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Linear Boolean functions

Definition (Linearity)
A function f is said to be linear if

f (x⊕ y) = f (x)⊕ f (y) (L1)
f (αx) = αf (x) (L2)

In other words
I The sum of the arguments gives the same as the sum of the

functions.
I Multiplying the argument with a scalar is the same as

multiplying the function.
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Linear Boolean functions

Theorem
A Boolean function is linear if and only if it can be written as

f (x) = a1x1 ⊕ · · · ⊕ anxn

=
(
a1 . . . an

)x1
...
xn

 = ax ai ∈ {0, 1}

I Any linear Boolean function can be realized with an n-input
modulo 2 adder.

Martin Hell, Digitalteknik L13:3, Ch 7.1-7.2



Linear Boolean functions

Realisation of linear Boolean functions

I A combinational circuit containing only modulo 2 adders
realizes a linear Boolean function.

I A linear Boolean function can be implemented with modulo 2
adders.

Martin Hell, Digitalteknik L13:4, Ch 7.1-7.2



RSE/RMF

Linearity test
With the ring sum expansion (RSE) all Boolean functions can
(uniquely) be written with Boolean ring operations (⊕,⊗) instead
of Boolean algebra operations (∨,∧,′).

f (x) =a0 ⊕ a1x1 ⊕ · · · ⊕ anxn

⊕ an+1x1x2 ⊕ · · · ⊕ a2n−1x1 . . . xn

In a linear Boolean function ai = 0, i = 0 and i > n,

fa(x) = a1x1 ⊕ · · · ⊕ anxn

Martin Hell, Digitalteknik L13:5, Ch 7.1-7.2



RSE/RMF

Theorem (4.6)
All Boolean functions f (x) ∈ Bn can be written with the (ring)
operations ⊕ and ⊗, by the ring sum expansion (RSE/RMF),

f (x) =
2n−1⊕
j=0

aj
⊗
i∈In(j)

xi

where aj ∈ B and In(j) is an index function.

The RSE/RMF expression is unique for the function.

Remark: Often the name Reed-Muller form is used.

Martin Hell, Digitalteknik L13:6, Ch 7.1-7.2



RSE/RMF

Derivation of RSE/RMF
Four ways to derive the RSE/RMF from a Boolean expression:

I Use the definition of the Boolean operations:
a ∧ b = a · b
a ∨ b = a⊕ b ⊕ ab

a′ = 1⊕ a

I Use deMorgan’s law to get rid of ∨, then use a′ = 1⊕ a.
I Write the function in DNF. Then use that

mi ∨mj = mi ⊕mj ⊕mi ·mj︸ ︷︷ ︸
=0, i 6=j

= mi ⊕mj

and a′ = 1⊕ a.
I Reed-Muller transform

Martin Hell, Digitalteknik L13:7, Ch 7.1-7.2



Linear sequential circuit
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Linear sequential circuit

Linear sequential circuit
A linear sequential circuit is a sequential circuit with only modulo 2
adders and delay elements.

Theorem
A linear sequential circuit can be described by{

q+=Aq⊕ Bx
u=Cq⊕ Hx

Martin Hell, Digitalteknik L13:9, Ch 7.1-7.2



A linear sequential circuit

q1 + q2 + q3

+

x1 +

x2 +

u1

+ u2

Martin Hell, Digitalteknik L13:10, Ch 7.1-7.2



An example

Example
The equations can be expressed in matrix form asq+1

q+2
q+3

 =

 x2
q1 ⊕ q2 ⊕ q3
x1 ⊕ q1 ⊕ q3

 =

0 0 0
1 1 1
1 0 1

q1
q2
q3

⊕
0 1
0 0
1 0

(x1
x2

)

(
u1
u2

)
=

(
x1 ⊕ q1 ⊕ q3

x2 ⊕ q2

)
=

(
1 0 1
0 1 0

)q1
q2
q3

⊕ (1 0
0 1

)(
x1
x2

)

Hence,

A =

0 0 0
1 1 1
1 0 1

 B =

0 1
0 0
1 0

 C =

(
1 0 1
0 1 0

)
H =

(
1 0
0 1

)
Martin Hell, Digitalteknik L13:11, Ch 7.1-7.2



Rank

Definition (Matrix Rank)
The rank of a matrix A is the maximum number of linearly
independent rows (or columns) in A.

For an m× n matrix the rank is bounded by Rank(A) ≤ min{m, n}

Inverse matrix
I if m = n then Rank(A) = m ⇔ A−1 exists,

AA−1 = A−1A = I .
I if m < n then Rank(A) = m ⇔ A−1

R exists,
AA−1

R = I .
I if m > n then Rank(A) = n ⇔ A−1

L exists,
A−1
L A = I .

Martin Hell, Digitalteknik L13:12, Ch 7.1-7.2



Derivation of rank

The rank of a matrix A can be derived by Gauss elimination. After
elimination the number of pivot elements is the rank.
Consider the matrix (over the binary Boolean ring)

A =


1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1


Gauss elimination

→


©1 0 1 0
0 1 1 0
0 0 1 1
0 1 0 1

→

©1 0 1 0
0 ©1 1 0
0 0 1 1
0 0 1 1

→

©1 0 1 0
0 ©1 1 0
0 0 ©1 1
0 0 0 0


The rank is 3.
Remark: The same derivation over the real numbers will give rank
4.

Martin Hell, Digitalteknik L13:13, Ch 7.1-7.2



Diagnostic Matrix

Diagnostic Matrix
The diagnostic matrix is the pr × r matrix

K =


C
CA
CA2

...
CAr−1


with maximum rank, Rank(K ) = r .

If Rank(K ) < r , then there are equivalent states.

Martin Hell, Digitalteknik L13:14, Ch 7.1-7.2



Reduced form

Theorem (7.4)
Let A, B , C , and H determine a linear sequential circuit where
Rank(K ) = k . Then, the reduced form is given by

Ared = TAR

Bred = TB

Cred = CR

Hred = H

where T consists of the first k linearly independent rows of the
diagnostic matrix K , and R is a right inverse of T .

Martin Hell, Digitalteknik L13:15, Ch 7.1-7.2



The example continued (I)

The diagnostic matrix:

K =
(

C
CA
CA2

)
=

 1 0 1
0 1 0
1 0 1
1 1 1
1 0 1
0 1 0


The rank: Rank(K ) = 2. Thus,

T = ( 1 0 1
0 1 0 ) R = T−1

R =
(

1 0
0 1
0 0

)
where R is a right inverse of T .

Martin Hell, Digitalteknik L13:16, Ch 7.1-7.2



The example continued (II)

How to find the right inverse of T?
Since the first 2 columns of T are linearly independent we write T
as

T = ( 1 0 1
0 1 0 ) =

(
M N

)
where M is the first 2 (linearly independent) columns of T , and N
is the rest. An inverse of M can be found in

M−1 = ( 1 0
0 1 )

Since (
M N

)(M−1

0

)
= MM−1 = I

we have found a right inverse in

R =

(
M−1

0

)(
1 0
0 1
0 0

)
Martin Hell, Digitalteknik L13:17, Ch 7.1-7.2



The example continued (III)

The matrices are

Ared = TAR = ( 1 0
1 1 )

Bred = TB = ( 1 1
0 0 )

Cred = CR = ( 1 0
0 1 )

Hred = H = ( 1 0
0 1 )

Hence, (
q+1
q+2

)
= Aredq⊕ Bredx =

( q1⊕x1⊕x2
q1⊕q2

)
( u1
u2 ) = Credq⊕ Hredx =

( q1⊕x1
q2⊕x2

)

Martin Hell, Digitalteknik L13:18, Ch 7.1-7.2



Reduced form

x1 u1+

x2 u2+

+ q1 + q2

Martin Hell, Digitalteknik L13:19, Ch 7.1-7.2



D-transform

Definition
The sequence

x = . . . x−1x0x1x2 . . .

can be represented by

x(D) = · · · ⊕ x−1D
−1 ⊕ x0 ⊕ x1D ⊕ x2D

2 ⊕ . . . =
∑
i

xiD
i

where D is a delay operator.

Martin Hell, Digitalteknik L13:20, Ch 7.1-7.2



D-transform (Ex)

Example
Examples of D-transform

I 1
↑

t=0

011010111 . . . D−→ 1⊕D2 ⊕D3 ⊕D5 ⊕D7 ⊕D8 ⊕D9 ⊕ · · ·

I 1101
↑

t=0

101 . . . D−→ D−3 ⊕ D−2 ⊕ 1⊕ D ⊕ D3 ⊕ · · ·

= D−3(1⊕ D ⊕ D3 ⊕ D4 ⊕ D6 ⊕ · · · )

I D2 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ · · · D
−1
−→ 0

↑
t=0

01000111 · · ·

D2(1⊕ D4 ⊕ D5 ⊕ D6 ⊕ · · · ) D
−1
−→ 1

↑
t=2

000111 · · ·

Martin Hell, Digitalteknik L13:21, Ch 7.1-7.2



D-transform of periodic sequences

Theorem
The (infinite) periodic sequence

s = [s0s1 . . . sT−1]
∞ = s0 . . . sT−1s0 . . . sT−1 . . .

has the D-transform
s(D) =

P(D)

1⊕ DT

where P(D) is the D-transform of one period,

P(D) = D(s0s1 . . . sT−1)

and T the period.

Martin Hell, Digitalteknik L13:22, Ch 7.1-7.2



D-transform of periodic sequences

Proof.
D-transform of [s0 . . . sT−1]

∞:
I 1st position

[10 . . . 0]∞ D−→ 1⊕ DT ⊕ D2T ⊕ · · · = 1
1⊕ DT

I i + 1st position

[0 . . . 1 . . . 0]∞ D−→ D i ⊕ DT+i ⊕ D2T+i ⊕ · · · = D i

1⊕ DT

Super positioning gives

[s0s1 . . . sT−1]
∞ D−→ s0

1
1⊕ DT

⊕ · · · ⊕ sT−1
DT−1

1⊕ DT

=
s0 ⊕ s1D ⊕ · · · sT−1D

T−1

1⊕ DT

=
D(s0s1 . . . sT−1)

1⊕ DT

Martin Hell, Digitalteknik L13:23, Ch 7.1-7.2



D-transform of periodic sequences

Example

I [01]∞ D−→ D

1⊕ D2

I [110]∞ D−→ 1⊕ D

1⊕ D3 =
1⊕ D

(1⊕ D)(1⊕ D ⊕ D2)
=

1
1⊕ D ⊕ D2

I

1
↑

t=0

1[110]∞ D−→ 1⊕ D ⊕ D2 1⊕ D

1⊕ D3 =
(1⊕ D)(1⊕ D3)

1⊕ D3 ⊕ 1⊕ D

1⊕ D3

=
1⊕ D ⊕ D3 ⊕ D4 ⊕ D2 ⊕ D3

1⊕ D3 =
1⊕ D ⊕ D2 ⊕ D4

1⊕ D3

=
1⊕ D2 ⊕ D3

1⊕ D ⊕ D2

Martin Hell, Digitalteknik L13:24, Ch 7.1-7.2



Linear sequential circuit in D-domain

Example: Linear sequential circuit

x1(D) u1(D)+

x2(D) u2(D)+

+ q1 + q2

γ1(D) γ2(D)

D-element in D-domain
γ(D)

D
γ(D)D

Martin Hell, Digitalteknik L13:25, Ch 7.1-7.2



Relationship between x and u

The state sequences are (all (D) are omitted){
γ1 = x1 ⊕ x2 ⊕ γ1D

γ2 = γ1D ⊕ γ2D
⇒

γ1 = x1
1

1⊕D ⊕ x2
1

1⊕D

γ2 = x1
D

1⊕D2 ⊕ x2
D

1⊕D2

Insert into the output equations{
u1 = x1 ⊕ γ1D

u2 = x2 ⊕ γ2D
⇒

u1 = x1
1

1⊕D ⊕ x2
D

1⊕D

u2 = x1
D2

1⊕D2 ⊕ x2
1

1⊕D2

In matrix form we write

( u1
u2 ) =

( 1
1⊕D

D
1⊕D

D2

1⊕D2
1

1⊕D2

)
︸ ︷︷ ︸

G(D)

( x1x2 )

G (D) describes the relation between inputs and outputs.
Martin Hell, Digitalteknik L13:26, Ch 7.1-7.2



Transfer function matrix

Theorem
The input-output relation in a linear sequential circuit is described
by the transfer function matrix G (D) as

u(D) = G (D)x(D)

The transfer function matrix can be derived as

G (D) = C
(
I ⊕ AD

)−1
BD ⊕ H

Martin Hell, Digitalteknik L13:27, Ch 7.1-7.2



A,B ,C ,H → G (D)

Proof.

A linear sequential circuit is de-
scribed by{

q+ = Aq⊕ Bx
u = Cq⊕ Hx

Since D is a delay operator we
have

q = q+D

Hence, in the D-domain we get{
q+ = Aq+D ⊕ Bx
u = Cq+D ⊕ Hx

Rewrite the first equation as

(I ⊕ AD)q+ = Bx

or, equivalently

q+ = (I ⊕ AD)−1Bx

Insert into the second equation

u = C (I ⊕ AD)−1BxD ⊕ Hx

=
(
C (I ⊕ AD)−1BD ⊕ H

)︸ ︷︷ ︸
G(D)

x

Martin Hell, Digitalteknik L13:28, Ch 7.1-7.2



A,B ,C ,H → G (D)

Example

G (D) = C (I ⊕ AD)−1 BD ⊕ H

= Cred (I ⊕ AredD)−1 BredD ⊕ Hred

= ( 1 0
0 1 )

(
( 1 0

0 1 )⊕ ( 1 0
1 1 )D

)−1

( 1 1
0 0 )D ⊕ ( 1 0

0 1 )

= ( 1 0
0 1 )

1
1⊕D2

( 1⊕D 0
D 1⊕D

)
( 1 1

0 0 )D ⊕ ( 1 0
0 1 )

=

(
D(1⊕D)

1⊕D2 ⊕1 D(1⊕D)

1⊕D2

D2

1⊕D2
D2

1⊕D2⊕1

)

=

(
1⊕D
1⊕D2

D⊕D2

1⊕D2

D2

1⊕D2
1

1⊕D2

)
=

( 1
1⊕D

D
1⊕D

D2

1⊕D2
1

1⊕D2

)

Martin Hell, Digitalteknik L13:29, Ch 7.1-7.2


