
Lund university

Exercise 2 in VHDL

EITF65

1 COMBINATIONAL LOGIC WITH VHDL

1 Combinational logic with VHDL

Creating a flip-flop
During this exercise a flip-flop will be constructed by using VHDL instead of
discrete components. A flip-flop has three main building blocks, two latches and
one control block. The exercise is therefore divided into three parts. In the first
part a latch will be created, in the second part the control block will be created
and in the last part they will be connected to form a flip-flop.

Setting up Vivado 2016.1

Before starting Vivado 2016.1 three files should be downloaded (TB_flipflop.vhd,
TB_latch.vhd and TB_control.vhd). These files will be used when simulating the
behaviour of your design. They can be found on the course website under exercises.
See below for a direct link. https://www.eit.lth.se/fileadmin/eit/courses/
eitf65/exercises/ex2_files.zip

The files should be placed in a folder under the path shown below:
C:\users\<login-id>\Program\

Open Vivado 2016.1 and create a new project. The project needs to placed under
the following path:
C:\users\<login-id>\Program\"Your folder"

If the project is not placed at the specified location the simulations will not work.

Add the downloaded files and select the correct FPGA (xc7a100tcsg324-1). When
the project is created add a new design source and name it latch (it has to be
this name otherwise the simulation will not work). If you do not know how to do
this watch the following video:
https://youtu.be/MJ8dAxzsH04.

1

https://www.eit.lth.se/fileadmin/eit/courses/eitf65/exercises/ex2_files.zip
https://www.eit.lth.se/fileadmin/eit/courses/eitf65/exercises/ex2_files.zip
https://youtu.be/MJ8dAxzsH04

Creating a flip-flop 1 COMBINATIONAL LOGIC WITH VHDL

Task 1: The latch

A state diagram of the latch is depicted in Figure 1.

01 11 10

10 10

01 01

10
00

01
00

Figure 1 – State diagram for the latch.

As in the laboratory exercise 3, an input signal, φ (phi), should be used to enable
the inputs x1 and x2. The equations that can be derived from the state diagram
is shown below.

f1 = ((x1 · φ)′ · f2)′ (1)

f2 = ((x2 · φ)′ · f1)′ (2)

The latch’s ports should be named as in Table 1. If the ports do not have the
correct names the provided simulation sources will not work.

Table 1 – The ports of the latch.

Port name Direction Size

phi input 1
x1 input 1
x2 input 1
f1 output 1
f2 output 1

When the design is done set the file TB_latch.vhd as top. This is done by right
clicking on the file (in the Source window) and select Set as Top. Click the follow-
ing link to see a video of how this is done: https://youtu.be/Suidvhl_sGM

Vivado has many useful tools to help the design flow. One of these tools is the
schematic view. This lets the designer view the code as a schematic. To access

2

https://youtu.be/Suidvhl_sGM

Creating a flip-flop 1 COMBINATIONAL LOGIC WITH VHDL

this feature go to the Flow Navigator, which is found to the left. Click on Open
Elaborate Design. When utilizing this feature it is important to select the design
source you want to view as top. This is done in same way as when setting a sim-
ulation source as top.

When you are sure that your design is behaving as intended you can move on
to the next task.

3

Creating a flip-flop 1 COMBINATIONAL LOGIC WITH VHDL

Task 2: The control circuit

To prevent race conditions while using the flip-flop a control circuit is required. A
state diagram of this circuit can be seen in Figure 2.

10 00 01

0 0

1 1

01

Figure 2 – State diagram for control circuit.

The equations derived from the state diagram can be seen below.

φ1 = clk · φ′
2 (3)

φ2 = clk′ · φ′
1 (4)

The control block should have three ports, see Table 2. For the same reasons as
before it is important that the ports have the correct names.

Table 2 – The ports of the control block.

Port name Direction Size

clk input 1
phi1 output 1
phi2 output 1

Add a new design source, name it control and implement the control circuit. And
yet again, the name of the design source is important.

If you want to view your design as a schematic do not forget to set your new
source as top.

Simulate your design to verify that the control circuit is working as desired. Do
not forget to set TB_control.vhd as the top of the simulation sources. Move on
to task 3 when you have convinced yourself that the design is working.

4

Creating a flip-flop 1 COMBINATIONAL LOGIC WITH VHDL

Task 3: The flip-flop

In the last part the previously created blocks will be connected. If this is done
correctly it will create a flip-flop that is triggered on the negative edge of the
clk-signal. See Figure 3 for a schematic of how the blocks should be connected.

contr

control

clk fi1

fi2

l2

latch

f1

f2

fi

x1

x2

clk Q
Q_pl1

latch

f1

f2

fi

x1

x2

D
x2_i

RTL_INV

I0 O

Figure 3 – Schematic view of the flip-flop.

Table 3 – The ports of the flip-flop.

Port name Direction Size

clk input 1
D input 1
Q output 1
Q_p output 1

Add a new design source to the project. The name should be flipflop. The ports
are listed in Table 3. By now you should know that it is vital that the names are
correct, hence there is no need to point that out again.

When the blocks are connected, it is a good idea to open the schematic view
of the design (remeber to set flipflop.vhd as top). If the schematic is correct
set TB_flipflop.vhd as top and start the simulation.

5

2 SOLUTIONS

2 Solutions

Task 1: The latch
l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

entity l a t c h i s
port (

phi : in s t d _ l o g i c ;
x1 : in s t d _ l o g i c ;
x2 : in s t d _ l o g i c ;
f 1 : out s t d _ l o g i c ;
f 2 : out s t d _ l o g i c

) ;
end l a t c h ;

architecture B e h a v i o r a l of l a t c h i s

s i g n a l s_f1 : s t d _ l o g i c ;
s i g n a l s_f2 : s t d _ l o g i c ;

begin
−− Outputs
f 1 <= s_f1 ;
f 2 <= s_f2 ;

s_f1 <= not (not (phi and x1) and s_f2) ;

s_f2 <= not (not (phi and x2) and s_f1) ;

end B e h a v i o r a l ;

Testbench output

Figure 4 – Testbench output for the latch.

6

Task 2: The control block 2 SOLUTIONS

Task 2: The control block
l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

entity c o n t r o l i s
port (

c l k : in s t d _ l o g i c ;
phi1 : out s t d _ l o g i c ;
phi2 : out s t d _ l o g i c

) ;
end c o n t r o l ;

architecture B e h a v i o r a l of c o n t r o l i s

s i g n a l s_phi1 : s t d _ l o g i c ;
s i g n a l s_phi2 : s t d _ l o g i c ;

begin

−− Outputs
phi1 <= s_phi1 ;
phi2 <= s_phi2 ;

s_phi1 <= c l k and not s_phi2 ;
s_phi2 <= not c l k and not s_phi1 ;

end B e h a v i o r a l ;

Testbench output

Figure 5 – Testbench output for the control block.

7

Task 3: The flip-flop 2 SOLUTIONS

Task 3: The flip-flop
l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

entity f l i p f l o p i s
port (

D : in s t d _ l o g i c ;
c l k : in s t d _ l o g i c ;
Q : out s t d _ l o g i c ;
Q_p : out s t d _ l o g i c

) ;
end f l i p f l o p ;

architecture B e h a v i o r a l of f l i p f l o p i s

component c o n t r o l i s
port (

c l k : in s t d _ l o g i c ;
phi1 : out s t d _ l o g i c ;
phi2 : out s t d _ l o g i c

) ;
end component ;

component l a t c h i s
port (

phi : in s t d _ l o g i c ;
x1 : in s t d _ l o g i c ;
x2 : in s t d _ l o g i c ;
f 1 : out s t d _ l o g i c ;
f 2 : out s t d _ l o g i c

) ;
end component ;

s i g n a l s_Q : s t d _ l o g i c ;
s i g n a l s_Q_p : s t d _ l o g i c ;
s i g n a l s_y1 : s t d _ l o g i c ;
s i g n a l s_y2 : s t d _ l o g i c ;
s i g n a l s_phi1 : s t d _ l o g i c ;
s i g n a l s_phi2 : s t d _ l o g i c ;
s i g n a l s_not_d : s t d _ l o g i c ;

begin

−− Outputs
Q <= s_Q ;
Q_p <= s_Q_p ;
s_not_d <= not D;

c o n t r : c o n t r o l
port map(

c l k => clk ,
phi1 => s_phi1 ,
phi2 => s_phi2

) ;

l 1 : l a t c h
port map(

phi => s_phi1 ,
x1 => D,
x2 => s_not_d ,
f 1 => s_y1 ,
f 2 => s_y2

) ;

l 2 : l a t c h
port map(

phi => s_phi2 ,
x1 => s_y1 ,
x2 => s_y2 ,
f 1 => s_Q ,
f 2 => s_Q_p

) ;

end B e h a v i o r a l ;

8

Task 3: The flip-flop 2 SOLUTIONS

Testbench output

Figure 6 – Testbench output for the flip-flop.

9

	Combinational logic with VHDL
	Creating a flip-flop

	Solutions
	Task 1: The latch
	Task 2: The control block
	Task 3: The flip-flop

