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Problem 1
(a) The disjunctive normal form is the ∨-sum of the minterms in the on-set:

fDNF = m0 ∨m2 ∨m6 ∨m7 ∨m8 ∨m10 ∨m14

= x′1x
′
2x
′
3x
′
4 ∨ x′1x

′
2x3x

′
4 ∨ x′1x2x3x

′
4 ∨ x′1x2x3x4 ∨

x1x
′
2x
′
3x
′
4 ∨ x1x

′
2x3x

′
4 ∨ x1x2x3x

′
4

(b) The minimal disjunctive form can be found by looking at the Karnaugh map below:

fMDF = x′2x
′
4 ∨ x3x

′
4 ∨ x′1x2x3

(c) The minimal conjunctive form, with corresponding Karnaugh map is:

fMCF = (x′2 ∨ x3)(x2 ∨ x′4)(x
′
1 ∨ x′4)

Note that x′3 ∨ x4 shall not be used.
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(d) f can be expressed on RMF as:

fRMF = 1⊕ x2 ⊕ x4 ⊕ x2x3 ⊕ x2x4 ⊕ x1x2x3x4

(e) f(0, 0, x3, x4) gives the following truth table:
x3 x4 f(0, 0, x3, x4)
0 0 1
0 1 0
1 0 1
1 1 0

which gives f(0, 0, x3, x4) = x′4. With CMOS transistors we have:

VDD

f(0, 0, x3, x4)

x4

x4
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Problem 2
(a) A state-transition table is

00 01, 10 11
s−− s0−/0 s1−/0 s2−/0
s0− s00/0 s10/0 s20/0
s1− s01/0 s11/0 s21/0
s2− s02/0 s12/0 s22/0
s00 s00/0 s10/0 s20/0
s10 s01/0 s11/0 s21/0
s20 s02/0 s12/0 s22/0
s01 s00/0 s10/0 s20/0
s11 s01/0 s11/0 s21/0
s21 s02/0 s12/0 s22/1
s02 s00/0 s10/0 s20/1
s12 s01/0 s11/0 s21/1
s22 s02/0 s12/1 s22/0.

To find the reduced form of the given graph we apply the RF algorithm. We obtain the
following partitions:

P1 : {s−−, s0−, s1−, s2−, s00, s01, s02, s10, s11, s20}, {s12, s21}, {s22}
P2 : {s−−, s0−, s00, s01, s02}, {s1−, s10, s11}, {s2−, s20}, {s12}, {s21}, {s22}
P3 : {s−−, s0−, s00, s01, s02}︸ ︷︷ ︸

s0−

, {s1−, s10, s11}︸ ︷︷ ︸
s1−

, {s2−, s20}︸ ︷︷ ︸
s2−

, {s12}, {s21}, {s22}.

Thus, we have the reduced set of states {s−0, s1−, s2−, s12, s21, s22}, and the reduced
state-transition table:

00 01, 10 11
s0− s0−/0 s1−/0 s2−/0
s1− s0−/0 s1−/0 s21/0
s2− s0−/0 s12/0 s22/0
s12 s0−/0 s1−/0 s21/1
s21 s0−/0 s12/0 s22/1
s22 s0−/0 s12/1 s22/0,

which has a state-transition graph
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It is clear that the given graph is also in minimized form for the starting state s0−.
(b) Since the number of states in the minimal graph is 6, we will need 3 state variables,

q1q2q3. We use the following state assignment (other state assignments are also possi-
ble)

s q1 q2 q3
s− 0 0 0
s1− 0 0 1
s2− 0 1 0
s12 1 0 0
s21 1 1 0
s22 1 1 1

Which results in the following state-transition table
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q1 q2 q3 x1 x2 q+1 q+2 q+3 u
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 1 0
0 0 1 1 1 1 1 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 0.

Minimising the functions q+1 , q+2 , q+3 and u can be done using Karnaugh maps (q1 = 0
to the left, q1 = 1 to the right).
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We finally arrive to the following minimal expressions:

q+1 = q2x1 ∨ q2x2 ∨ q1x1x2 ∨ q3x1x2

q+2 = x1x2

q+3 = q′2x
′
1x2 ∨ q′2x1x

′
2 ∨ q2x1x2

u = q1q
′
3x1x2 ∨ q1q3x

′
1x2 ∨ q1q3x1x

′
2

The realisation is omitted, but it is required for full points on the exam.
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Problem 3

We start by looking at the overall sequence of events that will take place in the beer bottle
filling machine. The conveyor belt with the bottles will move the beer bottles towards the
sensor. When a bottle is in front of the sensor, we want to wait until it has passed, and then
stop the conveyor belt. The bottle will then be located directly below the filling mechanism,
so we open the tap, and then wait for 2.8 seconds. When the time has passed, we stop the
filling mechanism, and start the conveyor belt again, and can now start over, waiting for the
next bottle.

From the description above we note that there are three possible states the beer bottle filling
machine can be in: waiting for a bottle to reach the sensor, waiting for the bottle to pass the
sensor, and waiting for the bottle to be filled.

We already have the input signal x which tells us the value of the sensor. We also introduce
an extra input signal a which is 0 if the timer has not yet reached 2.8 seconds, and 1 when it
has reached 2.8 s. We will realize a later.

We will also have three output signals: y which controls if the conveyor belt is running, z
which controls the tap, and b which controls if the timer should be running or not. b is 0 to
have the timer stopped, and 1 to have it running.

The overall design can be summarized in this overview sketch.

control circuit timer
x

yz

b

a

We now start by constructing a state transition graph of the control circuit above. The control
circuit has as inputs x and a, and outputs y, z, and b according to the description above. The
behaviour above gives us the following state transition graph:

swaitstart spass sfill

xa/yzb0-/100
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00/011
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We note that the two output signals z and b always have the same value, and thus we only
need to realize one of them. Furthermore, we see that b = z = y′. With the state assignment
below, we get the following Karnaugh maps and expressions for the control circuit:
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Finally we can write down the minimal boolean expressions, and after this we are done with
the control circuit.

q+0 = q1x
′ ∨ q0a

′

q+1 = x

y = q′0q
′
1 ∨ x ∨ q0a

z = b = y′

We also need to construct a timer which can wait for 2.8 seconds. We use the 74FCT163 as
given in the assignment. Since we have a clock with frequency 5 Hz, i.e. a period of 0.2 s, we
note that waiting 14 clock pulses corresponds to exactly 2.8 s. 74FCT163 is a 4-bit counter,
i.e. a modulo 16-counter. We can convert it to a module 14 counter by letting the counter go
between the values 2–15, just as done in the labs. If we start at the value 2, we note that when
we reach 15, the TC output signal will get the value 1 (just before the counter overflows).
Thus we connect TC to the output a to signal that we have waited 2.8 s. When not counting,
i.e. when b is 0, we want to load the value 2 into the counter. Thus we connect b to PE, and
put the value 0010 on the P-input for the parallel load. Since we only want to count when
filling the bottles, we activate the counter by setting CET and CEP to the signal b from the
state machine above, so that b starts the timer.

This wall of text can be summarized with the drawing below:

74FCT163CP

SR P CET CEP PE

TC

clk

1 0010 b b b

a

By combining the timer and the control circuit according to the previously shown overview
picture, the assignment is complete.
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Problem 4

(a) We want to express the D-transform of the sequence as S(D) = P (D)
C(D)

. Since we only
have the starting state, we need to calculate the coefficients of P (D). We can do this
for example by using (7.121) from the book:


p0
p1
p2
p3
p4
p5

 =


1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 1




s0
s1
s2
s3
s4
s5

 =


1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 1




0
1
1
1
0
0

 =


0
1
0
0
1
0


Thus P (D) = D ⊕D4. Thus, the complete sequence is:

S(D) =
D ⊕D4

1⊕D ⊕D5 ⊕D6

(b) To find the shortest LFSR that generates S(D) we can try to simplify the previous
fraction. By using Euclid’s algorithm to find the greatest common divisor between the
nominator and denominator, we find that gcd(D ⊕D4, 1⊕D ⊕D5 ⊕D6) = 1⊕D.
Thus we can simplify the fraction as:

S(D) =
D ⊕D4

1⊕D ⊕D5 ⊕D6
=

(1⊕D)(D ⊕D2 ⊕D3)

(1⊕D)(1⊕D5)
=

D ⊕D2 ⊕D3

1⊕D5

Thus the connection polynomial for the shortest LFSR that generates the sequence is
1⊕D5.

(c) Using a long division of 1
C(D)

we find that the period is 10.
(d) The maximum period for an LFSR of length 6 is: 26 − 1 = 63.
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Problem 5
(a) We can solve the equation 53x = 2018 in Z22187 as follows. We rewrite the equation as

x = 53−1 · 2018. We start by finding 53−1. First we note that 53 and 22187 are relatively
prime, since 53 is not divisible by either 11 or 2017 (both are primes). This means that
gcd(53, 22187) = 1 and thus the Diophantine equation 53a+ 22187b = 1 has an integer
solution, and we can find an inverse to 53.
Using Euclid’s algorithm, followed by Bézout’s identity, we can find a = 3349 and
b = −8, i.e. we have that 53 · 3349− 8 · 22187 = 1. Since we’re in Z22187, this means that
we can discard all multiples of 22187, and then find that 53−1 = 3349.
Multiplying this inverse by 2018, we get:
x = 53−1 · 2018 = 3349 · 2018 = 13434 mod 22187.

(b) Any multiple of 11 or 2017 will not have an inverse in Z22187. See Theorem 3.10 of the
book.

(c) One possible solution is to do a bitwise comparison between u and 22187 written in
binary: 0101011010101011. If we start comparing from the most significant bit, we
note that as soon as one bit differs from 22187, we can immediately say that u is either
less or greater than 22187. Thus, for each bit comparison, we have three different
possibilities: the bits are equal, one is less than the other, or one is greater than the
other.
We construct a network with two different kind of boxes: one box for when we expect
a 1 in the binary representation of 22187. and one box for when we expect a 0. Thus
we have the following circuit, where u0 is the most significant bit.

f0 f1 f0 f1 f0 f1 f1 f0 f1 f0 f1 f0 f1 f0 f1 f1 g0
0

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

We define that each fi box has two inputs x and y which comes from the previous box.
Each fi box also has a third input ui which contains a bit from the vector u. We define
the following meaning to xy: 00 means u equal to 22187, 01 means don’t care, 10 means
u less than 22187, and finally 11 to mean u greater than 22187. This gives the following
truth tables for f0, f1, and g respectively.

f0
x y ui a b
0 0 0 0 0
0 0 1 1 1
0 1 0 - -
0 1 1 - -
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

f1
x y ui a b
0 0 0 1 0
0 0 1 0 0
0 1 0 - -
0 1 1 - -
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

g
x y GEQ22187
0 0 1
0 1 -
1 0 0
1 1 1

Minimising the functions f0, f1, and g can be done using Karnaugh maps, which gives
the following minimal expressions:

f0a = x ∨ u

f0b = y ∨ x′u

f1a = u′ ∨ x

f1b = y

GEQ22187 = g = x′ ∨ y


