
Solutions to VHDL assignments
Linus Karlsson
November 14, 2017

Solutions

Exercise 1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity combinational is

Port (x : in STD_LOGIC_VECTOR(3 downto 0);

z : out STD_LOGIC;

ge : out STD_LOGIC;

p : out STD_LOGIC);

end combinational;

architecture Behavioral of combinational is

begin

z <= ’1’ when x = "0000" else ’0’;

ge <= ’1’ when x >= "0111" else ’0’;

p <= x(3) xor x(2) xor x(1) xor x(0);

end Behavioral;

It is not a requirement to use std_logic_vector for the input x,
but it reduces the amount of code. If separate signals are used, you
could write z as, for example: (much like p in the code above)
z <= not(x3 or x2 or x1 or x0);

Exercise 2

The code for the full-adder.1 1 Nothing strange here really. The ex-
pressions from the book are translated
into VHDL. Note, however, that and,
xor, and or have the same precedence
in VHDL. Thus, parentheses must be
used, otherwise you’ll get subtle bugs
that are really hard to find!

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fulladder is

Port (x : in STD_LOGIC;

y : in STD_LOGIC;

ci : in STD_LOGIC;

s : out STD_LOGIC;

co : out STD_LOGIC);

end fulladder;

architecture Behavioral of fulladder is

begin

s <= x xor y xor ci;

co <= (x and y) or ((x xor y) and ci);

end Behavioral;

solutions to vhdl assignments 2

And now the code for the four-bit adder.2 2 Also, see page 179 of the course book.
Some comments about this solution:

• Note that components are used to
re-use our full-adder created in the
previous step.

• Each component can be instantiated
multiple times. In this example we
instantiate our fulladder component
four times.

• Each instantiation requires a port
map, where we connect the inputs
and outputs.

• To connect the carries between the
full-adders, we must define a signal
(here called ripple_carry). By us-
ing the signal name as an output in
one full adder, and as an input in
another full adder, a connection is
made (think of it as a wire between
them).

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fourbitadder is

Port (x : in STD_LOGIC_VECTOR (3 downto 0);

y : in STD_LOGIC_VECTOR (3 downto 0);

sub : in STD_LOGIC;

s : out STD_LOGIC_VECTOR (3 downto 0);

c4 : out STD_LOGIC;

ov : out STD_LOGIC);

end fourbitadder;

architecture Behavioral of fourbitadder is

component fulladder

port (

x, y, ci: in std_logic;

s, co: out std_logic

);

end component;

-- used to connect the carry between the full adders.

signal ripple_carry: std_logic_vector(4 downto 1);

-- if we subtract, we must XOR y with ’1’, requiring a new signal.

signal fixed_y: std_logic_vector(3 downto 0);

begin

fixed_y <= y xor (sub, sub, sub, sub); -- xor with four bit vector.

fa0: fulladder port map (

x => x(0),

y => fixed_y(0),

ci => sub,

s => s(0),

co => ripple_carry(1)

);

fa1: fulladder port map (

x => x(1),

y => fixed_y(1),

ci => ripple_carry(1),

s => s(1),

co => ripple_carry(2)

);

fa2: fulladder port map (

x => x(2),

y => fixed_y(2),

ci => ripple_carry(2),

s => s(2),

co => ripple_carry(3)

);

fa3: fulladder port map (

x => x(3),

y => fixed_y(3),

ci => ripple_carry(3),

s => s(3),

co => ripple_carry(4)

);

-- if the last two carry bits are different, then overflow.

ov <= ripple_carry(4) xor ripple_carry(3);

c4 <= ripple_carry(4);

end Behavioral;

solutions to vhdl assignments 3

Exercise 3

Code for demux.3 3 Notes:

• Note that to use a case-statement,
you must be inside a process.

• I have used a signal U with a default
value, in which I only change a sin-
gle bit depending on the input.

• An alternative solution is to do the
signal assignment with concatena-
tion instead. For example, for the
row when "00" =>, the assignment
could be: U <= "000" & D; The &

operator concatenates values and
creates a vector.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity demux is

Port (D : in STD_LOGIC;

X : in STD_LOGIC_VECTOR (1 downto 0);

U : out STD_LOGIC_VECTOR (3 downto 0));

end demux;

architecture Behavioral of demux is

begin

process (D, X)

begin

U <= "0000";

case X is

when "00" => U(0) <= D;

when "01" => U(1) <= D;

when "10" => U(2) <= D;

when "11" => U(3) <= D;

when others => null;

end case;

end process;

end Behavioral;

Exercise 4

Code for return maximum index with input 0.4 4 Notes:

• Just like above we need to use a pro-
cess when using if-statements.

• If i2 = 0, we should return 10. If
i2 = 1, we proceed and check input
1, and so on.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity maxindex is

Port (i0, i1, i2 : in STD_LOGIC;

U : out STD_LOGIC_VECTOR (1 downto 0));

end maxindex;

architecture Behavioral of maxindex is

begin

process (i0, i1, i2)

begin

if i2 = ’0’ then

U <= "10";

elsif i1 = ’0’ then

U <= "01";

elsif i0 = ’0’ then

U <= "00";

else

U <= "11";

end if;

end process;

end Behavioral;

solutions to vhdl assignments 4

Exercise 5

Code for D flip-flop.5 5 The D flip-flop copies the value of the
D input upon the rising edge of the
clock signal.

• Note that only the clk input need
to be on the process sensitivity list,
since we only want to update the
output Q when there is a change in
the clock signal.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity dflipflop is

Port (clk : in STD_LOGIC;

D : in STD_LOGIC;

Q : out STD_LOGIC);

end dflipflop;

architecture Behavioral of dflipflop is

begin

process (clk)

begin

if rising_edge(clk) then

Q <= D;

end if;

end process;

end Behavioral;

solutions to vhdl assignments 5

Exercise 6

Code for parity sequential circuit.6 6 This is a sequential circuit, thus we
need to maintain state.

• The state is stored in signals, which
are of the type state_type which we
define ourself. The type should con-
tain all states, with logical names.
In this way, we do not have to care
about the state assignment, and can
use the names instead.

• We use two processes, one which
“drives” the machine forward by
updating the state upon every clock
cycle, and one which calculates
the next state, and output upon a
change in state or input value.

1/0

1/1
0/0 0/1

0 1

Figure 1: The parity check graph.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity parity is

Port (clk : in STD_LOGIC;

i : in STD_LOGIC;

p : out STD_LOGIC);

end parity;

architecture Behavioral of parity is

type state_type is (even, odd); -- our different states.

signal current_state, next_state: state_type; -- state.

begin

process (clk) -- process to update to next state, and output.

begin

if rising_edge(clk) then

current_state <= next_state;

end if;

end process;

process (i, current_state) -- Calculate state and output.

begin

case current_state is

when even => if i = ’0’ then

next_state <= even;

p <= ’0’;

else

next_state <= odd;

p <= ’1’;

end if;

when odd => if i = ’0’ then

next_state <= odd;

p <= ’1’;

else

next_state <= even;

p <= ’0’;

end if;

end case;

end process;

end Behavioral;

solutions to vhdl assignments 6

Exercise 7

Code for the implementation of our best friend – the lion cage.7 7 The core idea of the implementation is
just like the parity machine. There are
some minor differences:

• The signals are assigned default val-
ues at the start of the process, since
in most cases we should output dan-
ger = 1, and stay in the same state.
In this way, we only have to change
the signals in the few cases where
they actually should be updated.

• We have created three separate pro-
cesses:

– The first process, just like in the
previous assignment, updates
the next state variable upon a ris-
ing edge on the clock.

– The second process calculates
the next state, which depends on
the current state and the input
signals.

– The third process calculates the
output signal. Since this is a
Mealy-machine, the output de-
pends on both the current state
and the input signals. If we’d
have a Moore machine, this pro-
cess would only depend on the
current state.

This separation with different pro-
cesses for next state and output is
a good design, especially as your
circuits grow larger and more com-
plex.

s2

s0

s̃1

s1

01/1

11/1

11/1

01/1

10/100/1

00/0

11/1

01/1

01/1

11/1

00/1

10/1

10/1

00/1

Figure 2: The lion cage.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity lioncage is

Port (clk : in STD_LOGIC;

detector : in STD_LOGIC_VECTOR (1 downto 0);

danger : out STD_LOGIC);

end lioncage;

architecture Behavioral of lioncage is

type state_type is (s0, s1, s1hat, s2);

signal current_state, next_state: state_type;

begin

process (clk)

begin

if rising_edge(clk) then

current_state <= next_state;

end if;

end process;

process (current_state, detector) -- next state process

begin

next_state <= current_state; -- assume unchanged state.

case current_state is

when s0 =>

case detector is

when "01" => next_state <= s1;

when others => null;

end case;

when s1 =>

case detector is

when "10" => next_state <= s1hat;

when "11" => next_state <= s0;

when others => null;

end case;

when s1hat =>

case detector is

when "00" => next_state <= s1;

when "01" => next_state <= s2;

when others => null;

end case;

when s2 =>

case detector is

when "11" => next_state <= s1hat;

when others => null;

end case;

end case;

end process;

process (current_state, detector) -- output process

begin

danger <= ’1’; -- assume danger, since that’s common.

if current_state = s0 and detector = "00" then

danger <= ’0’; -- only case where danger is 0.

end if;

end process;

end Behavioral;

	Solutions

