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Uppgift 3

In this problem we start by drawing a graph. It seems that it is convenient to make it as a
Moore graph, since then we can let the state encoding directly control the engine. Hence as
state variables we use are P and R. The state 00 means then that the door is in one of its end
positions (either open or closed), 11 that the door is opening, and 10 that the door is closing.
In the following graph we start in state 00, and the inputs are K, G1, and G2:
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Then we get the following Karnaugh maps and (minimal) functions:
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K = 1

P+ = K ∨RG′1 ∨ PG′1G
′
2
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K = 1

R+ = K ′RG′1 ∨KPR′ ∨KP ′G′1

The

realisation is omitted.

Uppgift 4

Since the interval for the numbers should be [−128, 127] we can use eight bit numbers (in
2-complement representation). Therefore, we cascade two of the adders 74LS283 o be able
to calculate within the interval. The sum from the aders are fed to eight D-elemnets. This
represents the state of the counter. The outputs from the D-elemnts are then given as input
for one of the numbers for the adder, se figure below. To realise the CLEAR-signal we use the
following truth table

x CLEAR y
0 0 0
0 1 0
1 0 1
1 1 0
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where y = x if CLEAR = 0 and y = 0 if CLEAR = 1. This is realised by y = x ∧ CLEAR′. Putting
one of these on each of the inputs for Ai and Bi solves the function. So, without taking the
steps of the counter into consideration gives the following construction:

74LS283

A1 A2 A3 A4 B1 B2 B3 B4

Σ1 Σ2 Σ3 Σ4

c0 c4

D D D D

74LS283

A1 A2 A3 A4 B1 B2 B3 B4

Σ1 Σ2 Σ3 Σ4

c0 c4

D D D D

CLEAR

0

B̃11B̃12B̃13B̃14 B̃21B̃22B̃23B̃24

In the figure B̃ij is the jth input for the ith adder, before the CLEAR-function, where B̃11 is
the least significant bit (lsb). To find the rest of the realisation we consider the following truth
table:

En U/D Nbr function B̃11B̃12B̃13B̃14B̃21B̃22B̃23B̃24

0 − − 0 0 0 0 0 0 0 0 0
1 0 0 −1 1 1 1 1 1 1 1 1
1 0 1 −2 0 1 1 1 1 1 1 1
1 1 0 +1 1 0 0 0 0 0 0 0
1 1 1 +2 0 1 0 0 0 0 0 0

We see that B̃13 to B̃24 are realised by the same function. Hence, we have three different func-
tions, and we draw three different Karnaugh maps to get them:
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So, we complete
the figure above by adding the one below.
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Uppgift 5

a) The circuit in the data sheet has three gates delay to generate the carry. If we instead
cascade four FA as in the book, the first FA has three gates daeay. The rest has the delay
from carry to carry of two gates. This will result in a total delay of 9 gates. Hence the
solution in the data sheet is three times faster.

b) From the figure we have that

Σ1 = (A1 ∨B1)(A
′
1 ∨B′1)⊕ C0 = (A1B

′
1 ∨ A′1B1)⊕ C0 = A1 ⊕B1 ⊕ C0

C1 =
(

(A1 ∨B1)
′ ∨ (A1B1)

′C ′0

)′
= (A1 ∨B1)(A1B1 ∨ C0) = A1B1 ∨ A1C0 ∨B1C0

Writing these functions in a tabular, we see that the statement in the problem is true:

A1B1C0 C1Σ1 2C1 + Σ1

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

c) From b) we know that we can write the ith carry as

Ci =
(
C ′i−1(AiBi)

′ ∨ (Ai ∨Bi)
′
)′

(1)

At the mark for C2 we have

C2 =
(
C ′0(A1B1)

′(A2B2)
′ ∨ (A2B2)

′(A1 ∨B1)
′ ∨ (A2 ∨B2)

′
)′

=
(

(C ′0(A1B1)
′ ∨ (A1 ∨B1)

′)︸ ︷︷ ︸
C′1

(A2B2) ∨ (A2 ∨B2)
′
)′

=
(
C ′1(A2B2) ∨ (A2 ∨B2)

′
)′

and we see that C2 fullfills the equation. Similarly, we can check that C3 and C4 satisfy
the recursion in (1),

C3 =
(
C ′0(A1B1)

′(A2B2)
′(A3B3)

′ ∨ (A2B2)
′(A3B3)

′(A1 ∨B1)
′

∨ (A3B3)
′(A2 ∨B2)

′ ∨ (A3 ∨B3)
′
)′

=
(
C ′2(A3B3)

′ ∨ (A3 ∨B3)
′
)′

C4 =
(
C ′0(A1B1)

′(A2B2)
′(A3B3)

′(A4B4)
′ ∨ (A2B2)

′(A3B3)
′(A4B4)

′(A1 ∨B1)
′

∨ (A3B3)
′(A4B4)

′(A2 ∨B2)
′ ∨ (A4B4)

′(A3 ∨B3)
′ ∨ (A4 ∨B4)

′
)′

=
(
C ′3(A4B4)

′ ∨ (A4 ∨B4)
′
)′
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d) The recursion in (1) can be used to get a general expression for the ith carry. To get rid
of the outer parentasis and inversion, we consider the inverse:

C ′i = C ′i−1(AiBi)
′ ∨ (Ai ∨Bi)

′

=
(
C ′i−2(Ai−1Bi−1)

′ ∨ (Ai−1 ∨Bi−1)
′
)

(AiBi)
′ ∨ (Ai ∨Bi)

′

= C ′i−2(Ai−1Bi−1)
′(AiBi)

′ ∨ (Ai−1 ∨Bi−1)
′(AiBi)

′ ∨ (Ai ∨Bi)
′

=
(
C ′i−3(Ai−2Bi−2)

′ ∨ (Ai−2 ∨Bi−2)
′
)

(Ai−1Bi−1)
′(AiBi)

′

∨ (Ai−1 ∨Bi−1)
′(AiBi)

′ ∨ (Ai ∨Bi)
′

= C ′i−3(Ai−2Bi−2)
′(Ai−1Bi−1)

′(AiBi)
′ ∨ (Ai−2 ∨Bi−2)

′(Ai−1Bi−1)
′(AiBi)

′

∨ (Ai−1 ∨Bi−1)
′(AiBi)

′ ∨ (Ai ∨Bi)
′

= . . . =

= C ′0

i∧
j=1

(AjBj)
′

i−1∨
k=1

(
(Ak ∨Bk)′

i∧
`=k+1

(A`B`)
′
)
∨ (Ai ∨Bi)

′

Hence,

Ci =
(
C ′0

i∧
j=1

(AjBj)
′

i−1∨
k=1

(
(Ak ∨Bk)′

i∧
`=k+1

(A`B`)
′
)
∨ (Ai ∨Bi)

′
)′


