L e e 3
Input/output (I/O) o e 4
Measuring Execution Time L 4
Lab Exercises o L e 7

Memory Management and Subroutines 8
Accessing the Memory 8
The Stack o L e e 9
Subroutines L e 13
Lab Exercises o e e 16

Calling Conventions 18
Argument Passing 18
Register Usage e e 19
Lab Exercises e 21

A AVR Instruction Set 23

Introduction

Purpose

The purpose of this laboratory exercise is to get a basic understanding of assembly programming, try to
mix a program with C and assembly code, get familiar with memory management, like the stack and calling
conventions, that is passing parameters to functions and subroutines.

Organization

The material is organized in three main parts; assembly programming, memory management subroutines,
and calling conventions - mixing C and assembly. For each part, there is first an introduction which mainly
aims at describing the specifics of AVR and, second, there is laboratory exercises, detailing tasks, home
assignments and laboratory questions.

Assembly Programming

In this chapter we focus on Assembly programming. Just like any programming language, we have a certain
amount of instructions available in assembly to form a program.

The chapter is organized as follows. First, we briefly introduce Assembly programs, conditional expressions
and input/output (I/O). We then discuss how to computer and measuring execution time and finally the
lab exercises are detailed.

A Simple Program

A simple but working example in AVR is shown in Listing 1. For a listing of useful instructions available in
the AVR processor, see Appendix A.

start:
1di rie, 12 ; load 12 into register 16
1di r17, 13 load 13 wnto register 17
add r16, ri7 add 716 and r17, save result in r16
cpi ri6, 26 compare T16 with the wvalues 26

breq end Jjump to end if true
add ri6, 1 add 1 to r16, r16 now holds the wvalue 26
after this instruction, we will execute the rTjmp end
end:
rjmp end ; wnfinite loop

Listing 1: Simple AVR assembly program.

As seen in the code, there is no main function. In AVR assembly, the name of the main function is start.
The names start and end are known as labels. This is just a name of the actual address where the code
resides, to make it easy for a programmer. A label can be used in two ways: to create a place to jump to,
like a for-loop or similar, but also to create a function (subroutine) where the label must be called with the
call instruction. The end label in Listing 1, together with the “rjmp end” instruction, is used to create an
infinite loop, just like a while (1) loop in C.

Conditional Expressions

Operations performed in the ALU (arithmetic logic unit) have typically an affect a so called status register,
SREG. The status register contains flags such as overflow, carry, and zero. For example, the zero flag, Z, is set
to 1 if the result after an operation is 0. The advantage with storing these flags from an ALU operation is that

this information can be used by later instructions to create conditional expressions, such as if statements.
In Listing 1, we have such a case. The cpi instruction compares the value of a register, r16, with the value
26. The compare operation is actually a subtraction in the ALU. The result is either 0 or not, and the Z flag
in the status register is set accordingly. Next, the breq instruction (branch if equal) automatically checks
the Z flag to decide whether to jump (branch) or not. In this case, the result from the cpi instruction is
25 — 26 = —1, and the Z flag is set to 0 (the result was not zero). Hence, the branch is not taken, and the
program continues with the next instruction, in this case, an add instruction.

Input/output (I/0)

To communicate with the surrounding circuits, we need to access the I/O registers. For that, we use the
in and out instructions. An example is shown in Listing 2. Note that just as in C, we can define names
to numbers and addresses to make it easier to remember. In this case, we defined DDRB and PORTB to avoid
writing the addresses in the assembly code. To make it more interesting (and a little confusing), there are
basically two ways of accessing I/O ports in assembly. Either by using normal load and store instructions,
or by using special I/O instruction such as in and out. There are 2 differences, one being that the I/O
instructions are more efficient (1 clock cycle instead of 2), the other being that the value 0220 should be
subtracted from the addresses to the I/O ports. The reason is that they are mapped in different ways in
hardware. Table 1 shows the addresses when using the special I/O instructions. Note that using in and
out is preferable to use.

Table 1: 1/0 registers and their corresponding addresses.

Register Address

PINA 0x00
DDRA 0x01
PORTA 0x02
PINB 0x03
DDRB 0x04
PORTB 0x05
PINC 0x06
DDRC 0x07
PORTC 0x08
PIND 0x09
DDRD 0x0A
PORTD 0x0B

Measuring Execution Time

Every instruction takes a certain amount of clock cycles. We can use that information in order to evaluate
the execution time of a program. Some instructions takes different amount of clock cycles based on the
outcome. For example, due to the pipeline a branch instruction takes 1 clock cycle if the branch is not
taken, and 2 clock cycles if it is. Analyzing the program in Listing 3 yields the result shown in Table 2. Note
that in order to analyze the program, we must unroll the loop, counting clock cycles based on if the branch
is taken or not. The total execution time (before the infinite loop) is 9 clock cycles. Running at 16 MHz,

#define DDRB 0x04
#define PORTB 0x05
#define LEDO 0

start:
1di ri18, (1 << LEDO)
in 1r17, DDRB
or rl7, ri8
out DDRB, ri18
in 1r17, PORTB
or rl7, ri8
out PORTB, ri18
end:
rjmp end ; infinite loop

/
/
/
V DDRB |= (1 << LEDO);
/
/
4

PORTB |= (1 << LEDO);

Listing 2: Simple AVR assembly program using I/0.

this yields
1

9 16 M 562.5 ns.
start:
1di ri16, 1 ; load 1 into register 16
1di ri17, 13 ; load 13 into register 17
loop:
add r17, rié6 ; add r17 and r16, save result in r17 (r17++)
cpi ri17, 15 ; compare 717 with the values 15
brne loop ; jump to loop if r17 != 15
end:
rjmp end ; infinite loop

Listing 3: Simple AVR assembly program.

The general formula for calculating the average execution time of a single round in a loop (say, a for-loop)

is 1 1

n—
p+ = 1
p n q, (1)

where n is the number of rounds, p is the number of clock cycles in a round when the branch is taken, and
¢ is the number of clock cycles during the last round (branch not taken). Using the formula for the loop in
Listing 3, we get

2-1 1 1

1+ 1+2)+ - (14141 =24
5 (142 +o-(1+1+1) =54+

That is, the average execution time is 3.5 clock cycles. Running for 2 rounds yields 7 clock cycles, which
matches the number in Table 2. For very long loops, the last round does not affect the average time very
much. For example, running the same loop 100 times instead would yield

-3 =3.5.

N —

99 1
— 44+ —-3=3.99
100 + 100 ’

which is basically 4 clock cycles per round, which we get if do not take into account that the last branch
instruction only takes 1 clock cycle. In general, for large numbers, n, we get

oo n—1 1

lim p+—-q=p.

n—oo N n

Table 2: Caption

Instruction Execution time

1di r16, 1 1
1di r17, 13 1
loop:

add rl7, r16 1
cpirl7, 15

brne loop 2 (taken)
add r17, r16 1
cpi rl7, 15

brne loop 1 (not taken)
end:

rjmp end 00

What constitutes as a large number depends on the application. Make sure not to approximate too early, or
you may end up with a completely wrong estimation.

Lab Exercises

Just as always when we are to try new things, we implement a simple program as a sanity check. Here, we
will use the AVR assembly language to blink an LED.

Tasks:

e Create a new project in Atmel Studio, choose “AVR Assembler”, under the “Assembler” tab to the
left, instead of “C/C++".

Home Assignment 1
How many clock cycles are needed if a delay of 0.1 s is desired with a clock frequency of 16
MHz?

Home Assignment 2
How many bits do we need to count to the value above?

Home Assignment 3
How many registers do we need for the delay of 0.1 s?

Home Assignment 4
Write a snippet of assembly code that delays the program for roughly 0.1 s. Remember that
the jump instructions also take time to execute.

Home Assignment 5
How do you turn on LED 2 on port B in assembly? Remember to set the direction to an output.
Refer to Appendix A for instructions.

o Use your delay code to create a program that blinks an LED at 5 Hz.

Lab Question 1
How can you use your delay code in order to create arbitrary delays? What is the limitation?

e« Make the LED blink at 1 Hz instead.

You are now done with this part, show your work to a lab assistant! - 8

Memory Management and
Subroutines

This chapter covers the primary memory, also known as the memory or the random access memory (RAM). In
particular, the chapter covers organization, access and operations on the memory, the stack and subroutines.
The chapter is organized as follows. First there is theory on how to read and write data in the memory,

stack and subroutines. Second, the chapter contains laboratory exercises.

Accessing the Memory

The AVR processor’s work registers are only eight bits long, which means that the largest integer that fit in
them are 255. The RAM of the microcontroller is 16 kB. How is it then possible to use the entire memory
space? Of course, the designers of the processor had a solution. A couple of the work register can be used
as one 16 bit register, namely r26 and r27. The same is true for r28-r29 and r30-r31. The register pairs are

named X, Y and Z. See Figure 1 below.

=

H

¢+
'S

4
>

=
=

=
o O (0¢]

4

ﬂ
N
I

'S

=

=

A

4

ﬁ
~

>

A

_‘
>

_‘
~l

>

Figure 1: The register file in the processor with the X, Y and Z register highlighted.

To access the register one can use the macros in Table 3.

In Listing 4 an example on how to use the Z register can be seen.

X register

Y register

Z register

Table 3: Macros for the X, Y and Z register.

Macro Description

X r26:r27
XL r26
XH r27
Y r28:r29
YL r28
YH r29
Z r30:31
ZL r30
ZH r31
#define PINA 0x00
start:
in r22, PINA ; Loads r22 with PINA
1di ZH, 0x40 ; Sets low byte of Z reg to low byte of SP
1di ZL, 0xFO ; Sets high byte of Z reg to low byte of SP
st zZ, r22 ; Store r22 to addres in Z register
1d r21, Z ; Load r21 with RAM content at address Z
rjmp start

Listing 4: Accessing data in RAM.

The Stack

The stack is the part of the RAM used for local, temporary, variables. In C, the allocation of local variables
is handled automatically by the compiler. In assembly, this must be done by you. The stack grows from
higher addresses to lower. This means that when allocating memory on the stack, we must subtract the
stack pointer with number of bytes we want allocated. When returning the memory, we add the same
number to the stack pointer. Failing to properly return stack memory will result in program crashes. Recall
that when calling subroutines, the return address is being stored on the stack, hence failing to manage the
stack makes a subroutine return back to the wrong address.

A stack pointer is used to keep track of the “top”. For an AVR processor, the stack pointer is a 16-bit,
memory mapped, value located in the memory at address 0x3D (no offset). On start-up, the stack pointer
is set to the end of RAM, i.e., the highest address, which is 0x40FF. For each byte added to the stack the
stack pointer is decremented. This means that the stack is growing towards lower addresses.

There are two special instructions directly associated with the stack. The first is push. With this instruction
the content of the specified register will be stored at the address given by the stack pointer. After a push
instruction is performed the stack pointer is decremented (the stack grows towards lower addresses). The
second instruction is the pop, which is the opposite. It move the last added byte from the stack to the
specified register and increment the stack pointer.

Another way of allocating and deallocating space on the stack is to add or subtrack a given number from
to/from the stack pointer. An example of this is shown in Listing 5. The code allocates two bytes on the
stack and then stores two bytes of data. This is achieved by:

o loading the stack pointer into r28 and r29 (later used as the Y register),

« subtract two to r28 and r29 (the result is stored in the same registers),

e writing the content of r28 and r29 back to the stack pointer register,

e loading r20 and r21 with data from address 0x63 and 0x59, respectively,
e writing r20 and r21 to the stack, using the Y register, i.e., r28 and r29.

#define STACK_H Ox3E ; Address to the high byte of the stack pointer
#define STACK_L 0x3D ; Address to the low byte of the stack pointer
#define N_ALLOC 2

warp:

; Code to initialize anti-annihilation chamber

in r28, STACK_L ; Load low byte of stack pointer to r28

in r29, STACK_H ; Load high byte of stack pointer to 729

sbiw Y, N_ALLOC ; Subtract N from the loaded stack pointer

out STACK_L, r28 ;

out STACK_H, r29 ; Update stack pointer

1di r20, 0xCC ; Load 720 with warp core start sequence

1di r21, OxA1l ; Load r21 with wormhole coordinate system wvariable

std Y+1, r20 ; Store content of r20 on the stack

std Y+2, r21 ; Store content of r21 on the stack
; Warp core calibration code

ret

Listing 5: A snippet of assembly code that allocates an array with the size of 2 bytes on the stack.

10

The stack before and after running the snippet of code can be viewed in Figure 2. As seen, the stack pointer
has been decremented after the execution and the two bytes of data has been added. It should be noted that
the stack pointer always points on the next free byte, which is below (lower address) the “top of stack™.

Grows in this direction

Figure 2: The stack before (left) and after running the code in Listing 5.

Ox40FF
Ox40FE
0x40FD
0x40FC
0x40FB
Ox40FA
0x40F9
0x40F8

0x0002
0x0001
0x0000

Top of stack

O0x40FF
Ox40FE
0x40FD
0x40FC
0x40FB
Ox40FA
0x40F9
0x40F8

0x0002
0x0001

0x0000

Top of stack

Whenever the stack has been used, that is, the need for storing data is no longer present, the allocated bytes
need to be deallocated. If this is not done, the stack will keep growing and soon or later it will collide with
the other content stored in the RAM. To return the allocated space, the number of bytes that was allocated
should be added to the stack pointer. By doing so the memory will be freed up, see Figure 3. Do note that
the content of the previously used memory space is still there (but it should be considered to be lost).

IThe top of stack is purely imaginary, there is no register in the CPU that contains this address.

11

0x40FF
0x40FE
0x40FD
0x40FC
0x40FB
Ox40FA Top of stack

0x40F9
0x40F8

0x0002
0x0001
0x0000

0x40FF
Ox40FE
Ox40FD
0x40FC
0x40FB
0x40FA
0x40F9
0x40F8

0x0002
0x0001
0x0000

Top of stack

Stack pointer

Figure 3: The stack before and after (right) the allocated bytes have been “returned”.

12

Subroutines

Just as we can separate code in different functions in C and Java, assembly lets us separate code in different
subroutines, using labels. As before, a label can be used both in loops to jump to, but also to declare a
subroutine. The difference is how they are used. To jump to a label (say, in a loop), any branch instruction
may be used. When declaring a subroutine, it must be called using the call instruction.

When calling a subroutine, using call, an important thing happens in the processor. The address of the
instruction after the call, which is PC? + 1 (the digit 2 is a footnote), is pushed on the stack. This is
important since we must be able to continue where we left off. An example is shown in Listing 6.

start:
call delay ; delay forever
rjmp start

delay:
1di ri16, 100 ; rl6 = 100
loop:
dec ri16 ; ri6--
brne loop ; loop if ri6 != 0
ret ; return from subroutine

Listing 6: Calling subroutines in assembly.

As shown in the code, we can use labels in both ways at the same time, here used both for declaring a
subroutine, delay, and also for the loop. Every subroutine must end with a ret instruction. This will pop
the return address from the stack and jump back to the start routine by setting the program counter to
the popped value. After this, delay will be called again, and again.

For the keen reader, a disassembled? version of the code can be found in Listing 7. To make life a little
bit harder than it already is, it needs to be said that the program memory (the FLASH) is word-addressed,
where one word is 16 bits, in contrast to the RAM, which is byte-addressed. Furthermore, some instructions,
for instance the call instruction, has the length of two words (32-bit), whereas many others only are one
word (16 bits) long, thereof the gap in addresses between the call and rjmp instruction in Listing 7.

;Address Opcode (disassembled code) Assembly Instruction Comment
start:
00000000 CALL 0x00000003 call delay ; Calling the delay subroutine
00000002 RJMP PC-0x0002 rjmp start ; Jump back to start
00000003 LDI R16,0x64 1di ri6, 100 ; Load r16 with 100
00000004 DEC R16 dec ri6 ; Decrement r16 with 1
loop;
00000005 BRNE PC-0x01 brne loop ; Branch if not equal to zero
00000006 RET ret ; Return to address 00000002

Listing 7: The dissasembled code from Listing 7.

2This is the program counter which contains the address to the instruction that is executed at the moment.
3A disassembled code is the true code that the processor will execute, i.e., code without labels, #defines and so on. The
assembly code can not in all cases be direct mapped to raw machine code.

13

The Anatomy of a Subroutine

A subroutine is a bit more primitive than its high level counterpart in the sense that the programmer needs
to do some parts of the compiler’s job. What the programmer needs to do will be addressed in this section.

A subroutine is divided into three parts; a prologue, a body, and an epilogue, see Figure 4. Each part has

its specific purpose.

Subroutine Body

Epilogue

Figure 4: The anatomy of a subroutine.

When a subroutine has been called, it is important the every register, that will be used during the call and
which content is of importance to the caller after the subroutine has executed, is being saved on the stack.
This should, of course, be done in the beginning of the subroutine. The registers are preferably saved with
the push instruction. Furthermore, if more space on the stack is required, it should also be allocated here
(for ease of use, after the pushing the registers). This part of the code is referred to as the prologue. In
Listing 8, an example of this is shown. In the subroutine there is a need to save r28 and r29, but not r19.

#define STACK_H O0x3E ; Address to the high byte of the stack pointer
#define STACK_L 0x3D ; Address to the low byte of the stack pointer
#define N_ALLOC 5

defense_routine:
; S=================== Start of the prologue

in r28, STACK_L ; Load low byte of stack pointer to r28

in r29, STACK_H ; Load high byte of stack pointer to 729

sbiw Y, N_ALLOC ; Subtract N_ALLOC from the loaded stack pointer
out STACK_L, r28 ;

out STACK_H, r29 ; Update stack pointer

;==================== FEnd of the prologue

; ==================== PBeginning of subroutine body

Listing 8: The prologue of an assembly subroutine.

In the part of the routine called the subroutine body, the routine performs its designated task. When this

14

is done, the epilogue starts. The first thing to do here is to free up all memory that has been allocated on
the stack. The second thing is to restore the registers that were pushed on the stack. This is achieved by
adding an appropriate value to the stack pointer. When this is done, the stack pointer will be pointing at
the last value that was pushed to the stack in the prologue. When all of this is done, the subroutine can
return back from where the subroutine was called (with the ret instruction). In Listing 9, an example of an
epilogue is shown.

#define STACK_H Ox3E ; Address to the high byte of the stack pointer
#define STACK_L 0x3D ; Address to the low byte of the stack pointer
#define N_ALLOC 5

defense_routine:

; ==================== [End of the subroutine body

; ==================== Beginning of the epilogue

in r28, STACK_L ; Load low byte of stack pointer to r28
in r29, STACK_H ; Load high byte of stack pointer to r29
adiw Y, N_ALLOC ; Add N_ALLOC to the loaded stack pointer
out STACK_L, r28 ;

out STACK_H, r29 ; Update stack pointer

pop r29

pop r28

; m=================== End of the epilogue and the subroutine

Listing 9: The epilogue of an assembly subroutine.

15

Lab Exercises

Dynamic Memory Allocation

Sometimes, the general purpose working registers are not enough to store the data you use. Assume that
you are sampling your beautiful singing voice from a microphone over a time period. With only 32 registers
in the AVR, we will run out of space pretty quick. In such a case the RAM is utilized. For global variables
the .data section is used. For local variables (inside a function) the data is usually stored on the stack.

The authors recognize that this assignment is a bit artificial, but it highlights some interesting points students
need to know, in a simple way.

Tasks:

e Create a new “Assembler” project in Atmel Studio.

Home Assignment 6
How do you allocate 10 integers on the stack?

o Write an assembly subroutine that allocates an array of 5 bytes on the stack.

Lab Question 2
What is the value of the stack pointer directly after allocation? Use the debugger.

Home Assignment 7
If you allocate an array of bytes on the stack, and the stack pointer after allocation is 0x40EQ,
what is the address of the value at index 37

e In the subroutine, sample the state of the buttons B1 to B6 in a loop and save the five latest in the
array. The first sample shall be placed at index zero (arr[0]), the fifth sample at index four. After
saving the values, simply return from the subroutine.

Q | Remember that when you borrow something, you must return it.

e In the main function, call your subroutine in a forever-loop.

e Start the debugger and step through each sample to verify that you can read the values of the buttons.
Also check the stack to verify that the samples are placed at the correct addresses.

Lab Question 3
What happens if we do not return the allocated memory in the subroutine?

16

Lab Question 4
Do we need to store the values in the allocated array? What happens if we just store the values
randomly on the stack?

You are now done with this part, show your work to a lab assistant!

17

Calling Conventions

The focus of this chapter is calling convention to pass arguments to and from functions and subroutines.
The chapter is organized as follows. First, there is a brief introduction to argument passing, which is

Arguments Passing

When calling a subroutine, arguments must be passed to the function and a return value is (sometimes)
returned. There are several ways one can pass arguments to a function. These “ways” are called calling
conventions. It is an agreement of how to pass and return values. There are in practice two general ways
this can be done: by putting all arguments on the stack, or by using registers together with the stack.

When writing purely in assembly, the programmer may choose any convention he or she desires, as long as
they are being consistent. However, when mixing C and assembly code, certain rules must be followed. The
C compiler will follow a specific calling convention and the code written in assembly must comply, otherwise
the code is likely to crash.

In AVR processors, the calling convention used is the following. Arguments are placed in the registers r25
to r8, using two registers each. If there are additional arguments, they are pushed on the stack. If we want
to pass a char to a subroutine, we place it in register r24 and r25. Since the size of a char is only one byte,
we put it r24 and we let r25 be zero. Note that we place the lowest significant byte in the register with the
lowest value. An example of different function calls and how the values are passed is shown in Table 4.

v

When returning a value from a subroutine, the value is placed in register r24 and r25, the lowest byte placed
in r24. If the return value is an 8-bit value, you do not have to clear register r25.

See Section 6 in http://wwl.microchip.com/downloads/en/appnotes/doc42055.pdf. Note
that there is a typo for register r22. It should be b2, not b2b.

An example of C code calling a subroutine in assembly is shown in Listing 10 and in Listing 11 respectively.

extern char myadd(char, char);

int main()

{

char a = 12;

char b = 24;

char ¢ = myadd(a, c);
}

Listing 10: C program that calls a subroutine.

18

http://ww1.microchip.com/downloads/en/appnotes/doc42055.pdf

Table 4: Function calls with arguments places in registers.

Function call Register values
char a = 0x12; r25 = 0x00
func(a) r24 = 0x12
char a = 0x1234; 125 = 0x12
func(a); r24 = 0x34
char a = 0x23; r25 = 0x00
char b = 0x42; r24 = 0x23
func(a, b); r23 = 0x00
r22 = (0x42
.global myadd
myadd:
; input arguments are in r24 and r22
add r24, r22 ; add arguments and store the result in r24 (return value)
ret ; return from subroutine

Listing 11: A subroutine adding numbers, being called from C.

Note the two keywords, extern in the C code, and .global in the assembly code. The extern keyword tells
the compiler that the function is defined somewhere else. In this case, in the assembly file. The .global
keyword lets the compiler know that the function shall be accessible outside the assembly file. Without this,
the C program will not “see” the function.

Register Usage

All registers, r0 to r31 may be used in a subroutine, but some registers need to be restored because the
caller function (C code) expects the values in those registers not to change, see Table 5. The registers to be
saved shall be pushed on the stack in the subroutine prologue, and popped off the stack, in the epilogue.

Q For more details, see Section 5 in http://wwl.microchip.com/downloads/en/appnotes/
doc42055.pdf. Note that there is a typo in the table. The next to last register should be
r30, not rO.

19

http://ww1.microchip.com/downloads/en/appnotes/doc42055.pdf
http://ww1.microchip.com/downloads/en/appnotes/doc42055.pdf

Table 5: Register usage in assembly, when called from C code.

Register Usage

r0 Save and restore if using

ril Always 0, clear before return if using
r2-ri7 Save and restore if using

r28 Save and restore if using

r29 Save and restore if using

r18-r27 Can freely use

30 Can freely use

31 Can freely use

20

Lab Exercises

Being limited to only write in assembly is daunting for most people (authors excluded), and most would like
to write only the critical parts in assembly but the rest in a more user friendly language. Just as we can call
Java functions from C, C from Python, and C from Matlab, we can of course call assembly from C (and vice
versa).

In this assignment, we will explore the combination of C and assembly.

Tasks:
e Create a new “GCC C Executable” project in Atmel Studio.

o Write a program that blinks an LED if a button is pressed. That is, if a button is pressed, you shall call
led_on() and led_off () with a delay after both functions, use 500 ms. Note that the two functions
are not yet implemented, thus you will need to implement them in assembly. On the top of your C-file,
add

— extern void led_on(char),
— extern void led_off (char),
— extern char check_button(char).

This tells the compiler that the functions are defined elsewhere.

Q | Remember to specify the data direction, to make the pins connected to the LEDs outputs.

Q | Remember to define F_CPU to 16 MHz before including the <util/delay.h> file.

o Right-click the project name in the solution explorer and select add -> New Item... then select
Preprocessing Assembler File (.S) to add a new assembly file.

Home Assignment 8
In AVR assembly, how do you declare a subroutine? How do you call it?

Home Assignment 9
In AVR assembly, how are arguments passed to and returned from a subroutine?

e Declare the three subroutines and implement them following all conventions.

21

Lab Question 5
When calling the subroutine, 1led_on, what is being pushed to the stack and why?

Lab Question 6
When the ret instruction is executed, what happens with the stack pointer?

Lab Question 7
In the check_button subroutine, comment out the instruction where you place the return value
in r24 and run the code. Does the LED blink? If so, why?

e Run the code in a debugger to verify that the code executes as expected.

Q | When debugging, it is good to comment the _delay_ms calls to avoid waiting.

You are now done with this part, show your work to a lab assistant!

22

Appendix A

AVR Instruction Set

An excerpt of AVR assembly instructions is shown in Table A.1. Rd and Rr are registers, usually r0 to r31,
and Imm is an immediate value which may be given in decimal, hexadecimal or in binary. One may also use

W W

mathematical operations for the immediate value, such as “+”, , “«” and so on.

Note that not all registers can be used in all instructions. For information regarding valid registers and how
many clock cycles the instructions take, see the documentation at https://www.microchip.com/webdoc/
avrassembler/avrassembler.wb_instruction_list.html.

23

https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html
https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html

Table A.1: A short summary of useful instructions.

Category Instruction Operation
add Rd, Rr Rd = Rd + Rr
adiw Rd, Imm Rd = Rd + Imm
sub Rd, Rr Rd = Rd - Rr

subi Rd, Imm Rd = Rd - Imm
sbiw Rd, Imm Rd = Rd - Imm

inc R4 Rd=Rd +1
. . dec Rd Rd=Rd-1

Arithmetic 4 R4, Ry Rd = Rd & Rr
andi Rd, Imm Rd = Rd & Imm
or Rd, Rr Rd =Rd | Rr
ori Rd, Imm Rd = Rd | Imm
eor Rd, Rr Rd = Rd & Rr
1sl Rd Rd=Rd <<'1
lsr Rd Rd=Rd>>1
breq label Jump to label if Rd = Rr
brlo label Jump to label if Rd < Rr

Branch brne label Jump to label if Rd != Rr
brsh label Jump to label if Rd >= Rr
rjmp label Jump to label
. call label Call subroutine label

Subroutine .
ret Return form subroutine
push Rr Push value of register Rr on stack
pop Rd Pop top of stack and store value in Rd
1d Rd, X/Y/Z Load value into Rd from address in X, Y or Z

Memory 1di Rd, Imm Rd = Imm
1lds Rd, K Load value into Rd from address K
st Y, Rr Store value of Rr to address in Y
std Y+k, Rr Store value of Rr to addres in Y + k
sts Imm, Rr Store value of Rr to address Imm
1/0 in Rd, Imm Read from I/0 device at address Imm, store in Rd
out Imm, Rr Write value of Rr to I/O device at address Imm
mov Rd, Rr Copy value from Rr to Rd
Other movw Rd, Rr Copy word from Rr to Rd

nop No operation, do nothing

24

	Introduction
	Purpose
	Organization

	Assembly Programming
	A Simple Program
	Conditional Expressions
	Input/output (I/O)
	Measuring Execution Time
	Lab Exercises

	Memory Management and Subroutines
	Accessing the Memory
	The Stack
	Subroutines
	Lab Exercises

	Calling Conventions
	Argument Passing
	Register Usage
	Lab Exercises

	AVR Instruction Set

