Digitalteknik EITF65

Lecture 6: Boolean Functions and Normal Forms

August 27, 2020
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Boolean functions (Notation)

Let B = {0,1} denote the Boolean values. Then,

» B" ={0,1}" is an n-dimensional Boolean space
(with values 0 and 1 in each dimension).

» B, is the set of all functions from B" to {0,1}.
» B} is the set of all functions from B" to {0,1, —}.
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Inverse Boolean function

Definition (4.3)
The set of input combinations for which a Boolean function f gives
the output

» 0 is called the off-set of the function, f=1(0).

» 1is called the on-set of the function, f=1(1).

» — is called the don't care-set of the function, f=1(-).
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Inverse function (Example)

Define f € B as Then

f~1(1) = {(000), (010), (011), (111)}
={0,2,3,7}

f~1(0) = {(001), (100)} = {1,4}

f~1(—) = {(101), (110)} = {5,6}
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Lattice exponent

Definition
Let ¢ C B = {0,1}. Then the lattice exponent x(¢) is defined as

0, ifxdc

In other words
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Cubes and cube functions

Definition

The vector ¢ = (c1,...,¢n), ¢; € {0,0,1, B}, describes a cube in
the n-dimensional space B".

The corresponding cube function is formed by

where x € B".

A cube function is an A-product of factors like x; and x/. It has
output 1 inside the cube and 0 outside.
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Cubes and cube functions (Ex)

Let View the function in a table
¢ = ({0,1},{0}, {1}) = (B,0,1) X% | ()
000 0
Then, the correponding cube func- 001 1
tion is 010 0
011 0
cC(x) = cBOV(xy, x2, x3) 100 0
= xfB) A X2(0) A X:,(}I) 101 1
=1AX5Ax3 110 0
, 111| 0
E X2X3
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Minterms

Definition

A point (corner) in B" is called a vertex. It is a cube with only Os
and 1s.

A minterm is a cube function of a vertex, and corresponds to one 1
in the function.

The minterm of the vertex v is denoted

my = c’(x) = {Vl) Ao A i)

It is an A-product of all variables, with or without ’.
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Minterms (Ex)

Define f € B as The on-set is f~1(1) = {0,2,3,7} and the
corresponding minterms
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Disjunctive normal form

All Boolean functions f(x) € B, can be written on
disjunctive normal form (DNF):

f(x) = \/ Ma

aef—1(1)

It is the V-sum of the minterms corresponding to the on-set.
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Maxterms

The dual of a minterm is called a maxterm:
My = (C(V)(X)> (Vl) VATERY, X,(7V'I’), aeB"

It is the inverse cube function of a vertex, and corresponds to a 0 in
the function. )
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Remark on min- and maxterms

A minterm describes a 1 in the function truth table, while a
maxterm describes a 0. Hence, a maxterm can be derived as the
inverse of the corresponding minterm.

My = (my) = (" A Ay =My )
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Maxterms (Ex)

Example ((cont'd))

Define f € B as The off-set is f~1(0) = {1,4} and the cor-
responding maxterms
X1X2X3 L
000 |1 _((001) >/_ AAURY
M= |(c x)| =
001 | o 1 (x) (x1x2%3)
010 |1 =x1 VXV X:/,,
011 |1
100 (0 !
o1 |- My = () = (xaxpxs)
110 | - = X{ V X2 V X3
111 |1
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Conjunctive normal form

All Boolean functions f(x) € B, can be written on
conjunctive normal form (CNF):

fx)= A\ Ma

aef—1(0)

It is the A-product of the maxterms corresponding to the off-set.

V.
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DNF and CNF (Ex)

Example (cont'd)

Consider the function f with
f~1(1) ={0,2,3,7} and F~1(0) = {1, 4}
» In DNF it is realized as

f(x) = \/ ma=mgV myV m3V my
aef—1(1)

= X{Xéxé Vv X{szé V X{X2X3 V X1X0X3
> In CNF it is realized as

f(x) = /\ Ma= M AMy=(x1VxaVx5)(xVxVx3)
acf—1(0)

<

Martin Hell, Digitalteknik L6:16, Ch 4.1-4.2




Conversion to DNF

In the previous examples we had the on-set of the function given. If
we do not have it, we can use the following method.

Example
Express g(x) = x2 V x{x} in DNF.

Option 1: Use 1 = aV &’ to insert the missing variables:

g(x) = x2 V xy x4
=(LAx2x A1)V (g ALAX)
= (xa Vx{)xa(x3 Vx5) V x1(x2 V x5)%4

= X1X0X3 V x{x2X3 \ xlxzxé V x{xzxé V x{xéxé

Option 2: Find the on-set g~1(1), for example with a truth table,
and write the minterms directly as before.
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Conversion to CNF

Example (cont'd)

Show that g(x) = (x| V x2)(x2 V x5).
Write the function in CNF by using 0 = a A &,

8(x) = (q Vx)0e V x3)

=X VxaV0)(0VxVx})

=(x]VxaV (3 AxX5))((x1 AX))VxeVxE)
= (X VxaVx3)(x1 VxaVxg)(x1VxVxb)

= My N Ms A My

= g71(0) = {1,4,5}.

Since g71(1) N g71(0) =0 and g7 1(1) U g71(0) = Zg we see that

g and g are equal.

v
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Reed-Muller canonical form (RMF)

Theorem (4.6)

All Boolean functions f(x) € B, can be written with the (ring)
operations + and x, by the Reed-Muller canonical form (RMF),

2"—1

f(x):@aj ® Xj

J=0  iel(j)

where aj € B and I,(j) is an index function.
Here & and ® are modulo 2 addition and multiplication.
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Derivation of RMF

Four ways to derive the RMF from a Boolean expression:

» Use the definition of the Boolean operations:

aANb=a-b
avVb=ad bdab
a=1da

» Use deMorgan's law to get rid of \, then use &/ = 1® a.
» Write the function in DNF. Then use that
mi NV my=m; @ mj & m; - mj = m; & m
~—
=0, i#j
and a =1® a.
» Reed-Muller transform )
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RMF (Ex)

Convert g(x) = x1x5 V x1x2 to RMF.

Definition  g(x) = x;x} V x1
=x1(1® x3) ® x1x0 D x1(1 & x3)x1%2
= X1 D Xx1X3 D X1 X2 D X1 X2 D X1 X2X3
= X1 D Xx1X3 D X1 X2X3

deMorgan  g(x) = x1x3 V xvxe = ((x13) (x1x2))’
=10(1®x(1dx3))(1dx1x)
=1D 1@ x1x2 @ x1 D x1x2 D x1X3 D X1X2X3
= X1 D x1X3 D X1 X2X3

DNF g(x) = X1X§ V X1 X2
= x1x2x§ \ xlxéxé V X1 X2X3

X1X2(1 (&) X3) D Xl(]. D Xg)(]. @D X3) D X1 X2X3

= X1X2 D X1x2X3 D X1 D X1xX2 D X1X3 B X1 X0X3 D X1

= X1 D x1x3 © X1x2x3

2X3

v
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Difference in notation

» Course book (also KTH, Chalmers, most old literature):
» DNF = OR-sum of minterms
» disjunctive form = any OR-sum of AND-expressions
» minimal disjunctive form = an OR-sum of AND-expressions
with minimum number of AND-expressions
» Wikipedia (also logic literature, D1 course, etc.)
» full DNF = OR-sum of minterms
» DNF = any OR-sum of AND-expressions
» minimal DNF = an OR-sum of AND-expressions with
minimum number of AND-expressions
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