LUND UNIVERSITY

Exercise 3 in VHDL

EITF65

1 SEQUENTIAL LOGIC WITH VHDL

1 Sequential logic with VHDL

Task 1: A state machine

Describe in VHDL the state machine in example 2.13 from the course book, which
calculates the parity of an incomming sequence. Divide the state machine into two
processes. If the provided simulation file is used, the entity and ports should be
named as in the listing below. The name of the design file should be the same as
the entity name.

entity parity is

port (
clk : in std__logic;
i : in std__logic;
p : out std__logic

);

;
end parity ;

Task 2: The lion cage

Describe in VHDL the lion cage from example 2.4 of the course book. This time
there is no provided simulation file. Create your own. You can use the one from
the previous exercise as a reference.

Task 3: Help your friend Miranda

A girl named Miranda wants to create a synchronous sequential circuit that outputs
a 1 if and only if the last 5 input signals have been 00100. Describe the circuit
in VHDL. As before, if the provided simulation file is used the entity and ports
should be named as in the listing below. The name of the design file should be
the same as the entity name.

entity mirandas__state__machine is

port (
clk : in std__logic;
n_rst : in std__logic;
i : in std__logic;
o : out std__logic
)5
end mirandas__state__machine;

Please note that the reset is active low (that is what the prefix n_ denotes). This
means that the state machine should go to state sy when the reset signal is 0.

2 SOLUTIONS

2 Solutions

Task 1: A state machine

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity parity is
Port (clk : in STD_LOGIC;
i : in STD_LOGIC;
p : out STD_LOGIC);
end parity ;

architecture Behavioral of parity is
type state_type is (even, odd);
signal current_state, next_state: state_type;
begin
clocking: process (clk)
begin
if rising_edge(clk) then
current_ state <= next__state;
end if;
end process;

process (i, current_state)
begin
next_state <= current_state;
case current__state is
when even =>

if i = ’1’ then
p <= '17;
next__state <= odd;
else
p <= '07;
end if;
when odd =>
if i = ’1’ then
p<= 0%
next_state <= even;
else
p <= 17
end if;

end case;
end process;
end Behavioral;

Task 2: The lion cage

2 SOLUTIONS

Task 2: The lion cage

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity lioncage is
Port (clk : in STD_LOGIC;

detector : in STD_LOGIC _VECTOR (1 downto 0);
danger : out STD_LOGIC);
end lioncage;
architecture Behavioral of lioncage is
type state_type is (sO, sl, slhat, s2);
signal current_state, next_state: state_ type;
begin
process (clk)
begin
if rising_edge(clk) then
current_ state <= next__state;
end if;
end process;
process (detector, current_state)
begin
next_state <= current_state;
case current_ state is
when s0 =>
if detector = "01" then
next__state <= sl;
end if;
when sl =>
if detector = "10" then
next__state <= slhat;
elsif detector = "11" then
next__state <= s0;
end if;
when slhat =>
if detector = "01" then
next__state <= s2;
elsif detector = "00" then
next__state <= sl;
end if;
when s2 =>
if detector = "11" then
next__state <= slhat;
end if;
end case;
end process;
output: process (detector, current_state)
begin
danger <= '17;
if current__state = s0 and detector = "00" then

danger <= '07;
end if;
end process;
end Behavioral;

Task 3: Miranda’s state machine 2 SOLUTIONS

Task 3: Miranda’s state machine

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mirandas__state__machine is
Port (clk : in STD_LOGIC;

n_ rst : in STD_LOGIC;
i : in STD_LOGIC;
o : out STD_LOGIC);

end mirandas__state__machine;

architecture Behavioral of mirandas__state__machine is
type state_type is (sO, sl, s2, s3, s4);
signal current_state, next_state: state_ type;

begin
clocking: process (clk)
begin
if rising_edge(clk) then
if n_rst = 0’ then
current__state <= s0;
else
current__state <= next__state;
end if;
end if;

end process;

process (current_state, i)
begin
next__state <= current__state;
case current__state 1is
when s0 =>

if i = ’0’ then
next__state <= sl;
end if;
when sl =>
if i = ’0’ then
next__state <= s2;
else
next__state <= s0;
end if;
when s2 =>
if i = ’1’ then
next_state <= s3;
end if;
when s3 =>
if i = 0’ then
next__state <= s4;
else
next__state <= s0;
end if;
when s4 =>
if i = ’0’ then
next__state <= s2;
else
next__state <= s0;
end if;
end case;
end process;
process (current_state, i)
begin
o <= ’0";
if current__state = s4 and i = ’0’ then
o <= "1";
end if;

end process;
end Behavioral;

end Behavioral;

	Sequential logic with VHDL
	Task 1: A state machine
	Task 2: The lion cage
	Task 3: Help your friend Miranda

	Solutions
	Task 1: A state machine
	Task 2: The lion cage
	Task 3: Miranda's state machine

