

Digitalteknik EITF65

Lecture 7: Minimal Functions

August 27, 2020

Definition

Let \mathcal{F} be a set of cubes and $V(\mathcal{F})$ the corresponding vertices. Then the cubes in \mathcal{F} cover the function f if and only if

$$f^{-1}(1)\subseteq V(\mathcal{F})\subseteq f^{-1}(1)\cup f^{-1}(-)$$

A cube function $c^{\mathcal{C}}(\mathbf{x})$ for a cube in a cover of f, i.e.

$$c^{\mathcal{C}}(\mathsf{x})$$
 s.t. $V(c) \subseteq f^{-1}(1) \cup f^{-1}(-)$

is called an implicant of f.

If \mathcal{F} cover the function f, then f can be written

$$f(\mathbf{x}) = \bigvee_{\mathcal{C}\in\mathcal{F}} c^{\mathcal{C}}(\mathbf{x}).$$

Minimal cover

Definition (5.1)

Let \mathcal{I} be a set of implicants that covers the function f. If the number of implicants in the cover is minimal over all possible covers of f, it is a minimal cover.

Our goal is to find a minimal cover of f.

Martin Hell, Digitalteknik L7:3, Ch 5.1.1-5.1.2

Prime implicants

Definition

A prime implicant is an implicant that is not covered by any other implicant. If a cover consists of only prime implicants it is a prime cover.

An essential prime implicant covers a minterm (vertex) that is not covered by any other prime implicant.

A prime cover must contain the essential primes.

Prime cover

Theorem (5.2)

A minimal cover of the incompletely specified function f can be obtained by a minimal cover of $f^{-1}(1)$ with prime implicants of $f^{-1}(1) \cup f^{-1}(-)$.

- Find all prime implicants of $f^{-1}(1) \cup f^{-1}(-)$
- Use them to find a minimal cover of $f^{-1}(1)$

One way to derive all prime implicants for a Boolean expressions is to, for each term, iteratively

expand with all consensus terms,

$$ab \lor a'c = ab \lor a'c \lor bc$$

simplify with absorption,

$$a \lor ab = a$$

Example of iterative consensus

Example

Simplify
$$f = x'_1 x'_2 \lor x_1 x'_2 x_3 \lor x_1 x_2 x_3$$

 $f = x'_1 x'_2 \lor x_1 x'_2 x_3 \lor x_1 x_2 x_3 \lor x'_2 x_3$ (Add consensus for A)
 $A \qquad B \qquad C \qquad D = C(A,B)$
 $= x'_1 x'_2 \lor x_1 x'_2 x_3 \lor x_1 x_2 x_3 \lor x'_2 x_3$ (Remove with absoption)
 $A \qquad B = x_1 D \qquad C \qquad D$
 $= x'_1 x'_2 \lor x_1 x_2 x_3 \lor x'_2 x_3 \lor x_1 x_3$ (Add consensus for C)
 $A \qquad C \qquad D \qquad E = C(C,D)$
 $= x'_1 x'_2 \lor x_1 x_2 x_3 \lor x'_2 x_3 \lor x_1 x_3$ (Remove with absoption)
 $A \qquad C \qquad D \qquad E = C(C,D)$
 $= x'_1 x'_2 \lor x_1 x_2 x_3 \lor x'_2 x_3 \lor x_1 x_3$ (Remove with absoption)
 $A \qquad C = x_2 E \qquad D \qquad E$
 $= x'_1 x'_2 \lor x'_2 x_3 \lor x_1 x_3$ (All primes)
 $A \qquad D \qquad E$

Since $x'_2x_3 = C(A, E)$ this can be removed to get the minimal solution

$$f = x_1' x_2' \vee x_1 x_3$$

Gray code

In a Gray code only one variable is changed for each (cyclic) step.

Example

Example of NBCD and Gray code for $N = 4$ and $N = 8$.							
<i>N</i> = 4				<i>N</i> = 8			
n	NBCD	Gray	-	n	NBCD	Gray	
0	00	00	-	0	000	000	
1	01	01		1	001	001	
2	10	11		2	010	011	
3	11	10		3	011	010	
				4	100	110	
				5	101	111	
				6	110	101	
				7	111	100	
	N n 0 1 2	N = 4 n NBCD 0 00 1 01 2 10	N = 4 n NBCD Gray 0 00 00 1 01 01 2 10 11	N = 4 n NBCD Gray 0 00 00 1 01 01 2 10 11	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	N = 4 $N = 8$ n NBCD Gray n NBCD 0 00 00 0 0 000 1 01 01 1 001 2 010 1 001 2 10 11 2 010 3 011 4 100 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 110 5 101 6 10 5 101 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10<	N = 4 $N = 8$ n NBCD Gray 0 00 00 1 01 01 2 10 11 3 11 10 4 100 110 5 101 111 6 110 101

(NBCD = Natural Binary Coded Decimal.)

Karnaugh maps

A Karnaugh map is a function table in matrix form with

- at most two variables per dimension.
- the input combinations are listed as Gray code.

Then, between two consecutive positions (horisontal or vertical) there is only a change in one variable.

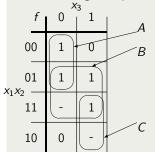
The Karnaugh map can be seen as a graphically interpretation of B^n . The maps useful on paper (2-dimensions) are for functions with 2, 3, or 4 variables.

Karnaugh maps (cont'd)

Minimisation

In a Karnaugh map an implicant is a (cyclic) rectangular block covering 2^k 1s. Minimisation by Karnaugh maps:

- ► Find as big rectangular blocks as possible with 2^k 1s and −. These represent the prime implicants.
- ► Find the essential implicants. These must be part of the function.
- Chose a minimal number of the rest of the implicants such that the function is covered.


Karnaugh minimisation (Ex)

Example

Consider the function f with

$$f^{-1}(1) = \{0, 2, 3, 7\}, \quad f^{-1}(-) = \{5, 6\}$$

The Karnaugh map is

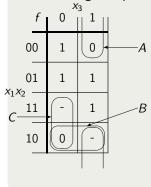
Prime implicants:

$$A = c^{(0B0)}(\mathbf{x}) = x'_1 x'_3$$
$$B = c^{(B1B)}(\mathbf{x}) = x_2$$
$$C = c^{(1B1)}(\mathbf{x}) = x_1 x_3$$

A and B are essential, and covers the function, i.e.,

$$f_{\min} = A \lor B = x_1' x_3' \lor x_2$$

is a minimal function (disjunctive form).


Karnaugh minimisation (Conjunctive form)

Example

Consider the function f with

$$f^{-1}(1) = \{0, 2, 3, 7\}, \quad f^{-1}(-) = \{5, 6\}$$

The Karnaugh map is

(Anti) prime implicants:

$$A = (c^{(B01)}(\mathbf{x}))' = (x'_2 x_3)' = x_2 \lor x'_3$$
$$B = (c^{(10B)}(\mathbf{x}))' = (x_1 x'_2)' = x'_1 \lor x_2$$
$$C = (c^{(1B0)}(\mathbf{x}))' = (x_1 x'_3)' = x'_1 \lor x_3$$

A is essential. Minimal conjunctive form:

$$f_{\min} = A \land B = (x_2 \lor x'_3)(x'_1 \lor x_2)$$

$$f_{\min} = A \land C = (x_2 \lor x'_3)(x'_1 \lor x_3)$$