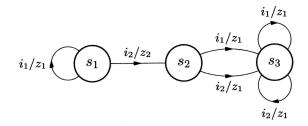
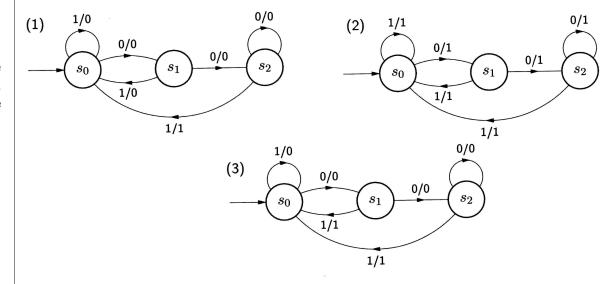
Problems

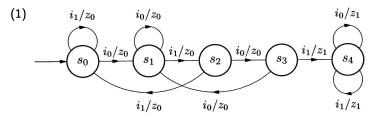
2.1 Consider a finite-state machine and let s denote the present state and z the present output. Consider the following state-transition graph and assume that we are in state s_1 and have input i_2 at time t_0 .

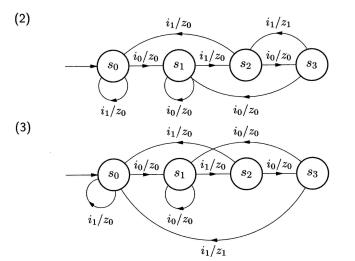


- (a) At which time instant is $s = s_2$?
- (b) At which time instant is $z = z_2$?
- 2.2 Consider a state-transition graph for a finite-state machine. Which of the following statements are correct?
 - (a) The total number of edges entering a state is always equal to the total number of output values.
 - (b) The total number of edges entering a state is always equal to the total number of input values.
 - (c) The total number of edges entering a state can never exceed the total number of states.
 - (d) The total number of edges leaving a state is always equal to the total number of output values.
 - (e) The total number of edges leaving a state is always equal to the total number of input values.
 - (f) The total number of edges leaving a state is always less than the total number of states.
- 2.3 For which (if any) of the state-transition graphs given below is the output 1
 - (a) if the three most recent input values are 001?
 - (b) only if the three most recent input values are 001?
 - (c) if and only if the three most recent input values are 001?



- 2.4 For which (if any) of the state-transition graphs given below is the output z_1 if and only if
 - (a) the four most recent input values are $i_0i_1i_0i_1$?
 - (b) the four-tuple $i_0i_1i_0i_1$ has occurred at least once?
 - (c) the four-tuple $i_0i_1i_0i_1$ has occurred exactly once?





2.1

- (a) $t_0 + 1$; The edge points at the state which the system updates to when it is clocked. This is the *next state* function, $\delta(s,i)$.
- (b) t_0 ; The label on the edge is given directly as output. This is the *output* function, $\lambda(s,i)$.

2.2

- a) False. The number of entering edges can be different for different states. There can for example be an edge from every state that resets the system to the starting state.
- b) False. See a.
- c) False. There can be more than one edge from one state to another.
- d) False. See e.
- e) True. The next state function is a function of both the state and the input. In every state, each input value corresponds to an edge leaving the state.
- f) False. The statement is not true if the number of states is less than the number of inputs.

2.3

- a) The statement means that independent of the current state, the input 001 results in the output 1. This is true for all three graphs since two 0:s drives the machine to state s_2 . Then a 1 will output a 1.
- b) This means that independent of the current state, the only way to get output 1 is to give 001 as input. In the first graph we can only get to state s_2 by giving two 0:s. The only output 1 is given from state s_2 with input 1. Hence, it is true for the first graph.
 - The second graph always gives output 1, so the statement is not true. In the third graph we can also get output 1 for input 101, hence, the statement is not true.
- c) *If* and *only if* means that both *a* and *b* should be true. That gives graph 1.

2.4

- (a) In the first graph we can get stuck in state s_4 , which gives a 1 out independent of the input. In the second graph, state s_3 means that the three most resent inputs are $i_0i_1i_0$. Then input i_1 will generate output z_1 . This is the only way to get z_1 and, hence, the statement is true for the second graph. The third graph will generate a z_1 for every even consecutive occurrence of i_0i_1 . Therefore, $i_0i_1i_0i_1i_0i_1$ (where the four most resent inputs are $i_0i_1i_0i_1$ will not generate z_1 .
 - Concluding the above, we see that it is only the second graph that fulfills the statement.
- (b) In the first graph input $i_0i_1i_0i_1$ will lead to state s_4 , which will generate z_1 for ever. Hence, the statement is true for the first graph. For the other two it is false.
- (c) The statement means that the output becomes z_1 after the first occurrence of $i_0i_1i_0i_1$, and stays that way until the next occurrence when it is reset to z_0 . This is not true for any of the three graphs.

2.5

