

Digitalteknik EITF65

Lecture 9: State Minimisation

August 27, 2020

Equivalent graphs

Definition

Equivalent graphs Two graphs are said to be equivalent if they describe the same behaviour.

Build two realisations:

$$x \longrightarrow \overrightarrow{\text{Graph 1}} \longrightarrow y \qquad x \longrightarrow \overrightarrow{\text{Graph 2}} \longrightarrow y$$

If the graphs are equivalent it is impossible to distinguish them by manipulating the input sequences and observing the output sequences.

Equivalence relation

Definition (Ch 3)

An equivalence relation is a binary relation, $\equiv,$ over a set ${\mathcal S}$ such that it is

reflexive,

$$s \equiv s$$

symmetric,

$$s_1 \equiv s_2 \Rightarrow s_2 \equiv s_1$$

transitive,

$$s_1 \equiv s_2$$
 and $s_2 \equiv s_3 \ \Rightarrow \ s_1 \equiv s_3$

for all $s, s_1, s_2, s_3 \in \mathcal{S}$.

An equivalence relation over S partitions S into disjoint subsets, equivalence classes.

Martin Hell, Digitalteknik L9:3, Ch 6.1

Equivalence relation (Ex)

Example

Consider the set of all integers, $\mathbb Z.$ and let \equiv mean congruent modulo 5, i.e.,

$$a \equiv b \Leftrightarrow R_m(a) = R_m(b)$$

Then \equiv is an equivalence relation over \mathbb{Z} . There are 5 equivalence classes, and the *i*th contains all integers *a* such that $R_5(a) = i$;

$$\begin{split} & [0]_5 = \{ \dots, -10, -5, 0, 5, 10, \dots \} \\ & [1]_5 = \{ \dots, -9, -4, 1, 6, 11, \dots \} \\ & [2]_5 = \{ \dots, -8, -3, 2, 7, 12, \dots \} \\ & [3]_5 = \{ \dots, -7, -2, 3, 8, 13, \dots \} \\ & [4]_5 = \{ \dots, -6, -1, 4, 9, 14, \dots \} \end{split}$$

If we represent the classes with its least positive integer we are back to modulo calculation.

Martin Hell, Digitalteknik L9:4, Ch 6.1

State equivalence

Definition

Two states s_1 and s_2 are equivalent,

$$s_1 \equiv s_2$$

if for all input sequences the corresponding output sequences are identical, regardless if we start in s_1 or s_2 .

State-equivalence is an equivalence relation, and the equivalence classes correspond to non-equivalent states.

Definition (6.2)

If there are no equivalent states in a finite state machine, we say that the machine is on reduced form.

RF-algorithm

To find a reduced form of a graph we can use the following algorithm.

Step 1 Form P_1 by grouping states with the same output function in blocks.

Step ℓ Let

$$P_{\ell-1} = \{\mathcal{B}_1, \ldots, \mathcal{B}_m\}$$

Form

$$P_{\ell} = \{ \tilde{\mathcal{B}}_1, \dots, \tilde{\mathcal{B}}_n \}$$

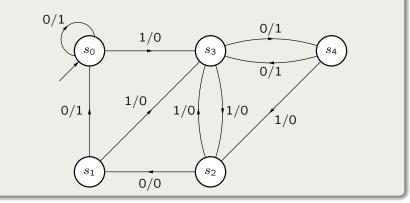
by grouping the states in each block \mathcal{B}_j by the groups of their next states.

If $P_{\ell} = P_{\ell-1}$ then $\mathcal{S}_{\mathrm{red}} = P_{\ell}$ STOP Otherwise GOTO Step $\ell + 1$.

RF-algorithm, example

Example

Consider the graph



Example (cont'd)

Tabular:			RF-algorithm:	Reduced form graph:		
S	0	1		S	0	1
<i>s</i> ₀	$s_0/1$	<i>s</i> ₃ /0	$P_1 = \{s_0 s_1 s_3 s_4\}\{s_2\}$	<i>s</i> ₀₁	$s_{01}/1$	<i>s</i> ₃₄ /0
<i>s</i> ₁	$s_0/1$	<i>s</i> ₃ /0	$P_2 = \{s_0 s_1\}\{s_3 s_4\}\{s_2\}$	<i>s</i> ₂	<i>s</i> ₀₁ /0	<i>s</i> ₃₄ /0
<i>s</i> ₂	$s_1/0$	<i>s</i> ₃ /0	$P_3 = \{s_0 s_1\}\{s_3 s_4\}\{s_2\}$	<i>s</i> ₃₄	$s_{34}/1$	<i>s</i> ₂ /0
<i>s</i> ₃	$s_4/1$	<i>s</i> ₂ /0	<i>s</i> ₀₁ <i>s</i> ₃₄			
<i>s</i> 4	$s_{3}/1$	<i>s</i> ₂ /0				

Initialized graphs

Definition (6.3)

If it exists at least one path through the graph from state s_0 to state s, then s is reachable from s_0 . A state transition graph with starting state s_0 is reachable if all states are reachable from s_0 .

A graph with starting state s_0 can be realized by the reachable part of the graph.

Minimal form

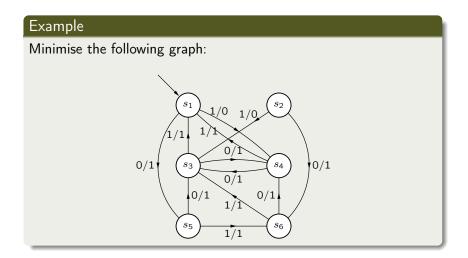
Definition (6.5)

A minimal graph is a reduced form of a reachable graph.

To find a minimal form of a graph

- ▶ Remove the states from S that are not reachable from s_0 , i.e., find the reachable part.
- ► Use the RF-algorithm to find a reduced form of this graph.

An example



Example (solution)

Draw t	the s	tate tra	ansition	table:
	s	0	1	
	<i>s</i> ₁	$s_{5}/1$	<i>s</i> ₄ /0	
	<i>s</i> ₂	$s_{6}/1$	<i>s</i> ₃ /0	
	<i>s</i> 3	$s_4/1$	$s_1/1$	
	<i>s</i> 4	$s_{3}/1$	$s_1/1$	
	<i>S</i> 5	$s_{3}/1$	$s_{6}/1$	
	<i>s</i> 6	$s_4/1$	$s_{3}/1$	

We see that state s_2 is unreachable from the starting state s_1 . Hence, the reachable graph is

5	0	1	
<i>s</i> ₁	$s_{5}/1$	<i>s</i> ₄ /0	
<i>s</i> ₃	$s_4/1$	$s_1/1$	
s ₄	$s_{3}/1$	$s_1/1$	
<i>S</i> 5	$s_{3}/1$	$s_{6}/1$	
<i>s</i> 6	$s_4/1$	$s_{3}/1$	

Example (solution)

RF-algorithm:

$$P_1 = \{s_1\}\{s_3s_4s_5s_6\}$$
$$P_2 = \{s_1\}\{s_3s_4\}\{s_5s_6\}$$
$$P_3 = \{s_1\}\{s_3s_4\}\{s_5\}\{s_6\}$$
$$P_4 = P_3$$

A minimal graph is given by					
	S	0	1		
	<i>s</i> 1	$s_{5}/1$	<i>s</i> ₃₄ /0		
	<i>s</i> ₃₄	$s_{34}/1$	$s_1/1$		
	<i>s</i> 5	$s_{34}/1$	$s_{6}/1$		
	<i>s</i> ₆	$s_{34}/1$	$s_{34}/1$		

Or, in graphical form:

