
Electrical and Information Technology

Digitalteknik
Solutions to selected problems

Contents
Chapter 1 1
Chapter 2 3
Chapter 3 13
Chapter 4 23
Chapter 5 31
Chapter 6 43
Chapter 7 59

Solutions to Chapter 1. 1

1.1

U = {ice,water, steam} × [−273,∞)
B= ({ice} × [−273, 0)) ∪ ({water} × [0, 100)) ∪ ({steam} × [100,∞))

1.2

The universe consists of all conceivable force/position vectors; that is U = R3 × R3.

The behavior is

B = {(F , r) ∈ R3 × R3|(1.20) satisfied}

The behavioral equation describes a static situation. Hence, we do not need to specify the time axis T .

1.3

GNP (t) =C(t) + I(t) +G(t)
C(t) = cGNP (t− 1)
I(t) = i(C(t)− C(t− 1))

(1)

⇒

GNP (t) = c(i+ 1)GNP (t− 1)− ciGNP (t− 2) +G(t). (2)

Thus,
T =Z
W =R2 Manifest variables: GNP (t) and G(t)
L=R2 Latent variables: C(t) and I(t)
Bf = {wf : T → (W ×L)| such that (1) is satisfied}
B= {w : T → W| such that (2) is satisfied}

1.4

We are interested in the relation between the voltage V and the current I and choose these as the manifest
variables. TakeW = R2 as the signal space and T = R as the time axis. Let the currents I2 through resistor R2

and I3 through resistor R3 be our two auxiliary variables that help us to formulate the relation between V and
I . L = R2 is our latent variable space.

By Kirchoff’s voltage law we know that

R2I2 = R3I3 (3)
and V = R1I +R2I2 = R1I +R3I3 (4)

Kirchoff’s current law gives us

I = I2 + I3 (5)

Using (3) and (5) we obtain

R2I2 = R3(I − I2)

and hence I2 =
R3

R2 +R3
I (6)

Now (4) and (6) yield

V = R1I +
R2R3

R2 +R3
I =

(
R1 +

R2R3

R2 +R3

)
I (7)

We have eliminated our latent variables I2 and I3 and obtained the behavioral equation (7). The behavior of
our model is

B = {w : T → R2|(V, I) satisfies (7)} (8)

2 Solutions to Chapter 1.

1.5

a) . . . (b, B); (a,C); (a,C); (b, C); (a,A); (b, C) . . .

b) . . . (b, B); (a,B); (b, C); (b, C); (b, C); (a,A) . . .

c) Let

w1 : T → S = {a, b}
w2 : T →M = {A,B,C}

then (w1, w2) is the unique input/output partion.

Solutions to Chapter 2. 3

2.1

(a) t0 + 1; The edge points at the state which the system updates to when it is clocked. This is the next state
function, δ(s, i).

(b) t0; The label on the edge is given directly as output. This is the output function, λ(s, i).

2.2

a) False. The number of entering edges can be different for different states. There can for example be an edge
from every state that resets the system to the starting state.

b) False. See a.

c) False. There can be more than one edge from one state to another.

d) False. See e.

e) True. The next state function is a function of both the state and the input. In every state, each input value
corresponds to an edge leaving the state.

f) False. The statement is not true if the number of states is less than the number of inputs.

2.3

a) The statement means that independent of the current state, the input 001 results in the output 1. This is
true for all three graphs since two 0:s drives the machine to state s2. Then a 1 will output a 1.

b) This means that independent of the current state, the only way to get output 1 is to give 001 as input. In
the first graph we can only get to state s2 by giving two 0:s. The only output 1 is given from state s2 with
input 1. Hence, it is true for the first graph.

The second graph always gives output 1, so the statement is not true. In the third graph we can also get
output 1 for input 101, hence, the statement is not true.

c) If and only if means that both a and b should be true. That gives graph 1.

2.4

(a) In the first graph we can get stuck in state s4, which gives a 1 out independent of the input. In the second
graph, state s3 means that the three most resent inputs are i0i1i0. Then input i1 will generate output z1.
This is the only way to get z1 and, hence, the statement is true for the second graph. The third graph will
generate a z1 for every even consecutive occurrence of i0i1. Therefore, i0i1i0i1i0i1 (where the four most
resent inputs are i0i1i0i1 will not generate z1.

Concluding the above, we see that it is only the second graph that fulfills the statement.

(b) In the first graph input i0i1i0i1 will lead to state s4, which will generate z1 for ever. Hence, the statement
is true for the first graph. For the other two it is false.

(c) The statement means that the output becomes z1 after the first occurrence of i0i1i0i1, and stays that way
until the next occurrence when it is reset to z0. This is not true for any of the three graphs.

2.5

s0 s1 s2 s3

i0/z0

i1/z0

i1/z0

i0/z0

i0/z0

i1/z1

i0/z1
i1/z1

4 Solutions to Chapter 2.

2.6

1/0

s0 s3s2s1

s4

0/0

0/0

1/0 1/1

0/0 0/0

1/0

1/0

0/0

2.8

1/1

s0 s1

s2s3

0/0

0/1

1/01/1

0/1

0/1

1/1

2.11

alarm

s3

closed+

0111

0111

11
10

0001

01 01

01

1101

11

11 10 00

1010

00

01

open 0000

00

closed

s0 s1 s2

s5 s4

2.12

B1,B2/pony,rocking-horse

00/00
01/00

01/00

10/01
01/01

00/00

00/00 01/00

01/00

00/00

00/00

01/01

10/01

10/01

00/00

10/10
10/10

00/00

s0 s5

s6

s4s1 s3s2

Solutions to Chapter 2. 5

2.13

L1,L2/x

s0 s1

10/0

00/1

00/0

10/0
11/0
01/0

x/count (increment for each 1)

s2 s3

s4s5

1/1

1/1

1/1

0/1

0/0
0/0

0/0

Alternative solution:

L1,L2/count (increment for each 0→ 1)

10/1

11/0
10/0
00/1

10/1
11/0
01/0

10/0
00/0
01/1

00/0
01/0
11/1

01/1

00/1 11/1

s1

s3 s2

s0

2.14

nIOR,nWRITE,nAddrSTB/nWAIT

010/1

010/1

010/0

111/0

111/1

111/0

011/0

010/0

011/1

s3

s1

s4

s6

s5

s2

s0

6 Solutions to Chapter 2.

2.16

(a) x1x2x3 x1 ∨ x2 x2 ∨ x3 (x1 ∨ x2) ∨ x3 x1 ∨ (x2 ∨ x3)

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

2.17

a) Choose f1(x1, x2, x3) = (x1∨̄x2)∨̄x3 and f2(x1, x2, x3) = x1∨̄(x2∨̄x3). Then we can make a list
f1(x1, x2, x3) and f2(x1, x2, x3) for all possible input 3-tuples x1 x2 x3.

x1x2x3 f1(x1, x2, x3) f2(x1, x2, x3)

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

From the table we see that f1(x1, x2, x3) and f2(x1, x2, x3) are equal. Thus, the XOR operation is associa-
tive.

b) The XOR function for several inputs gives a 1 as output if exactly one input is 1 and the other 0.

Take x1 = x2 = x3 = 1. Then x1∨̄x2∨̄x3 = 0. It follows then that the three-input XOR function is not equal
to f1(x1, x2, x3).

2.18

x1x2 x′1x
′
2 x′1 ∧ x′2 x′1 ∧ x2 x1 ∧ x′2 u

0 0 1 1 1 0 0 1
0 1 1 0 0 1 0 1
1 0 0 1 0 0 1 1
1 1 0 0 0 0 0 0

x1

x2
u

Solutions to Chapter 2. 7

2.19

x1

x2

f2

f1

x2

x1

x1x2 f1 f2

0 0 1 1
0 1 0 0
1 0 0 0
1 1 0 0

2.20

x1

x2

f1

x1

x2

f2

x1x2 f1 f2

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

2.21

0/00 1/10
1/11

1

0/01

0

0

1

0

1

0

1

00

10

11

01

00

. . .
10

11

01

1111
0

1

00

10

01

00
0 . . .

the smallest number of binary digits by which any two sequences differ is dfree = 3
⇒we can always correct 1 error

2.22

We only give the trellis and the state transition graph. The calculation of the free distance is omitted.

10 01

00

11

1/11

0/00

1/10

1/11

0/00

0/01

0/01

1/10

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00 00 00 00

11 11 11 11

01 01

10 10

01 01 01

10 10 10

00 00
11 11

. . .

. . .

. . .

. . .

8 Solutions to Chapter 2.

2.23

(1) The figure gives that

{
u = x ∨ q′
q+ = (x ∧ q) ∨ (x′ ∧ q′)

qx q+ u

00 1 1
01 0 1
10 0 0
11 1 1

OK, with i0 = 1, i1 = 0, z0 = 0, z1 = 1, s0 = 0, and s1 = 1.

(2) The figure gives that

{
u = x ∧ q′
q+ = (x ∨ q) ∧ (x′ ∨ q′)

qx q+ u

00 0 0
01 1 1
10 1 0
11 0 0

OK, with i0 = 0, i1 = 1, z0 = 1, z1 = 0, s0 = 1, and s1 = 0.

(3) The figure gives that

{
u = x′ ∨ q
q+ = x⊕ q

qx q+ u

00 0 1
01 1 0
10 1 1
11 0 1

OK, with i0 = 0, i1 = 1, z0 = 0, z1 = 1, s0 = 1, and s1 = 0.

Hence, all of the sequential circuits are realizations of the graph.

2.24

i0, i1s0

i1

s1 s2 s3
i1 i1

i0

i0

i0

Use the following encoding.

s0 s1 s2 s3

q0q1 00 01 11 10
i0 i1

x 0 1
z0 z1

u 0 1

This gives the state transition table and output table

q0q1x q+0 q
+
1 q0q1x q+0 q

+
1

00 0 00 10 0 10
00 1 01 10 1 10
01 0 11 11 0 00
01 1 01 11 1 10

q0q1 u

00 0
01 0
10 1
11 0

Solutions to Chapter 2. 9

It can be realized by the following equations

u = q0q
′
1

q+0 = q′0q1x
′ ∨ q0q′1x′ ∨ q0q′1x ∨ q0q1x

q+1 = q′0q
′
1x ∨ q′0q1x′ ∨ q′0q1x

An alternative (minimal) solution can be
found as

u = q0q
′
1

q+0 = q0q
′
1 ∨ q0x ∨ q′0q1x′

q+1 = q′0q1 ∨ q′0x

2.25

i13

s0 s1

s2s3

i13

i02
i02

i02i02

i13

i13

Use the following encoding.

s0 s1 s2 s3

q0q1 00 01 11 10
i0i2 i1i3

x 0 1
z0 z1

y 0 1

This gives the state transition table and output table

q0q1x q+0 q
+
1 q0q1x q+0 q

+
1

00 0 00 10 0 10
00 1 01 10 1 01
01 0 01 11 0 11
01 1 11 11 1 10

q0q1 y

00 0
01 0
10 1
11 0

It can be realized by the following equations

q+0 = q′0q1x ∨ q0q′1x′ ∨ q0q1x′ ∨ q0q1x
q+1 = q′0q

′
1x ∨ q′0q1x′ ∨ q′0q1x ∨ q0q′1x ∨ q0q1x′

y = q0q
′
1

An alternative (minimal) solution can be
found as

q+0 = q0x
′ ∨ q1x

q+1 = q1x
′ ∨ q′0x ∨ q′1x

y = q0q
′
1

2.26

Use for example
state q1q2

s0 00
s1 01
s2 11
s3 10

This leads to the following functional table
q1q2 i q+1 q

+
2 z

0 0 0 0 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 0 1
1 1 1 0 1 0

10 Solutions to Chapter 2.

The state transition functions and the output function can be realized as

q+1 = q′1q
′
2i ∨ q′1q2i ∨ q1q′2i′ ∨ q1q2i′

q+2 = q′1q
′
2i
′ ∨ q′1q2i ∨ q1q′2i′ ∨ q1q2i

z = (z′)′ = (q′1q
′
2i
′ ∨ q1q2i)′

Another way to realize the state transition functions is with

q+1 = q1 ⊕ i
q+2 = q2 ⊕ i′

The realization then becomes

i

z

q2’q2q1’q1

2.27

0
s0 s1 s2 s3

1

0
0,1

1

1

0

Use the following state encoding
state q1q2

s0 00
s1 01
s2 11
s3 10

We get the state transition table
q0q1x q+0 q

+
1 u

00 0 01 0
00 1 00 0
01 0 11 0
01 1 00 0
10 0 10 1
10 1 10 1
11 0 10 0
11 1 00 0

Solutions to Chapter 2. 11

Functions:

q+0 =q′0q1x
′ ∨ q0q′1x′ ∨ q0q′1x ∨ q0q1x′

q+1 =q′0q
′
1x
′ ∨ q′0q1x′

u =q0q
′
1

Alternative (minimal) functions

q+0 =q1x
′ ∨ q0q′1

q+1 =q′0x
′

y =q0q
′
1

2.28

In the alternative solution of 2.11 we need four states that we, for example, can encode as

state q1q2

s0 00
s1 01
s2 11
s3 10

This results in the functional table

q1q2 i1i2 q+1 q
+
2 z

0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 1 1 0 0 1 0
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 0
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 0 1
1 1 1 1 1 1 1

This can be expressed, for example, by

q+1 = q2i1i2 ∨ q1q2 ∨ q1i2 ∨ q1i1
q+2 = q′1i

′
1i2 ∨ q′1q2 ∨ q2i′1 ∨ q2i2

z = q′1q
′
2i
′
1 ∨ q′1q2i2 ∨ q1q2i2 ∨ q1q′2i′2

(The figure of the realization is omitted!)

12 Solutions to Chapter 2.

Solutions to Chapter 3. 13

3.1

(a) 45 = 6 · 7 + 3⇒ R7(45) = 3

(b) −45 = −7 · 7 + 4⇒ R7(−45) = 4

(c) R7(45 + 63) = R7(45 + 9 · 7)
Th.3.2

= R7(45) = 3

3.2

(i)

Rd(n1 + n2) = Rd

(
(

n1︷ ︸︸ ︷
q1d+Rd(n1)) + (

n2︷ ︸︸ ︷
q2d+Rd(n2))

)
= Rd

(
(q1 + q2)d+Rd(n1) +Rd(n2)

)
Th.3.2

= Rd

(
Rd(n1) +Rd(n2)

)
.

(ii)

Rd(n1n2) = Rd

(
(

n1︷ ︸︸ ︷
q1d+Rd(n1))(

n2︷ ︸︸ ︷
q2d+Rd(n2))

)
= Rd

(
q1q2d

2 + q1dRd(n2) +Rd(n1)q2d+Rd(n1)Rd(n2)
)

= Rd

(
(q1q2d+ q1Rd(n2) +Rd(n1)q2︸ ︷︷ ︸

integer

)d+Rd(n1)Rd(n2)
)

Th.3.2
= Rd

(
Rd(n1)Rd(n2)

)
.

3.3

(a) Let n1 = 1946 and n2 = 1956. Euclid’s algorithm gives

1956 = 1 · 1946 + 10

1946 = 194 · 10 + 6

10 = 1 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0⇒ gcd(1956, 1946) = 2.

Then, get Bezout’s identity as

2 = 6− 4

= 6− (10− 6) = −10 + 2 · 6
= −10 + 2(1946− 194 · 10) = 2 · 1946− 389 · 10

= 2 · 1946− 389(1956− 1946) = −389 · 1956 + 391 · 1946.

Alternatively, this can be solved with Euclid’s extended algorithm as

i ri qi si ti

-2 1956 1 0
-1 1946 0 1
0 10 1 1 -1
1 6 194 -194 195
2 4 1 195 -196
3 2 1 -389 391
4 0

14 Solutions to Chapter 3.

Which gives that gcd(1956, 1946) = 2 = −389 · 1956 + 391 · 1946.

(b) Let n1 = 1870 and n2 = 222. Use Euclid’s extended algorithm to get

i ri qi si ti

-2 1870 1 0
-1 222 0 1
0 94 8 1 -8
1 34 2 -2 17
2 26 2 5 -42
3 8 1 -7 59
4 2 3 26 -219
5 0

Hence, gcd(1870, 222) = 2 = 26 · 1870− 219 · 222.

(c) Let n1 = 561 and n2 = 341. Use Euclid’s extended algorithm to get

i ri qi si ti

-2 561 1 0
-1 341 0 1
0 220 1 1 -1
1 121 1 -1 2
2 99 1 2 -3
3 22 1 -3 5
4 11 4 14 -23
5 0

Hence, gcd(561, 341) = 11 = 14 · 561− 23 · 341.

3.4

(a) Use Euclid’s extended algorithm on n1 = 73 and n2 = 11:

i ri qi si ti

-2 73 - 1 0
-1 11 - 0 1
0 7 6 1 -6
1 4 1 -1 7
2 3 1 2 -13
3 1 1 -3 20
4 0 3 - -

gcd(73, 11) = 1 = −3 · 73 + 20 · 11⇒ (x, y) = (20,−3).

(b) Divide the equation by two and solve 17x+ 3y = 1 instead. Use Euclid’s extended algorithm:

i ri qi si ti

-2 17 - 1 0
-1 3 - 0 1
0 2 5 1 -5
1 1 1 -1 6
2 0 2 - -

gcd(17, 3) = 1 = −1 · 17 + 6 · 3⇒ (x, y) = (−1, 6).

(c) Multiply the result in (b) by two. Hence, (x, y) = (−2, 12).

(d) Since gcd(34, 6) = 2 does not divide 3, there is no solution.

Solutions to Chapter 3. 15

3.5

We want to find x and y such that

3x+ 7y = 5. (9)

Since gcd(3, 7) = 1, we know that gcd(3 · 5, 7 · 5) = 5 and Euclid’s algorithm will yield to a solution to (9).{
35 = 2 · 15 + 5

15 = 3 · 5 + 0

We see that 5 = 35−2 ·15 = 5 ·7−10 ·3. Hence we can time 5 minutes as the time from the tenth turning of the
3-minute hourglass to the fifth turning of the 7-minute hourglass. Note that we will have to wait 30 minutes
before we can start boiling.

There is an alternative, more efficient solution. Another solution to (9) is x = −3, y = 2. In other words, we
can time 5 minutes as the time from the third turning of the 3-minute hourglass to the second turning of the
7-minute hourglass. This way we can start boiling the egg after 9 minutes.

3.7

Ring (Z12,⊕,⊗).

(a) 5⊕ a = 0⇔ 5 + a ≡ 0 mod 12⇒ a = 7.

(b) 5⊗ a = 1⇔ 5 · a ≡ 1 mod 12⇒ a = 5 (since 5 · 5 = 25 = 1 + 2 · 12).

(c) 2/5 = 2⊗ 5−1 = 2⊗ 5 = 10. Then 5⊗ (2/5) = 5 · 10 mod 12 = 2.

(d) By Thm. 3.10, the units are all elements u such that gcd(12, u)=1, i.e., U = {1, 5, 7, 11}.

3.8

Ring (Z35,⊕,⊗).

(a) 22⊕ a = 0⇔ 22 + a ≡ 0 mod 35⇒ a = 13.

(b) We want to find a such that 2 · a ≡ 1 mod 35, i.e., such that 2 · a+ 35 · b = 1. We can solve this by Euclid’s
extended algorithm, but here it is easily seen that a = 18, b = −1 is a solution. Hence 2−1 = 18 in Z35.

(c) 7/2 = 7⊗ 2−1 = 7⊗ 18 = 126 mod 35 = 21. Then 2⊗ (7/2) = 2 · 21 mod 35 = 7.

(d) By Thm. 3.10, the units are all elements u such that gcd(35, u)=1, i.e.,
U = {u ∈ Z35\{0} | 5 6 | u and 7 6 | u}. (6 |means “does not divide”.)

3.9

Ring (Z11,⊕,⊗).

(a) 1⊕ a = 0⇔ 1 + a ≡ 0 mod 11⇒ a = 10.

(b) 5⊗ a = 1⇔ 5 · a ≡ 1 mod 11⇒ a = 9 (since 5 · 9 = 45 = 1 + 4 · 11).

(c) −1/5 = −1⊗ 5−1 = 10⊗ 9 = 90 mod 11 = 2. Then 5⊗ (−1/5) = 5 · 2 = 10 = −1.

(d) Since 11 is a prime, all elements except 0 are units.

3.11

Ring (Z3,⊕,⊗). Solve{
x⊕ 2y = 1 (1)
x⊕ y = 0 (2)

(1)⊕ (2)⇒ 2x⊕ 3y = 1⇔ 2x = 1 (since 3 = 0 mod 3). Hence x = 2−1 = 2, and y = −2 = 1.

16 Solutions to Chapter 3.

3.12

Ring (Z5,⊕,⊗). Solve{
x⊕ 2y = 1 (1)
x⊕ y = 0 (2)

(1)− (2)⇒ y = 1⇒ x = −1 = 4.

3.13

We have direcly that a ·0 = 0 ·a = 0 and a ·1 = 1 ·a = a. What is left is 2 ·2, 2 ·3, 3 ·2, and 3 ·3. Since all elements
in a field are units it follows that a · b = a · c ⇒ b = c and, hence, all rows and all columns must contain each
element exactly once. Therefore, 2 · 2 = 3 and 3 · 3 = 2. We complete the table by 2 · 3 = 1 and 3 · 2 = 1.

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

3.14

1/1 1/1

1/2

0/2

1/0

0/0 0/1

1/0

0/1

0/0

0/2 1/2

s1 s2

s3

s4s5

s0

Solutions to Chapter 3. 17

3.15

To decrypt the message by exhaustive search we write the complete alphabet below each letter. In this example,
it is already after a few letters possible to guess the key that delivers the correct message, since the other
alternatives hardly make any sense.

YREEZSRCZJTEDZEXREUYVYRJVCVGYREKJ
ZSFFATSD
ATGGBUTE
BUHHCVUF
CVIIDWVG
DWJJEXWH
EXKKFYXI
FYLLGZYJ
GZMMHAZK

--> HANNIBALISCNMINGANDHEHASELEPHANTS
IBOOJCBM
JCPPKDCN
KDQQLEDO
LERRMFEP
MFSSNGFQ
NGTTOHGR
OHUUPIHS
PIVVQJIT
QJWWRKJU
RKXXSLKV
SLYYTMLW
TMZZUNMX
UNAAVONY
VOBBWPOZ
WPCCXQPA
XQDDYRQB

Looking at the first 8 letters we recognize the row with key k = 9 to be the message and decrypt the remaining
letters with this key.
Observe that there is an error in the encrypted sequence: the 12th letter should be an F instead of an E. Then
we get the message “Hannibal is coming and he has elephants”.

3.17

Write 26 = 2 · 13. Then (3.124) gives ϕ(26) = 26(1− 1/2)(1− 1/13) = 12.
By Theorem 3.13 we get R26(312) = R26(3ϕ(26)) = 1.

3.18

Since 100 = 64 + 32 + 4 we can write R34(12100) = R34(1264 · 1232 · 124) = R34(R34(1264)R34(1232)R34(124)).

121 ≡ 12 (mod 34)

122 ≡ 8 (mod 34)

124 = 122 · 122 ≡ 8 · 8 (mod 34) ≡ 30 (mod 34)

128 = 124 · 124 ≡ 30 · 30 (mod 34) ≡ 16 (mod 34)

1216 = 128 · 128 ≡ 16 · 16 (mod 34) ≡ 18 (mod 34)

1232 = 1216 · 1216 ≡ 18 · 18 (mod 34) ≡ 18 (mod 34)

1264 = 1232 · 1232 ≡ 18 · 18 (mod 34) ≡ 18 (mod 34)

R34(12100) = R34(18 · 18 · 30) = 30.

18 Solutions to Chapter 3.

3.19

m = 143 = 11 · 13⇒ p = 11, q = 13. ϕ(m) = ϕ(p)ϕ(q) = 10 · 12 = 120.
To find d, i.e. the inverse of e, we use Euclid’s extended algorithm and Bezout’s identity to solve
gcd(120, 23) = s · 120 + t · 23 = 1.

i ri qi si ti

-2 120 – 1 0
-1 23 – 0 1
0 5 5 1 -5
1 3 4 -4 21
2 2 1 5 -26
3 1 1 -9 47
4 0

⇒ 1 = −9 · 120 + 47 · 23⇒ d = 47 = e−1.

Next, we have D(C) = Cd = M ⇒M ≡ 947 (mod 143).
Write 47 = 32 + 8 + 4 + 2 + 1

91 ≡ 9 (mod 143)

92 ≡ 81 (mod 143)

94 ≡ 81 · 81 (mod 143) ≡ 126 (mod 143)

98 ≡ 126 · 126 (mod 143) ≡ 3 (mod 143)

932 = (98)4 ≡ 34 (mod 143) ≡ 81 (mod 143)

M = 9 · 81 · 126 · 3 · 81 ≡ 3 · 9 · 81 · 81︸ ︷︷ ︸
126

·126︸ ︷︷ ︸
3

(mod 143) ≡ 3 · 9 · 3 (mod 143) = 81 (mod 143).

3.21

Since a′ = 1 + a and a ∨ b = a+ b+ ab
⇒ a ∨ b = a+ b+ ab︸︷︷︸

0

= 1⇒ b = 1 + a = a′.

3.22

a ∨ a′b = a ∨ (1 + a)b = a ∨ (b+ ab) = a+ b+ ab+ a(b+ ab) = a+ b+ ab+ ab︸ ︷︷ ︸
0

Th. 3.16

+ aab︸︷︷︸
ab

(idempotence)

= a+ b+ ab = a ∨ b.

3.23

a(a′ ∨ b) = a(a′ + b+ a′b) = aa′︸︷︷︸
0

+ab+ aa′︸︷︷︸
0

b = ab.

3.24

(iii) = (a ∨ b)(a′ ∨ c) = aa′︸︷︷︸
0

∨ac ∨ a′b ∨ bc = (ii) consensus
= ac ∨ a′b = (iv).

(i) = (a ∨ b)(a′ ∨ c)(b ∨ c) = aa′︸︷︷︸
0

(b ∨ c)︸ ︷︷ ︸
0

∨acb ∨ acc︸ ︷︷ ︸
ac

∨ a′bb ∨ a′bc︸ ︷︷ ︸
a′b

∨ bcb ∨ bcc︸ ︷︷ ︸
bc

absorption

= ac ∨ a′b ∨ bc = (ii).

⇒ all expressions are equal.

Solutions to Chapter 3. 19

3.25

(a) B = {0, 1, 5, 6}.

(b) Scetch of proof: Check that (B,+, ·) is a ring (check the conditions of the definition) and that all elements
are idempodent.

(c) From (3.173)-(3.175) together with (3.213) and (3.214) we obtain

a ∧ b = a · b = a⊗ b
a ∨ b = (a+ b) + ab = (a⊕ b⊕ 8ab)⊕ ab⊕ 8(a⊕ b⊕ 8ab)ab = a⊕ b⊕ 89ab

= a⊕ b⊕ 9ab

a′ = 1 + a = 1⊕ a⊕ 8a = 1⊕ 9a

∧ 0 1 5 6
0 0 0 0 0
1 0 1 5 6
5 0 5 5 0
6 0 6 0 6

∨ 0 1 5 6
0 0 1 5 6
1 1 1 1 1
5 5 1 5 1
6 6 1 1 6

′

0 1
1 0
5 6
6 5

3.27

M is a subset of N if and only if the intersection of M and N is equal to M , i.e. M ⊆ N ⇔M ∩N = M .

M ∩N = M

M ′ ∪ (M ∩N) = M ′ ∪M︸ ︷︷ ︸
U

(M ′ ∪M)︸ ︷︷ ︸
U

∩(M ′ ∪N) = U

M ′ ∪N = U

Hence, M ⊆ N ⇔M ′ ∪N = U .

3.28

(A′ ∩B′ ∩ C) ∪ C ′ = (A′ ∪ C ′) ∩ (B′ ∪ C ′) ∩ (C ∪ C ′)︸ ︷︷ ︸
U

=
(
(A′ ∪ C ′)′ ∪ (B′ ∪ C ′)′

)′
=
(
(A ∩ C) ∪ (B ∩ C)

)′
.

3.29

Assume the following notation

S = “Sweden will win the World Cup in hockey”
R = “the Russians will be surprised”
H = “Silvia will be happy”

“If Sweden will win the World Cup in hockey, then the Russians will be surprised”: S ⇒ R
“If the Russians will be surprised, then Silvia will be happy”: R⇒ H
These two can be combined to

f(S,R,H) = (S ⇒ R)(R⇒ H) = (S′ ∨R)(R′ ∨H) = S′R′ ∨ S′H ∨RH .

The complement of f is

f ′(S,R,H) = (S ∨R)(S ∨H ′)(R′ ∨H ′) = (R′ ∨H ′)(R ∨ S) .

20 Solutions to Chapter 3.

(i) f ⇒ H = f ′ ∨H = R′S ∨H ′R ∨H ′S ∨H =
(
(R ∨ S′)(H ∨R′)(H ∨ S′)H ′

)′
= (S′R′H ′)′.

(ii) f ⇒ (R′ ⇒ H ′) = f ′∨ (R∨H ′) = R′S∨H ′R∨H ′S∨R∨H ′ = R′S∨R∨H ′ =
(
(R∨S′)R′H

)′
= (S′R′H)′.

(iii) f ⇒ (H ′ ⇒ S′) = f ′ ∨ (H ∨ S′) = R′S ∨H ′R ∨H ′S ∨H ∨ S′︸ ︷︷ ︸
(H′S)′

= R′S ∨H ′R ∨ 1 = 1.

The following table summarizes the results:

SRH ff ′ f ′ ∨H f ′ ∨R ∨H ′ f ′ ∨H ∨ S′
0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 1
0 1 0 0 1 1 1 1
0 1 1 1 0 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 0 1 1 1

⇒ only sentence (iii) follows from f .

3.30

(i) (P ⇒ QR)′ = (P ′ ∨QR)′ = P (Q′ ∨R′) = PQ′ ∨ PR′.
(ii) P ′ ⇒ Q ∨R = P ∨Q ∨R.

(iii) P ⇒ (QR)′ = P ′ ∨ (QR)′ = P ′ ∨Q′ ∨R′.

>From this we obtain the following table

PQR (i) (ii) (iii)
0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 1 1 1 ←
1 0 1 1 1 1 ←
1 1 0 1 1 1 ←
1 1 1 0 1 0

All three expressions have different meanings.
For the three assignments PQ′R′, PQ′R and PQR′

all three expressions are true.

3.31

(a) (1) (a⇒ b) A
(2) (a⇒ b′) A
(3) a A
(4) b 1,3,MPP
(5) b′ 2,3,MPP
(6) b ∧ b′ 4,5,∧I
(7) a′ 3,6,RAA

(b) (1) a A
(2) b A
(3) ab 1,2,∧I
(4) b⇒ ab 2,3,CP

(c) (1) (a⇒ b)(c⇒ b) A
(2) (a⇒ b) ∧E
(3) (c⇒ b) ∧E
(4) a ∨ c A
(5) b 2,3,4,∨E
(6) (a ∨ c)⇒ b 4,5,CP

Solutions to Chapter 3. 21

3.32

(a) Let c = (a ∨ b) and d = (a⇒ b′). Then we have
ab c d c⇒ d

00 0 1 1
01 1 1 1
10 1 1 1
11 1 0 0

(b) Let c = a′ and d = (a⇔ b).
ab c d c ∨ d
00 1 1 1
01 1 0 1
10 0 0 0
11 0 1 1

(c) Let d = (b ∧ c′) and f = (a⇒ c′). Then let e = (a⇒ d) to complete the table:
abc d e f e⇔ f

000 0 1 1 1
001 0 1 1 1
010 1 1 1 1
011 0 1 1 1
100 0 0 1 0
101 0 0 0 1
110 1 1 1 1
111 0 0 0 1

The answers are given in the right most columns.

3.33

(i) ab ∨ a′ ∨ b′ = ab ∨ (ab)′ = 1.
true for all a, b.

(ii) ab′ ∨ a′b.
not true for all a, b.

(iii) (a ∨ b)(a′ ∨ b)(a ∨ b′) = (ab ∨ ba′ ∨ b)(a ∨ b′) = ab ∨ ba = ab.
not true for all a, b.

ab (i) (ii) (iii)
00 1 0 0
01 1 1 0
10 1 1 0
11 1 0 1

Only (i) is a tautology.

22 Solutions to Chapter 3.

Solutions to Chapter 4. 23

4.1

a) x1 ∨ x′1x2 = x1

=1︷ ︸︸ ︷
(x2 ∨ x′2)∨x′1x2 = x1x2 ∨ x1x′2 ∨ x′1x2

= x1x2(x3 ∨ x′3) ∨ x1x′2(x3 ∨ x′3) ∨ x′1x2(x3 ∨ x′3)
= x1x2x3 ∨ x1x2x′3 ∨ x1x′2x3 ∨ x1x′2x′3 ∨ x′1x2x3 ∨ x′1x2x′3
= m111 ∨m110 ∨m101 ∨m100 ∨m011 ∨m010 = m7 ∨m6 ∨m5 ∨m4 ∨m3 ∨m2.

b) x1x
′
2 ∨ x1x2 ∨ x1x3 = x1x

′
2(x3 ∨ x′3) ∨ x1x2(x3 ∨ x′3) ∨ x1(x2 ∨ x′2)x3

= x1x
′
2x3 ∨ x1x′2x′3 ∨ x1x2x3 ∨ x1x2x′3 ∨ x1x2x3 ∨ x1x′2x3

= x1x
′
2x3 ∨ x1x′2x′3 ∨ x1x2x3 ∨ x1x2x′3

= m101 ∨m100 ∨m111 ∨m110 = m5 ∨m4 ∨m7 ∨m6.

c) (x1 ∨ x2 ∨ x3)(x1x2 ∨ x′1x3)′ = (x1 ∨ x2 ∨ x3)((x1x2)′(x′1x3)′)
= (x1 ∨ x2 ∨ x3)((x′1 ∨ x′2)(x1 ∨ x′3))
= (x1 ∨ x2 ∨ x3)(x′1x

′
3 ∨ x1x′2 ∨ x′2x′3)

= x1x
′
2 ∨ x1x′2x′3 ∨ x′1x2x′3 ∨ x1x′2x3

= x1x
′
2x3 ∨ x1x′2x′3 ∨ x1x′2x′3 ∨ x′1x2x′3 ∨ x1x′2x3

= x1x
′
2x3 ∨ x1x′2x′3 ∨ x′1x2x′3

= m101 ∨m100 ∨m010 = m5 ∨m4 ∨m2.

d) x1x2x3 ∨ (x1 ∨ x1x2 ∨ x2x3 ∨ x1x3) = x1x2x3 ∨ x1(x2 ∨ x′2)(x3 ∨ x′3) ∨ x1x2(x3 ∨ x′3)
∨(x1 ∨ x′1)x2x3 ∨ x1(x2 ∨ x′2)x3

= x1x2x3 ∨ x1x2x3 ∨ x1x2x′3 ∨ x1x′2x3 ∨ x1x′2x′3 ∨ x1x2x3 ∨ x1x2x′3
∨x1x2x3 ∨ x′1x2x3 ∨ x1x2x3 ∨ x1x′2x3

= x1x2x3 ∨ x1x2x′3 ∨ x1x′2x3 ∨ x1x′2x′3 ∨ x′1x2x3
= m111 ∨m110 ∨m101 ∨m100 ∨m011 = m7 ∨m6 ∨m5 ∨m4 ∨m3.

4.2

a) x1 ∨ x′1x2 = x1x2 ∨ x1x′2 ∨ x′1x2.

b) x1x′2 ∨ x1x2 ∨ x1x3 = x1(x′2 ∨ x2) ∨ x1x3 = x1 ∨ x1x3 = x1

c) The same solution as in 4.1c.

d) The same solution as in 4.1d.

4.3

a) Compare to the result in 4.1a).

f(x1)CNF =
∧

a∈f−1(0)

Ma(x1) = M1 ∧M0 = M001 ∧M000 = (x1 ∨ x2 ∨ x′3)(x1 ∨ x2 ∨ x3).

b) Compare to the result in 4.1b).

f(x1)CNF = M0 ∧M1 ∧M2 ∧M3 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x′3)(x1 ∨ x′2 ∨ x3)(x1 ∨ x′2 ∨ x′3).

c) Compare to the result in 4.1c).

f(x1)CNF = M0∧M1∧M3∧M6∧M7 = (x1∨x2∨x3)(x1∨x2∨x′3)(x1∨x′2∨x′3)(x′1∨x′2∨x3)(x′1∨x′2∨x′3).

d) Compare to the result in 4.1d).

f(x1)CNF = M0 ∧M1 ∧M2 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x′3)(x1 ∨ x′2 ∨ x3).

24 Solutions to Chapter 4.

4.4

a) f(x1) = M0 = M00 = x1 ∨ x2.

b) The same solution as in 4.2b.

c) The same solution as in 4.3c.

d) The same solution as in 4.3d.

4.5

a) f(x1, x2) = x1 ∨ x′1x2 = x1 ⊕ x′1x2 ⊕
=0︷ ︸︸ ︷

x1x
′
1x2 = x1 ⊕ (1⊕ x1)x2 = x1 ⊕ x2 ⊕ x1x2,

or, alternatively,

f(x1, x2) = x1 ∨ x′1x2 = 1⊕ (x1 ∨ x′1x2)′

= 1⊕ x′1(x′1x2)′

= 1⊕ (1⊕ x1)(1⊕ (1⊕ x1)x2)
= 1⊕ 1⊕ x2 ⊕ x1x2 ⊕ x1 ⊕ x1x2 ⊕ x1x2 = x1 ⊕ x2 ⊕ x1x2.

b) f(x1, x2, x3) = x1.

c) f(x1, x2, x3) = x1 ⊕ x2 ⊕ x2x3 ⊕ x1x2x3.

d) f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x1x2x3.

4.6

Use deMorgan’s laws to get

a) f(x1, . . . , xn) =
∨

a∈f−1(1)

x
(a1)
1 ∧ · · · ∧ x(an)

n =

 ∧
a∈f−1(1)

(
x
(a1)
1 ∧ · · · ∧ x(an)

n

)′′

b) f(x1, . . . , xn) =
∧

a∈f−1(0)

x
(a′1)
1 ∨ · · · ∨ x(a

′
n)

n =

 ∨
a∈f−1(0)

(
x
(a′1)
1 ∨ · · · ∨ x(a

′
n)

n

)′′

4.7

x1x2x3 f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

⇒ f(x1, x2, x3) = x′1x2x3 ∨ x1x′2x3 ∨ x1x2x′3 ∨ x1x2x3
= (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x′3)(x1 ∨ x′2 ∨ x3)(x′1 ∨ x2 ∨ x3)

Solutions to Chapter 4. 25

4.8

(a)

1

0
x1

00 01 11 10
x2x3

1 0 11

0 1 01

(b)

DNF : f = x′1x
′
2x
′
3 ∨ x′1x2x′3 ∨ x′1x2x3 ∨ x1x′2x3 ∨ x1x2x3

CNF : f = (x′1x
′
2x3 ∨ x1x′2x′3 ∨ x1x2x′3)′ = (x1 ∨ x2 ∨ x′3)(x′1 ∨ x2 ∨ x3)(x′1 ∨ x′2 ∨ x3)

RSE :

x′1x
′
2x
′
3 = (1⊕ x1)(1⊕ x2)(1⊕ x3)

= 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x3 ⊕ x1x2x3
x′1x2x

′
3 = x2 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3

x′1x2x3 = x2x3 ⊕ x1x2x3
x1x
′
2x3 = x1x3 ⊕ x1x2x3

Hence,

f = 1⊕ x1 ⊕ x3 ⊕ x2x3 ⊕ x1x2x3

4.9

f−1(1) = {(0000), (0010), (0011), (0101), (0111), (1000)}
= {0, 2, 3, 5, 7, 8}

f−1(0) = {(0001), (0100), (0110), (1001), (1111)}
= {1, 4, 6, 9, 15}

f−1(−) = {(1010), (1011), (1100), (1101), (1110)}
= {10, 11, 12, 13, 14}

4.11

(a)

f(x1, x2, x3) = x1 ∨ x′1x2 = x1(x2 ∨ x′2)(x3 ∨ x′3) ∨ x′1x2(x3 ∨ x′3)

= x1(x2x3 ∨ x2x′3 ∨ x′2x3 ∨ x′2x′3) ∨ x′1x2x3 ∨ x′1x2x′3
= x1x2x3 ∨ x1x2x′3 ∨ x1x′2x3 ∨ x′2x′3 ∨ x′1x2x3 ∨ x′1x2x′3

⇒ f−1(1) = {7, 6, 5, 4, 3, 2}

All minterms are implicants of three variables. We also have the following seven implicants of two vari-
ables:

x1x2x3 ∨ x1x2x′3 = x1x2

x1x2x3 ∨ x1x′2x3 = x1x3

x1x2x3 ∨ x′1x2x3 = x2x3

x1x2x
′
3 ∨ x1x′2x′3 = x1x

′
3

x1x2x
′
3 ∨ x′1x2x′3 = x2x

′
3

x1x
′
2x3 ∨ x1x′2x′3 = x1x

′
2

x′1x2x3 ∨ x′1x2x′3 = x′1x2

26 Solutions to Chapter 4.

as well as two implicants of one variable:

x1x2 ∨ x1x′2 = x1

x1x2 ∨ x′1x2 = x2

(x1x3 ∨ x1x′3 = x1)

(x2x3 ∨ x2x′3 = x2)

(b) f(x1, x2, x3) = x1x
′
2 ∨ x1x2 ∨ x1x3

Minterms: x1x2x3, x1x2x′3, x1x′2x3, x1x′2x′3

Implicants :

 minterms
x1x
′
2, x1x3, x1x2, x1x

′
3

x1

(c)

f(x1, x2, x3) = (x1 ∨ x2 ∨ x3)(x1x2 ∨ x′1x3)′ = (x1 ∨ x2 ∨ x3)(x1x2)′(x′1x3)′

= (x1 ∨ x2 ∨ x3)(x′1 ∨ x′2)(x1 ∨ x′3) = x1x
′
2 ∨ x1x′2x′3 ∨ x′1x2x′3 ∨ x1x′2x3

= x1x
′
2x
′
3 ∨ x1x′2x3 ∨ x′1x2x′3

Minterms: x1x
′
2x
′
3, x1x

′
2x3, x

′
1x2x

′
3

Implicants: minterms, x1x′2

d) f(x1, x2, x3) = x1x2x3 ∨ (x1 ∨ x2)(x1 ∨ x3) = x1x2x3 ∨ x1 ∨ x1x3 ∨ x1x2 ∨ x2x3 = x1 ∨ x2x3
Minterms: x′1x2x3, x1x

′
2x
′
3, x1x

′
2x3, x1x2x

′
3, x1x2x3

Implicants: minterms, x1x′2, x1x2, x1x′3, x1x3, x2x3, x1

4.12

The functions are split into two sub-functions each

f1 = (x′3 ∨ x′2)︸ ︷︷ ︸
f
(1)
1

∧ (x3 ∨ x′1x2 ∨ x′1x4)︸ ︷︷ ︸
f
(2)
1

f2 =
(
x2x3(x1 ∨ x4)

)︸ ︷︷ ︸
f
(1)
2

∨
(
x′1(x2 ∨ x3 ∨ x4)(x2 ∨ x′3)

)︸ ︷︷ ︸
f
(2)
2

f3 = (x′1x2 ∨ x2x′3 ∨ x′1x4)︸ ︷︷ ︸
f
(1)
3

⊕ (x1x2 ∨ x1x4 ∨ x′2x3x4)︸ ︷︷ ︸
f
(2)
3

These functions can easily be visualized in Karnaugh maps:

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(1)
1

1 1 11

1 1 00

1 1 11

1 1 00

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(2)
1

0 1 11

1 1 11

0 0 11

0 0 11

10

11

01

00

x1x2

00 01 11 10
x3x4

f1 = f
(1)
1 ∧ f (2)1

0 1 11

1 1 00

0 0 11

0 0 00

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(1)
2

0 0 00

0 0 01

0 0 00

0 0 11

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(2)
2

0 1 00

1 1 11

0 0 00

0 0 00

10

11

01

00

x1x2

00 01 11 10
x3x4

f2 = f
(1)
2 ∨ f (2)2

0 1 00

1 1 11

0 0 00

0 0 11

Solutions to Chapter 4. 27

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(1)
3

0 1 01

1 1 11

0 0 00

1 1 00

10

11

01

00

x1x2

00 01 11 10
x3x4

f
(2)
3

0 0 01

0 0 00

0 1 01

1 1 11

10

11

01

00

x1x2

00 01 11 10
x3x4

f3 = f
(1)
3 ⊕ f (2)3

0 1 00

1 1 11

0 1 01

0 0 11

Then we see that all three expressions realize different functions.

4.13

From the figure we get

y = x′1x
′
3 ∨ x′1x2 ∨ x′2x′3 ∨ x2x3

= x′1x
′
3 ∨ x′2x′3 ∨ x2x3

where we in the second equality used that x′1x2 is the conseneus term of x′1x′3 and x2x3. Since we should use
AND-gates and Mod2-adders it should be rewtten in RSE:

y = x′1x
′
3 ⊕ x′2x′3 ⊕ x2x3 ⊕ x′1x′3(x′2x

′
3 ⊕ x2x3)

= (1⊕ x1)(1⊕ x3)⊕ (1⊕ x2)(1⊕ x3)⊕ x2x3 ⊕ (1⊕ x1)(1⊕ x2)(1⊕ x3)

= 1⊕ x3 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3

Realization:

x1

x2

x3

1 + + + + y

4.17

a)

f

x2

x1

Size = 3
Depth = 3

b)

f

x1

x2

x3

Size = 6
Depth = 4

c)
x1

f

x3

x2

Size = 8
Depth = 5

28 Solutions to Chapter 4.

d)

f

x3

x2

x1 Size = 6
Depth = 3

4.18

a) 14 = 01110

14 = 001110

b) -14 = -01110 = 10001+1 = 10010

-14 = -001110 = 110001+1 = 110010

c) -6 = -00110 = 11001+1 = 11010

-6 = -000110 = 111001+1 = 111010

d) -7 = -00111 = 11000+1 = 11001

-7 = -000111 = 111000+1 = 111001

e) -12 = -01100 = 10011+1 = 10100

-12 = -001100 = 110011+1 = 110100

f) -1 = -00001 = 11110+1 = 11111

-1 = -000001 = 111110+1 = 111111

4.19

a) Instead of solving the subtraction we solve the addition of the two-complement, i.e., 101011 + 100101 + 1.

1 1 1 1 1 1
101011

+100101
010001

ov = 1⊕ 0 = 1. (−21− 26 = −47 6∈ [−32, 31].)

b) Solve 11101101+10110000+1.

1 1 1 1 1
11101101

+10110000
10011110

ov = 1⊕ 1 = 0. (−19− 79 = −98 ∈ [−128, 127].)

b) Solve 11001+11001+1.

1 1 1 1
11001

+11001
10011

ov = 1⊕ 1 = 0. (−7− 6 = −13 ∈ [−16, 15].)

Solutions to Chapter 4. 29

4.20

Overflow occurs when the addition of two positive numbers is negative, or when the addition of two nega-
tive numbers is positive, i.e., when (xn−1, yn−1, zn−1) ∈ {(0, 0, 1), (1, 1, 0)}. Therefore ov = x′n−1y

′
n−1zn−1 ∨

xn−1yn−1z
′
n−1.

4.22

The problem can be solved in the same way as in the binary case, i.e., with one module (Full Adder) for each
level. Therefore, we start by constructing a full adder (FA) for the trinary, or ternary, case. We have two input
digits and onr carry from the previous level. Since 2 + 2 + 1 = 5 = 123 the carry is either 0 or 1 and can be
represented with only one bit. Below we have lited the functional table that will be realized.

(x+ y + c = s)3 xi1xi2 yi1yi2 ci ci+1 si1si2

0 + 0 + 0 = 0 0 0 0 0 0 0 0 0
0 + 1 + 0 = 1 0 0 0 1 0 0 0 1
0 + 2 + 0 = 2 0 0 1 1 0 0 1 1
1 + 0 + 0 = 1 0 1 0 0 0 0 0 1
1 + 1 + 0 = 2 0 1 0 1 0 0 1 1
1 + 2 + 0 = 10 0 1 1 1 0 1 0 0
2 + 0 + 0 = 2 1 1 0 0 0 0 1 1
2 + 1 + 0 = 10 1 1 0 1 0 1 0 0
2 + 2 + 0 = 11 1 1 1 1 0 1 0 1

(x+ y + c = s)3 xi1xi2 yi1yi2 ci ci+1 si1si2

0 + 0 + 1 = 1 0 0 0 0 1 0 0 1
0 + 1 + 1 = 2 0 0 0 1 1 0 1 1
0 + 2 + 1 = 10 0 0 1 1 1 1 0 0
1 + 0 + 1 = 2 0 1 0 0 1 0 1 1
1 + 1 + 1 = 10 0 1 0 1 1 1 0 0
1 + 2 + 1 = 11 0 1 1 1 1 1 0 1
2 + 0 + 1 = 10 1 1 0 0 1 1 0 0
2 + 1 + 1 = 11 1 1 0 1 1 1 0 1
2 + 2 + 1 = 12 1 1 1 1 1 1 1 1

We have three functions of five variables. Draw the Karnaugh maps to find expressions:

10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

c
(ci=0)
i+1

0 0 -0

0 0 -1

- - --

0 1 -1
�

�

�

�

�

�

10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

c
(ci=1)
i+1

0 0 -1

0 1 -1

- - --

1 1 -1

�

�

�

�

�

�

�

�

�

ci−1 = xi2yi1 ∨ xi1yi2 ∨ xi2yi2ci ∨ xi1ci ∨ yi1ci

10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

s
(ci=0)
i1

0 0 -1

0 1 -0

- - --

1 0 -0
�

�

�

�

� �

�
�

�

10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

s
(ci=1)
i2

0 1 -0

1 0 -0

- - --

0 0 -1

�

�
�

�

� �
�

�

�

si1 = xi1y
′
i2c
′
i ∨ x′i2yi1c′i ∨ x′i1xi2y′i1yi2c′i

∨ xi1yi1ci ∨ x′i1xi2y′i2ci ∨ x′i2y′i1yi2ci

10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

s
(ci=0)
i2

0 1 -1

1 1 -0

- - --

1 0 -1

�

�

�

�

� �

�
�

�
�

�

�

 10

11

01

00

xi1xi2

00 01 11 10
yi1yi2

s
(ci=1)
i2

1 1 -0

1 0 -1

- - --

0 1 -1

�

�

�
�

� �
�

�

�

�

�

�

si2 = xi2y

′
i2c
′
i ∨ x′i2yi2c′i ∨ xi1yi1 ∨ x′i1xi2y′i1yi2c′i

∨ x′i1y′i2ci ∨ x′i2y′i1ci ∨ xi1yi2ci ∨ xi2yi1ci

The module ADD can now be realized as
x3y3

s3

c3

x2y2

s2

c2

x1y1

s1

c1

x0y0

s0

c0
0

c4

30 Solutions to Chapter 4.

Solutions to Chapter 5. 31

5.1

(b) Applying the rules xp ∨ x′q = xp ∨ x′q ∨ pq (consensus) and p ∨ px = p (absorption) successively yields:

f1() = x′0x
′
1x
′
2

A

∨ x′0x′1x2
B

∨ x′0x1x2
C

∨ x0x′1x′2
D

∨ x0x′1x2
E

∨ x0x1x2
F

.

Add consensus of A through F, then consensus of B through F, and so on.

= x′0x
′
1x
′
2

A

∨ x′0x′1x2
B

∨ x′0x1x2
C

∨ x0x′1x′2
D

∨ x0x′1x2
E

∨ x0x1x2
F

∨ x′0x
′
1

G=cons(A,B)

∨ x′1x
′
2

H=cons(A,D)

∨ x′0x2
I=cons(B,C)

∨ x′1x2
J=cons(B,E)

∨ x1x2
K=cons(C,F)

∨ x0x
′
1

L=cons(D,E)

∨ x0x2
M=cons(E,F)

.

After adding the consensus, we now apply the absorption rule. G covers A and B, H covers D, I covers C,
J covers E, and K covers F. Add consensus of G through M, then consensus of H through M, and so on.

= x′0x
′
1

G

∨ x′1x′2
H

∨ x′0x2
I

∨ x′1x2
J

∨ x1x2
K
∨ x0x′1

L

∨ x0x2
M
∨ x′1

N=cons(G,L)

∨ x2
O=cons(I,M)

.

N covers G, H, J, and L, and O covers I, K, and M (and J). Further applications of the consensus rule do not
add any new terms, indicating that the algorithm has terminated. The complete list of prime implicants is

= x′1 ∨ x2.

One could also have opted for first adding consensus of A and later terms, only, then applying absorption,
and iteratively proceeding in this way. Like this:

f1() = x′0x
′
1x
′
2

A

∨ x′0x′1x2
B

∨ x′0x1x2
C

∨ x0x′1x′2
D

∨ x0x′1x2
E

∨ x0x1x2
F

= x′0x
′
1x
′
2

A

∨ x′0x′1x2
B

∨ x′0x1x2
C

∨ x0x′1x′2
D

∨ x0x′1x2
E

∨ x0x1x2
F

∨ x′0x
′
1

G=cons(A,B)

∨ x′1x
′
2

H=cons(A,D)

= x′0x1x2
C

∨ x0x′1x2
E

∨ x0x1x2
F

∨ x′0x′1
G

∨ x′1x′2
H

∨ x1x2
I=cons(C,F)

∨ x′0x2
J=cons(C,G)

= x0x
′
1x2

E

∨ x′0x′1
G

∨ x′1x′2
H

∨ x1x2
I
∨ x′0x2

J

∨ x′1x2
K=cons(E,G)

∨ x0x
′
1

L=cons(E,H)

∨ x0x2
M=cons(E,I)

= x′0x
′
1

G

∨ x′1x′2
H

∨ x1x2
I
∨ x′0x2

J

∨ x′1x2
K

∨ x0x′1
L

∨ x0x2
M
∨ x′1

N=cons(G,L)

= x1x2
I
∨ x′0x2

J

∨ x0x2
M
∨ x′1

N

∨ x2
O=cons(I,N)

= x′1 ∨ x2.

Thus, we see that iterative consensus can be run in several ways so long as, at each step, the onset f−11 (1)
is preserved. Likewise, one can start from any disjunctive form.

In the conjunctive form we can use the duals (x ∨ p)(x′ ∨ q) = (x ∨ p)(x′ ∨ q)(p ∨ q) (consensus) and
p(p ∨ x) = p (absorption) and obtain:

f2() = (x0 ∨ x1 ∨ x2)
A

(x0 ∨ x′1 ∨ x2)
B

(x0 ∨ x′1 ∨ x′2)
C

(x′0 ∨ x1 ∨ x2)
D

(x′0 ∨ x′1 ∨ x2)
E

(x′0 ∨ x′1 ∨ x′2)
F

= (x0 ∨ x1 ∨ x2)
A

(x0 ∨ x′1 ∨ x2)
B

(x0 ∨ x′1 ∨ x′2)
C

(x′0 ∨ x1 ∨ x2)
D

(x′0 ∨ x′1 ∨ x2)
E

(x′0 ∨ x′1 ∨ x′2)
F

(x0 ∨ x2)
G=cons(A,B)

(x1 ∨ x2)
H=cons(A,D)

(x0 ∨ x′1)
I=cons(B,C)

(x′1 ∨ x2)
J=cons(B,E)

(x′1 ∨ x′2)
K=cons(C,F)

(x′0 ∨ x2)
L=cons(D,E)

(x′0 ∨ x′1)
M=cons(E,F)

= (x0 ∨ x2)
G

(x1 ∨ x2)
H

(x0 ∨ x′1)
I

(x′1 ∨ x2)
J

(x′1 ∨ x′2)
K

(x′0 ∨ x2)
L

(x′0 ∨ x′1)
M

(x2)
N=cons(G,L)

(x′1)
O=cons(I,M)

= x′1x2.

5.2

(b) Let f1D and f2D denote the functions that describe the don’t care sets.
First, we minimize f1() and f1D() separately:

f1() = x′0x
′
1x
′
2 ∨ x′0x1x′2 ∨ x′0x1x2 = x′0x

′
2 ∨ x′0x1

f1D() = x0x
′
1x2 ∨ x0x1x′2 ∨ x0x1x2 = x0x2 ∨ x0x1

32 Solutions to Chapter 5.

From f1D we only need to take those terms that help to simplify f1. In this case this is only the second
term x0x1. We obtain:

f1() = x′0x
′
2 ∨ x′0x1 ∨ x0x1 = x′0x

′
2 ∨ x1

In the same way:

f2() = (x′0 ∨ x1 ∨ x2)(x′0 ∨ x1 ∨ x′2)(x′0 ∨ x′1 ∨ x2) = (x′0 ∨ x1)(x′0 ∨ x2)

f2D() = (x0 ∨ x1 ∨ x2)(x0 ∨ x′1 ∨ x2)(x0 ∨ x′1 ∨ x′2) = (x0 ∨ x2)(x0 ∨ x′1)

Here we take only the term (x0 ∨ x2) from f2D and obtain:

f2() = (x′0 ∨ x1)(x′0 ∨ x2)(x0 ∨ x2) = (x′0 ∨ x1)x2

5.3

(a)

f() = x1x2x
′
3

A

∨ x′1x2x3
B

∨ x1x′2x′3
C

∨ x1x3x4
D

Add consensus of A and later terms:

= x1x2x
′
3

A

∨ x′1x2x3
B

∨ x1x′2x′3
C

∨ x1x3x4
D

∨ x1x
′
3

E=C(A,C)

∨ x1x2x4
F=C(A,D)

E covers A and C. Add consensus of B and later terms:

= x′1x2x3
B

∨ x1x3x4
D

∨ x1x′3
E

∨ x1x2x4
F

∨ x2x3x4
G=C(B,D)=C(B,F)

Add consensus of D and later terms:

= x′1x2x3
B

∨ x1x3x4
D

∨ x1x′3
E

∨ x1x2x4
F

∨ x2x3x4
G

∨ x1x4
H=C(D,E)

H covers D and F . Add consensus of E and later terms:

= x′1x2x3
B

∨ x1x′3
E

∨ x2x3x4
G

∨ x1x4
H
∨ x1x2x4

I=C(E,G)

I is covered by H .
No further consensus terms can be built and hence all prime implicants of the function are:

x′1x2x3, x1x
′
3, x2x3x4, x1x4.

5.4

Disjunctive form

1

0
x0

00 01 11 10
x1x2

f1

1 1 01

1 1 01

�
�

�

�

�

�

f1(x0, x1, x2) = x′1 ∨ x2

1

0
x0

00 01 11 10
x1x2

f2

0 1 00

0 1 00

�
�

�

f2(x0, x1, x2) = x′1x2
Conjunctive form

1

0
x0

00 01 11 10
x1x2

f1

1 1 01

1 1 01

�
�

�

f1(x0, x1, x2) = (x1x
′
2)′ = x′1 ∨ x2

1

0
x0

00 01 11 10
x1x2

f2

0 1 00

0 1 00

�

�
�

�

�

�

f2(x0, x1, x2) = (x1 ∨ x′2)′ = x′1x2

5.5

Solutions to Chapter 5. 33

Disjunctive form

1

0
x0

00 01 11 10
x1x2

f1

1 0 11

0 - --

� ��
�

�

�

f1(x0, x1, x2) = x′0x

′
2 ∨ x1

1

0
x0

00 01 11 10
x1x2

f2

- 1 --

0 0 01

�
�

�

�
�

�

f2(x0, x1, x2) = x′0 ∨ x1x2
Conjunctive form

1

0
x0

00 01 11 10
x1x2

f1

1 0 11

0 - --
�
�

�

�
�

�

f1(x0, x1, x2) = (x0 ∨ x′1x2)′ = x′0(x1 ∨ x′2)

1

0
x0

00 01 11 10
x1x2

f2

- 1 --

0 0 01

�

�

�
�� �
f2(x0, x1, x2) = (x′2 ∨ x0x′1)′ = x2(x′0 ∨ x1)

5.6

a)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

1 1 11

0 1 10

1 0 10

0 0 01

�� � �

� �

�

�

�

�

�

�

�
�

�

Prime implicants:
PI = {x′1x′2, x′2x′4, x′1x′3x4, x′1x3x′4, x1x2x3x4}
All prime implicants are essential.

Minimal function:
f = x′1x

′
2 ∨ x′2x′4 ∨ x′1x′3x4 ∨ x′1x3x′4 ∨ x1x2x3x4.

b)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

0 1 11

0 1 11

1 1 11

1 1 11
�

�

�

�

�

�

�

�

�

Prime implicants:
PI = {x1, x3, x4}
All prime implicants are essential.

Minimal function:
f = x1 ∨ x3 ∨ x4.

c)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

1 1 -0

1 - 01

- 1 10

- 1 0-

 �

� �

�

�

�

�

�

�

Prime implicants:
PI = {x2x4, x′2x′4, x′3}
All prime implicants are essential.

Minimal function:
f = x2x4 ∨ x′2x′4 ∨ x′3.

d)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

0 1 10

0 1 00

0 1 01

1 0 01
�
�

�

�
�

�

�
�

�

�

� ��� �
�

�

�

Prime implicants:
PI = {x1x2x′3x′4, x′1x′2x3x′4, x′1x′3x4, x′2x′3x4, x1x′2x4, x1x3x4}
The essential prime implicants are underlined.

Minimal function:
f = x1x2x

′
3x
′
4 ∨ x′1x′2x3x′4 ∨ x′1x′3x4 ∨ x1x3x4 ∨ x′2x′3x4

or
f = x1x2x

′
3x
′
4 ∨ x′1x′2x3x′4 ∨ x′1x′3x4 ∨ x1x3x4 ∨ x1x′2x4.

34 Solutions to Chapter 5.

e)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

0 1 1-

1 1 1-

1 - -1

- 0 -0�� �

�� �
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�� �

�

� �

�
Prime implicants:
PI = {x′1x2, x1x′2, x′2x4, x′1x4, x′2x3, x′1x3, x2x′4, x1x′4, x3x′4}
None of the prime implicants are essential.

Minimal function:
There are several minimal functions. For example
f = x′1x2 ∨ x1x′2 ∨ x′2x4 ∨ x′2x3.

5.8

(a) Minimal disjunctive form:

fMDF = x′0x
′
2 ∨ x′2x3 ∨ x1x2

Minimal conjunctive form:

fMCF = (x′0 ∨ x2 ∨ x3)(x1 ∨ x′2)

(b) Minimal disjunctive form:

fMDF = x′0x1 ∨ x′0x2 ∨ x0x3

Minimal conjunctive form:

fMCF = (x′0 ∨ x3)(x0 ∨ x1 ∨ x2)

(c) Minimal disjunctive form:

fMDF = x′0x
′
3 ∨ x′0x′1x2

Minimal conjunctive form:

fMCF = x′0(x2 ∨ x′3)(x′1 ∨ x′3)

Notice that the functions are not necessarily unique.

Solutions to Chapter 5. 35

5.9

a)

1 ∧ − = − 1 ∨ − = 1 1⊕− = −
0 ∧ − = 0 0 ∨ − = − 0⊕− = −

b) From part a and the following Karnaugh-maps we see that the function f1⊕f2 is given by (f1⊕f2)−1(1) =
{0, 8, 12} and (f1 ⊕ f2)−1(0) = {3, 4, 5, 6, 9, 10}.

10

11

01

00

x1x2

00 01 11 10
x3x4

f1

1 - -1

0 1 11

1 0 0-

0 - --

10

11

01

00

x1x2

00 01 11 10
x3x4

f2

0 - 01

0 1 1-

0 0 01

1 - 0-

10

11

01

00

x1x2

00 01 11 10
x3x4

f1 ⊕ f2

1 - -0

0 0 0-

1 0 0-

1 - --
�
�

�
�

�

�

�

�
� �

� �

Corresponding minimal functions can be found in for example

f1 ⊕ f2 = x1x2 ∨ x′2x′3x′4,

or

f1 ⊕ f2 = x1x
′
3x
′
4 ∨ x′2x′3x′4

(This is not a complete list. There are other minimal functions.)

5.10

a) PI = {x′1x2x3, x1x′2x3, x1x2x′3, x1x2x4, x2x3x4, x1x3x4}
The essential prime implicants are underlined.

b) PI = {x1x2x′3, x′2x4, x′3x4}
All prime implicants are essential.

5.11

a) Yes. The four minterms and x′1x2q2, x′1x2q1, and x2q1q′2.

b) Yes.

c) Yes, since

q+2 = x′1x2q2 ∨ x2q1q′2 = x′1x2q2 ⊕ x2q1q′2 ⊕ x′1x2q1q2q′2︸ ︷︷ ︸
=0

= (1⊕ x1)x2q2 ⊕ x2q1(1⊕ q2) = x2q2 ⊕ x1x2q2 ⊕ x2q1 ⊕ x2q1q2

d) Yes. Consider the implicants

A = x′1q
′
2

B = x′2q
′
2

C = x2q1q
′
2

D = x′1x2q1

E = x′1x2q2

Then

q+1 = A ∨B ∨ C ∨D
q+2 = C ∨ E

Notice, that C is not a prime implicant in q+1 .

36 Solutions to Chapter 5.

5.13

(b)

10

11

01

00

x1x2

00 01 11 10
x3x4

f

0 1 01

1 1 01

1 0 10

1 1 10

�

�

�

�

�

�

�

�

�

 10

11

01

00

x1x2

00 01 11 10
x3x4

f

0 1 01

1 1 11

0 0 00

1 1 11

�

�

�

�

�

�

�

�

�

x0 = 0 x0 = 1

A

C

B

D

f(x1, x2, x3, x4, x5) = A ∨B ∨ C ∨D = x′1x4 ∨ x2x′3 ∨ x′0x1x′4 ∨ x0x2

5.14

(e) Draw the Karnaugh maps for f1(x), f2(x) and f1(x) ∧ f2(x)

10

11

01

00

x1x2

00 01 11 10
x3x4

f1

0 0 11

1 1 11

0 - -1

0 - 1-

�
�

�

�

�

�

�

�

�

�

�

�

 10

11

01

00

x1x2

00 01 11 10
x3x4

f2

1 1 01

1 1 01

- 0 -1

- - 10

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�
�

�
 10

11

01

00

x1x2

00 01 11 10
x3x4

f1 ∧ f2

0 0 01

1 1 01

0 0 -1

0 - 10

�
�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

P1

P2

P3

P4 P5 P6

P7

P8 P9

P10

P11

P12

P13

P14

P15

P16

The P-table:

f1 f2
2 3 4 5 6 7 11 14 0 1 3 4 5 7 11 14

P1 x
P2 x x
P3 x x x x
P4 ©x x x x x x
P5 x
P6 x x
P7 x x
P8 x x x x
P9 x x x x
P10 x x
P11 x x x x
P12 x x
P13 x x x x
P14 x x x x
P15 x x x x
P16 x x

Here we see that P4 is essential in f1. A reduced table becomes

Solutions to Chapter 5. 37

f1 f2
4 5 0 1 3 4 5 7 11 14

P13 ⊃ P2 x
P13 ⊃ P3 x x

P5 x
P8 ⊃ P6 x x
P13 ⊃ P7 x x

P8 x x x x
P9 x x x x

P11 ⊃ P10 x
P11 x x

P13 ⊃ P12 x x
P13 x x x x
P14 x x x

P9 ⊃ P15 x x
P5 ⊃ P16 x

P5 dominates P16. P13 dominates P2, P3, P7 and P12. P8 dominates P6. P11 dominates P10. P9 dominates P15.
Hence,

f1 f2
4 5 0 1 3 4 5 7 11 14

P5 ©x
P8 ©x x x x
P9 x x x x
P11 x ©x
P13 ©x x x x
P14 x x x

P13 is essential in f1. Since, this implicant now is for free we can also use it in f2 to cover 4 and 5. The implicants
P5, P8, and P11 are essential in f2. P8 also covers 4 and 5 so we can actually choose if we like to use P13 in the
minimal cover of f2 or not. What is left of the table is now

f2
7

P9 x
P14 x

We can choose if we like P9 or P14 to cover 7. Hence, a minmal cover of f1 and f2 is

f1 = P4 ∨ P13 = x3 ∨ x′1x2x′3
f2 = P5 ∨ P8 ∨ P9 ∨ P11 = x1x

′
4 ∨ x′1x′3 ∨ x′1x4 ∨ x′2x3x4

Notice that P13 can be added to the cover of f2 and it will still be a minimal cover of the functions.

5.15

Let us first consider the function f1(). Then we have

f−11 (1) = {000, 001, 011, 100, 101, 111}

and

f−11 (0) = {010, 110} .

In the table below we calculate for all minterms their blocking functions, span functions, and core-span func-
tions.

38 Solutions to Chapter 5.

i mi Bmi(x) (Bmi(x))′ csmi(x)

0 x′0x
′
1x
′
2 x1 ∨ x0x1 = x1 x′1 x′1

1 x′0x
′
1x2 x1x

′
2 ∨ x0x1x′2 = x1x

′
2 (x1x

′
2)′ = x′1 ∨ x2 x′1x2

3 x′0x1x2 x′2 ∨ x0x′2 = x′2 x2 x2
4 x0x

′
1x
′
2 x′0x1 ∨ x1 = x1 x′1 x′1

5 x0x
′
1x2 x′0x1x

′
2 ∨ x1x′2 x′1 ∨ x2 x′1x2

7 x0x1x2 x′0x
′
2 ∨ x′2 = x′2 x2 x2

We now have to check which of the core-span functions are essential signature cubes.

1. We first check if x′1 is essential. We use Def. 5.7 (page 187 in the Signature cubes hand-out). Since x′1 =
csm0(x) and there exists no minterm mi for which x′1 < csmi(x), it follows that x′1 is essential.

2. We now check if x′1x2 is essential. Again, we use Def. 5.7 and conclude that x′1x2 is not essential since
x′1x2 < csm0(x) = x′1.

3. We check if x2 is essential. Clearly, x2 = csm3(x) and there exists no minterm mi for which x2 < csmi(x).
Thus, from Def. 5.7 it follows that x2 is essential.

There are no other distinct core-span functions. Thus, x′1 and x2 are the only two essential signature cubes.
Since they coincide with the prime implicants in their span functions, the prime-table is trivial and can be
omitted. We conclude that

f1(x) = x′1 ∨ x2 .

Let us consider now the second function

f−12 (1) = {001, 101}
f−12 (0) = {000, 010, 011, 100, 110, 111} .

In the table below we calculate for all minterms their blocking functions, span functions, and core-span func-
tions.

i mi Bmi(x) (Bmi(x))′ csmi(x)

1 x′0x
′
1x2 x′2 ∨ x1x′2 ∨ x1 ∨ x0x′2 ∨ x0x1x′2 ∨ x0x1 (x1 ∨ x′2)′ = x′1x2 x′1x2

= x1 ∨ x′2
5 x0x

′
1x2 x′0x

′
2 ∨ x′0x1x′2 ∨ x′0x1 ∨ x′2 ∨ x1x′2 ∨ x1 x′1x2 x′1x2

= x1 ∨ x′2

If follows directly from Def. 5.7 that x′1x2 is an essential signature cube. Thus,

f2(x) = x′1x2 .

5.19

To minimize the size of the AND-matrix and the OR-matrix is the same as minimizing the number of minterms.
Let (z1z0)2 = (x1x0)2 ⊕4 (y1y0)2. Then

x1x0 y1y0 z1z0

00 00 00
00 01 01
00 10 10
00 11 11
01 00 01
01 01 10
01 10 11
01 11 00
10 00 10
10 01 11
10 10 00
10 11 01
11 00 11
11 01 00
11 10 01
11 11 10

10

11

01

00

x1x0

00 01 11 10
y1y0

z1

0 0 11

0 1 10

1 1 00

1 0 01�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�
�

�

10

11

01

00

x1x0

00 01 11 10
y1y0

z1

0 1 01

1 0 10

0 1 01

1 0 10

�

� �

�

�

�

z1 = x′1x
′
0y1 ∨ x′1y1y′0 ∨ x1x′0y′1 ∨ x1y′1y′0 ∨ x′1x0y′1y0 ∨ x1x0y1y0

z0 = x′0y0 ∨ x0y′0

An implementation with PLA:

Solutions to Chapter 5. 39

x1

x0

y1

y0

z1

z0

5.21

We start to write a table for all the functions

x1x2x3 f1 f2 f3 f4 f5 f6 fb = f1 ⊕ f2 fe = (f4 ∧ f5)⊕ (f5 ∧ f6)

0 0 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1 0 1 1
0 1 0 1 1 1 0 0 0 0 0
0 1 1 0 1 1 0 1 1 1 1
1 0 0 0 0 1 1 1 1 0 0
1 0 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 0 0 0
1 1 1 0 1 0 1 1 1 1 0

a) Yes, f1 is linear.

f1 = x1 ⊕ x2 ⊕ x′2x3 ⊕ x′1 ⊕ x2x3 ⊕ 1

= x1 ⊕ x2 ⊕ (1⊕ x2)x3 ⊕ (1⊕ x1)⊕ x2x3 ⊕ 1

= x2 ⊕ x3

b) The minimal forms are minimal disjunctive form, minimal conjunctive form, and RSE. Here we choose
the disjunctive form. Write the function fb above in a Karnaugh map,

1

0
x1

00 01 11 10
x2x3

fb

1 1 01

0 1 01

�

�

�

�� �

and we get f1 ⊕ f2 = x′1x
′
2 ∨ x3.

c) f3 is given in conjunctive normal form and we see that f−13 (0) = {001, 111}. In DNF we get

f3 = m000 ∨m010 ∨m011 ∨m100 ∨m101 ∨m110

= x′1x
′
2x
′
3 ∨ x′1x2x′3 ∨ x′1x2x3 ∨ x1x′2x′3 ∨ x1x′2x3 ∨ x1x2x′3

d)
f4 = m001 ∨m100 ∨m101 ∨m111 = m001 ⊕m100 ⊕m101 ⊕m111

= x′1x
′
2x3 ⊕ x1x′2x′3 ⊕ x1x′2x3 ⊕ x1x2x3

= (1⊕ x1)(1⊕ x2)x3 ⊕ x1(1⊕ x2)(1⊕ x3)⊕ x1(1⊕ x2)x3 ⊕ x1x2x3
= x1 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3.

e) From the table above we get the following Karnaugh map

40 Solutions to Chapter 5.

1

0
x1

00 01 11 10
x2x3

fe

0 1 01

0 1 00

�

�

�
�� �

Hence, fe = x3(x′1 ∨ x′2).

5.23

For all combinations of inputs x1, x2, x3 we first calculate values f1(x1, x2, x3), f2(x1, x2, x3), and f3(x1, x2, x3).
Then we calculate f(x1, x2, x3) = g(f1, f2, f3). For example, input x1x2x3 = 010 gives f1f2f3 = 011, and
therefore f(010) = g(011) = 1

x1x2x3 f1f2f3 g f

0 0 0 0 - 1 - 1
0 0 1 - 1 0 1 0
0 1 0 0 1 1 0 1
0 1 1 0 1 0 1 0
1 0 0 1 1 1 1 -
1 0 1 - 1 0 1 0
1 1 0 1 0 1 0 1
1 1 1 1 0 - - 1

Now we have a choice. Either we realize the function f which is 1 for the input combination 1, 0, 0 or we realize
the function f which is 0 for 1, 0, 0. Obviously we have to choose the one which gives minimum number of
AND gates in the realization.

The first variant is

f (1) = x′1x
′
2x
′
3 ∨ x′1x2x′3 ∨ x1x′2x′3 ∨ x1x2x′3 ∨ x1x2x3 = 1⊕ x3 ⊕ x1x2x3.

The second variant is

f (2) = x′1x
′
2x
′
3 ∨ x′1x2x′3 ∨ x1x2x′3 ∨ x1x2x3 = 1⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x1x3.

We choose f = f (1) = 1⊕ x3 ⊕ x1x2x3 for realization.

5.24

This problem can be solved by a graph with 13 sates where the state transitions follows

s0 → s1 → s2 → · · · → s12 → s0 → · · ·

If the length of the shift register is L each state is a part of the sequence starting at that position. Since the
period is 13 long that is also the maximum number of state variables needed. That gives the following table

s Period
s0 1101010011011
s1 1010100110111
s2 0101001101111
s3 1010011011110
s4 0100110111101
s5 1001101111010
s6 0011011110101
s7 0110111101010
s8 1101111010100
s9 1011110101001
s10 0111101010011
s11 1111010100110
s12 1110101001101

Solutions to Chapter 5. 41

Now, we try to use as few D-elements as possible, i.e., we start from left and try to use as little as possible from
the sequence. We need at least four bits, but if we only use those we get s0 = s8 and s1 = s3. With five bits we
get a unique state assignment as follows

s q0q1q2q3q4 u

s0 1 1 0 1 0 1
s1 1 0 1 0 1 0
s2 0 1 0 1 0 0
s3 1 0 1 0 0 1
s4 0 1 0 0 1 1
s5 1 0 0 1 1 0
s6 0 0 1 1 0 1
s7 0 1 1 0 1 1
s8 1 1 0 1 1 1
s9 1 0 1 1 1 1
s10 0 1 1 1 1 0
s11 1 1 1 1 0 1
s12 1 1 1 0 1 0

where the output is the input for the shift register, i.e., the last bit of the next state.

The prime implicants can be found by the Karnaugh map

10

11

01

00

q1q2

00 01 11 10
q3q4

fq0=0

- - --

- - 1-

- 1 0-

- 1 -0

�

�

�

�
�

�
�� �

�� � 10

11

01

00

q1q2

00 01 11 10
q3q4

fq0=1

- - -0

1 0 -1

- - 11

- 0 1-

�

�

�

�
�

�

�

�

�

�� �

�� �
�� �

The Prime table below help us to find a minimal solution

6 9 13 20 23 26 27 30
A = q′0q

′
3 ©x x

B = q′0q
′
1 x

C = q0q
′
4 ©x x x

D = q0q2q3 x x
E = q0q1q3 x x x
F = q0q1q

′
2 x x

G = q′1q2q3 x x
H = q1q

′
2q4 x x

We directly see that A and C are essential. Implicant B is dominated by G and should be removed. Implicant
F is dominated by E and should be removed. We have the table

6 23 27
D = q0q2q3 x
E = q0q1q3 x
G = q′1q2q3 ©x x
H = q1q

′
2q4 x

Now, G is (secondary) essential. To cover minterm 27 we can use either E or H . Hence, a minimal function is

u = A ∨ C ∨ E ∨G = q′0q
′
3 ∨ q0q′4 ∨ q0q1q3 ∨ q′1q2q3

42 Solutions to Chapter 5.

u

Solutions to Chapter 6. 43

6.1

(a)

P1 : {s0}, {s1, s5}, {s2}, {s3, s4}
P2 : {s0}, {s1, s5}, {s2}, {s3, s4} = P1

Table for the reduced machine:

i0 i1

s0 s2/z1 s34/z1
s15 s15/z0 s2/z1
s2 s2/z1 s0/z0
s34 s34/z0 s2/z0

With the coding i0 = 0, i1 = 1, z0 = 0, z1 = 1 and

s0 s15 s2 s34

q0q1 00 01 10 11

we get the realization

q+0 = q′1i
′ ∨ q′0i ∨ q0q1

q+1 = q′0q
′
1i ∨ q1i′

z = q′0i ∨ q′1i′

(b)

P1 : {s0}, {s1}, {s2}, {s3}

Since the states are maximally partitioned already by the output signal, the machine is minimal. With the
natural binary encoding of signals and states we get

q+0 = q1i ∨ q0q′1i′
q+1 = q′0i ∨ q1i′ ∨ q′1i
z = q′0q

′
1i ∨ q1i′ ∨ q0q1

(c)

P1 : {s0, s4, s6}, {s1, s5}, {s2}, {s3}
P2 : {s0, s4}, {s1, s5}, {s2}, {s3}, {s6}
P3 : {s0}, {s1, s5}, {s2}, {s3}, {s4}, {s6}
P4 : {s0}, {s1, s5}, {s2}, {s3}, {s4}, {s6} = P3

With the coding i0 = 0, i1 = 1, z0 = 0, z1 = 1 and

s0 s15 s2 s3 s4 s6

q0q1q2 000 001 010 011 100 101

We get the realization

q+0 = q0q
′
2 ∨ q1i ∨ q1q2

q+1 = q′0q
′
1q2i ∨ q1q′2i′ ∨ q0q2i′

q+2 = q′0q
′
1q2 ∨ q1i′ ∨ q0i

z = q′1q
′
2i ∨ q1i′ ∨ q1q2 ∨ q0i

44 Solutions to Chapter 6.

6.2

(a) It follows from the figure that

q+11 = x1

q+12 = q11

q+21 = x2

u = q11 ⊕ q12 ⊕ x1 ⊕ q21 ⊕ x2 ⊕ x3.

Let us define

v = q11 ⊕ q12 ⊕ x1 ⊕ q21 ⊕ x2.

Then, the output u can be written as

u = v ⊕ x3.

The problem of finding a minimal realization of u can now be restated as minimizing a realization of v.

We use an octal notation for the state 3-tuple (q11q12q21), i.e., S0 ≡ (000), S1 ≡ (001), S2 ≡ (010), etc.,. and
obtain the following table for next state/v:

Present Input
state 00 01 10 11
S0 S0/0 S1/1 S4/1 S5/0
S1 S0/1 S1/0 S4/0 S5/1
S2 S0/1 S1/0 S4/0 S5/1
S3 S0/0 S1/1 S4/1 S5/0
S4 S2/1 S3/0 S6/0 S7/1
S5 S2/0 S3/1 S6/1 S7/0
S6 S2/0 S3/1 S6/1 S7/0
S7 S2/1 S3/0 S6/0 S7/1

From the table given above we get

P1 : {S0, S3, S5, S6}, {S1, S2, S4, S7}

and

P2 : {S0, S3}, {S1, S2}, {S4, S7}, {S5, S6}.

Since P2 = P3 the minimal realization has four states, which we can represent by q1q2. We now obtain
the following (minimized) table for next state q+1 q

+
2 /v:

Present Input x1x2
state (q0q1) 00 01 10 11
{S0, S3} ≡ 00 00/0 01/1 11/1 10/0
{S1, S2} ≡ 01 00/1 01/0 11/0 10/1
{S4, S7} ≡ 11 01/1 00/0 10/0 11/1
{S5, S6} ≡ 10 01/0 00/1 10/1 11/0

Using Karnaugh maps we obtain

q+0 = x1

q+1 = q0x
′
1x
′
2 ∨ q′0x′1x2 ∨ q′0x1x′2 ∨ q0x1x2

= q0 ⊕ x1 ⊕ x2
v = q1x

′
1x
′
2 ∨ q′1x′1x2 ∨ q′1x1x′2 ∨ q1x1x2

= q1 ⊕ x1 ⊕ x2

The minimal realization is

Solutions to Chapter 6. 45

1 0

x1

x2

x3

u

(b)

x1x2x3
s 000 001 010 011 100 101 110 111
0 0/0 0/1 2/1 2/0 8/1 8/0 A/0 A/1
1 0/1 0/0 2/0 2/1 8/0 8/1 A/1 A/0
2 1/0 1/1 3/1 3/0 9/1 9/0 B/0 B/1
3 1/1 1/0 3/0 3/1 9/0 9/1 B/1 B/0
4 0/1 0/0 2/0 2/1 8/0 8/1 A/1 A/0
5 0/0 0/1 2/1 2/0 8/1 8/0 A/0 A/1
6 1/1 1/0 3/0 3/1 9/0 9/1 B/1 B/0
7 1/0 1/1 3/1 3/0 9/1 9/0 B/0 B/1
8 4/1 4/0 6/0 6/1 C/0 C/1 E/1 E/0
9 4/0 4/1 6/1 6/0 C/1 C/0 E/0 E/1
A 5/1 5/0 7/0 7/1 D/0 D/1 F/1 F/0
B 5/0 5/1 7/1 7/0 D/1 D/0 F/0 F/1
C 4/0 4/1 6/1 6/0 C/1 C/0 E/0 E/1
D 4/1 4/0 6/0 6/1 C/0 C/1 E/1 E/0
E 5/0 5/1 7/1 7/0 D/1 D/0 F/0 F/1
F 5/1 5/0 7/0 7/1 D/0 D/1 F/1 F/0

P1 : {0, 2, 5, 7, 9, B,C,E}, {1, 3, 4, 6, 8, A,D, F}
P2 : {0, 5, B,E}, {2, 7, 9, C}, {1, 4, A, F}, {3, 6, 8, D}
P3 : {0, 5, B,E}, {2, 7, 9, C}, {1, 4, A, F}, {3, 6, 8, D} = P2

so the minimal realization has four states and is given by

q+0 = x′1x2 ∨ x1x′2 = x1 ⊕ x2
q+1 = q′0x1 ∨ q0x′1 = q0 ⊕ x1
u = (q′1x

′
1x2 ∨ q′1x1x′2 ∨ q1x′1x′2 ∨ q1x1x2)⊕ x3 = q1 ⊕ x1 ⊕ x2 ⊕ x3

46 Solutions to Chapter 6.

6.3

The graph for the Mealy-machine:

s0 s1

00/0
01/1
10/1

11/0

00/1

01/0
10/0
11/1

Split the states so all entering edges have the same output. Then, move the outputs into the state to get the
graph for the Moore-machine:

Mealy with split states:

s01

s00

s11

s10

01/1
10/1

00/0

11/1

01/0
10/0

00/0

01/1
10/1

11/0

00/1

01/0
10/0

11/1

11
/0

00
/1

Moore:

s01/1

s00/0

s11/1

s10/0

01
10

00

11

01
10

00

01
10

11

00

01
10

11

11

00

6.4

(1) Number the delay elements from below. The equations for the state-transitions and the output is then
given by

q+o = q0x ∨ q1x′

q+1 = q1x
′ ∨ q′ox

q+2 = q1x
′ ∨ q′ox ∨ q′0q1 = q1x

′ ∨ q′ox = q+1 ⇒ z = q1

Hence, the D-element on the output implies that the sequential circuit is of Moore-type. From the equa-
tions we construct the state-transition graph:

0 1 1

0

011

0

00/0 01/1

11/110/0

(2) Number the delay elements from the left hand side. The equations for the state-transitions and the output
is then given by

q+o = x

q+1 = q1x
′ ∨ q0q1 ∨ q′0q′1x

z = q1

Which gives:

Solutions to Chapter 6. 47

0 1 1

0

011

0

00/0 11/1

01/110/0

The two graphs differ only in the state assignments. Since this does not affect the behaviour of the construction
we conclude that the two circuits give the same output when given the same input. Hence, u = 0 for all inputs.

6.5

The counter is specified by the following table.

i0 i1

s0 s1 s5
s1 s2 s0
s2 s3 s1
s3 s4 s2
s4 s5 s3
s5 s0 s4

We will use the coding i0 = 0, i1 = 1 for the input.

(a) The natural binary coding yields the minimal realization

q+0 = q′0q
′
1q
′
2i ∨ q1q2i′ ∨ q0q′2i′ ∨ q0q2i

q+1 = q′0q
′
1q2i

′ ∨ q1q′2i′ ∨ q1q2i ∨ q0q′2i
q+2 = q′2

with 2 OR gates and 8 AND gates.

(b)

s0, s1 −→ s0, s1, s2, s5 −→ s0, s1, s2, s3, s4, s5 (not useful)
s0, s2 −→ s0, s2; s1, s3, s5 −→ s0, s2, s4; s1, s3, s5
s0, s3 −→ s0, s3; s1, s4; s2, s5

Using the last two partitions, we obtain the state assignment

s0 s1 s2 s3 s4 s5

q0q1q2 000 111 001 100 011 101

where q0 discriminates between s0, s2, s4 and s1, s3, s5, and q1q2 between s0, s3, s1, s4, and s2, s5. Then the
minimal realization is

q+0 = q′0

q+1 = q′2i
′ ∨ q′1q2i

q+2 = q′2 ∨ q′1i ∨ q1i′

(2 OR gates and 4 AND gates).

(c) The Gray code

s0 s1 s2 s3 s4 s5

q0q1q2 000 001 011 010 110 100

48 Solutions to Chapter 6.

(notice that there are several Gray codes to choose from) yields

q+0 = q1q
′
2i
′ ∨ q′1q′2i

q+1 = q2i
′ ∨ q′0q1q′2 ∨ q0i

q+2 = q′0q
′
1i
′ ∨ q′0q1i

with 3 OR gates and 7 AND gates.

6.6

There are two state partitions to use for the reduced dependancy encoding:

s0s1 → s0s1; s3s5 → s0s1s2; s3s4s5

s0s5 → s0s5; s2s3 → s0s5; s2s3; s1s4

This gives for example the following state assignment and result:

state q0q1q2

s0 000
s1 001
s2 010
s3 110
s4 101
s5 100

⇒ q0q1q2 x q+0 q
+
1 q

+
2 u

000 0 110 0
000 1 010 0
001 0 100 0
001 1 010 0
010 0 101 0
010 1 001 0
011 0 - - - -
011 1 - - - -
100 0 010 0
100 1 110 0
101 0 000 0
101 1 110 0
110 0 001 1
110 1 101 1
111 0 - - - -
111 1 - - - -

⇒ u = q0q1
q+0 = q′0x

′ ∨ q0x
q+1 = q′1x ∨ q′1q′2
q+2 = q1

6.7

The machine can be described by the following minimal graph:

00/100

10/101

11/000

11/001

00/101
10/110

00/110
10/111
11/010 00/111

01/100
10/100
11/011

01/100 01/100 01/100

s0 s1 s2 s3

Let i1, i0 denote the input variables and q1, q0 the state variables. With the state assignment

s q1q0

s0 00
s1 01
s2 10
s3 11

Solutions to Chapter 6. 49

we obtain the following table:

i1i0q1q0 u2u1u0q
+
1 q

+
0

0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 0
0 0 1 0 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 1 0 0 1 0 0 0 1
0 1 0 1 1 0 0 1 0
0 1 1 0 1 0 0 1 1
0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 1 0 0
1 0 0 1 1 1 0 0 0
1 0 1 0 1 1 1 0 0
1 0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0
1 1 1 0 0 1 0 0 0
1 1 1 1 0 1 1 0 0

One possible realization of the outputs u2, u1, u0, in disjunctive form, is

u2 = i′1 ∨ i′0
u1 = i′0i

′
1q1 ∨ i0i1q1 ∨ i1q1q′0 ∨ i1i′0q′1q0

u0 = i′1i
′
0q0 ∨ i1i0q0 ∨ i1i′0q′0

q+1 = i′1i0q
′
1q0 ∨ i′1i0q1q′0

q+2 = i′1i0q
′
0

6.8

The traffic light can be described by the state-transition
graph to the right (Moore machine). The three output
bits correspond to the lamps for red, yellow and green
light, respectively (r, g and gr). The input x is 1 when
the lamps change.

1

11

1

0

0 0

0

s0/100 s1/110

s2/001s3/010

If we use natural state assignment, the outputs can be calculated as

r = q′1 g = q0 gr = q1 ∧ q′0

We choose to realize the graph with a modulo 4 counter (other realizations are possible, as well):

50 Solutions to Chapter 6.

LOAD

CLEAR

CLK

C

A

B

D

T

P

qc

qa

qb

qd

RCO1

1

1

0

0

r g gr

1

74LS163

START

CLOCK

x

It remains to generate the input signal x. Again, we use a counter, now modulo 12. It’s output, x, is 1 if the
counter’s state equals 9 (1001 in binary notation) or 11 (1011 in binary notation):

LOAD

CLEAR

CLK

C

A

B

D

T

P

qc

qa

qb

qd

RCO1

0

0

0

0

1

x

74LS163

START

CLOCK

The signal that we call START can be used to put the traffic light into the starting state.

6.11

Consider the graph that we obtained as alternative solution to Problem 2.13:

x0,x1/u

10/1

11/0
10/0
00/1

10/1
11/0
01/0

10/0
00/0
01/1

00/0
01/0
11/1

01/1

00/1 11/1

s1

s3 s2

s0

We observe that this graph already is asynchronously realizable (cf. Definition 6.8). In order to avoid race we
can, for example, use the state assignment:

s0 s1 s2 s3

q0q1 00 01 11 10
.

Solutions to Chapter 6. 51

For a hazard free realization we include all prime implicants, which, for example, can be obtained from Kar-
naugh diagrams. This results in:

q+0 = q0q1 ∨ q0x1 ∨ q0x0 ∨ q1x0x1
q+1 = q′0q1 ∨ q1x′0 ∨ q1x1 ∨ q′0x′0x1
u = q′0q

′
1x
′
0 ∨ q′0x′0x1 ∨ q′0q1x1 ∨ q1x0x1 ∨ q0q1x0 ∨ q0x0x′1 ∨ q′1x′0x′1 ∨ q0q′1x′1 .

6.12

For a synchronous realization of a modulo 4 counter we can immediately obtain a state-transition graph with
four states. This graph is, however, not asynchronously realizable. For an asynchronous counter we have to
introduce additional states:

x0,x1

01

10

10

10

01

10

01

01

1100 00

0-

1-0-

0-1-

00

1-

11

0- 1-

001111

s11s30

s10

s20

s31

s01s00

s21

One race-free state assignment is:

s00 s01 s10 s11 s20 s21 s30 s31

q0q1q2 000 001 011 111 101 100 110 010

The outputs can directly be derived from the state assignment:

q0q1q2 u0u1

00– 00
–11 01
10– 10
–10 11

⇒ u0 = q0q
′
1 ∨ q1q′2 ∨ q0q′2

u1 = q1

The complete prime implicant (hazard-free) form of the next-state variables becomes:

q+0 = q0q
′
1 ∨ q1q′2x′0x1 ∨ q1q2x0x′1 ∨ q0x′0x′1 ∨ q0x0x1 ∨ q0q′2x1 ∨ q0q2x′1 ∨ q0q′2x′0 ∨ q0q2x0

q+1 = q′0q
′
2x0x1 ∨ q′0q2x′0x′1 ∨ q0q′2x′0x′1 ∨ q0q2x0x1 ∨ q′0q1q′2x1 ∨ q′0q1q2x′1 ∨ q0q1q′2x′1 ∨ q0q1q2x1

∨ q′0q1q′2x0 ∨ q′0q1q2x′0 ∨ q0q1q′2x′0 ∨ q0q1q2x0 ∨ q1x′0x1 ∨ q1x0x′1
q+2 = q′0q

′
1x0x

′
1 ∨ q0q′1x′0x1 ∨ q2x′0x′1 ∨ q2x0x1 ∨ q′0q2x′1 ∨ q0q2x1 ∨ q′0q2x0 ∨ q0q2x′0 ∨ q1q2 .

6.14

(a) No, Mealy.

(b) Yes.

(c) No, 10→ 01.

52 Solutions to Chapter 6.

(d) Yes, x = 101

6.16

The graph is given in the solution of Problem 2.6. In the following tabulars we write the graph and the state
assignment

0 1

s0 s1/0 s4/0
s1 s1/0 s2/0
s2 s2/0 s3/1
s3 s3/0 s3/0
s4 s2/0 s3/0

q0q1q2

s0 0 0 0
s1 0 0 1
s2 0 1 1
s3 1 1 1
s4 0 1 0

We get the following Karnaugh maps

10

11

01

00

q0q1

00 01 11 10
q2x

q+0

0 0 00

0 1 01

- - --

- - 11

�

�

�

�

�

�

 10

11

01

00

q0q1

00 01 11 10
q2x

q+1

0 1 01

1 1 11

- - --

- - 11

�

�

�

�

�

�

10

11

01

00

q0q1

00 01 11 10
q2x

q+2

1 0 11

1 1 11

- - --

- - 11

�

� �
10

11

01

00

q0q1

00 01 11 10
q2x

u

0 0 00

0 0 01

- - --

- - 00

�
�

�

and the functions

q+0 = q1x ∨ q0
q+1 = q1 ∨ x
q+2 = q1 ∨ q2 ∨ x′
u = q′0q1q2x

6.17

We first construct a graph that fulfills the requirements.

s0 s1 s2

s3s4s5

0/0

1/0

1/0

0/0

1/0

0/1

0/1

1/1

1/1

0/1

1/1

0/0

With the state assignment s0 = 000, s1 = 001, s2 = 011, s3 = 111, s4 = 101, and s5 = 100 we get the following
functional table. Notice that the output is equivalent to q1.

Solutions to Chapter 6. 53

q1q2q3x q+1 q
+
2 q

+
3

000 0 000
000 1 001
001 0 011
001 1 001
011 0 111
011 1 001

q1q2q3x q+1 q
+
2 q

+
3

100 0 000
100 1 101
101 0 100
101 1 101
111 0 111
111 1 101

This can be realized with for example

q+1 = q2x
′ ∨ q1x ∨ q1q3

q+2 = q2x
′ ∨ q′1q3x′

q+3 = q2x
′ ∨ q′1q3x′ ∨ x

Remark: This problem can also be solved by combining two machines, one that detects the pattern 100 and
one modulo-2 counter as follows. Notice that we have first used a Mealy machine that affects the output
asynchronously, and then a Moore machine so that the timing is correct.

x

0/0

1/0

1/0

0/0

1/0

0/1

s0 s1 s2
y

0

1

0

1

t0/0 t1/1
u

6.18

The graph below can be used to solve the problem.

10/01

00/00

01/10 01/00

10/00
00/00

00/00

01/00
10/00

10/00

01/00
00/00

s0 s1

s2s3

With the state assignment
s s0 s1 s2 s3

q0q1 00 01 11 10
we get the following table

54 Solutions to Chapter 6.

q0q1w1w2 q+0 q
+
1 ulur

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 1 1 - - - -
0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0
0 1 1 0 0 1 0 0
0 1 1 1 - - - -
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 0 1 1 - - - -
1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 1 - - - -

This can, for example, be realized with

q+0 = w2 ∨ q0w1 ∨ q0q′1
q+1 = w1 ∨ q1w2 ∨ q′0q1
ul = q′0q

′
1w2

ur = q′0q
′
1w1

The realization is omitted.

6.19

Construct a combinational circuit K with three inputs and two outputs. One of the inputs is the ith input xi
and the other two inputs, (a1a0), represent the modulo three sum of the inputs x1, x2, . . . , xi−1. The otputs,
(b1b0), represent the modulo three sum of (a1a0)2 and xi. The table for the circuit is

a1a0 xi b1b0

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 - -
1 1 1 - -

which can be realized as

b1 = a0xi ∨ a1x′i
b0 = a′1a

′
0xi ∨ a0x′i

The realization is omitted.

(This is the same combinational circuit we would hae used to construct a sequential modulo three counter.)

Use N such circuits as follows for the solution.

0
0

K

x1

K

x2

· · · K

x1

u

6.20

a) We first draw the graph of circuit 1:

Solutions to Chapter 6. 55

00/101/0
10/0

10/1

11/0

01/0
11/0

00/0

10/0

0
1

0
0

1
0

1

11/1

11/1

1

00/1
01/1
10/1

01/1

00/0

Let us now draw the graph of circuit 2:

00/1
10/0

11/0

01/0
11/0

00/0

10/0 01/100/1
01/1
10/1
11/1

0
0

1
0

1
1

01/0

0
1

10/1
11/1

00/0

If we compare the two graphs (and ignore the state coding), we see that circuit 1 does not exactly realize
graph 2, and circuit 2 does not exactly realize graph 1. Since we know, however, that both circuits must
realize the same graph, it can only be that the original graph did not fully specify the behavior of the
circuit. That is, some input combinations are considered to be impossible. Hence, when realizing the
graph, we treat these input combinations as “don’t care” terms. Obviously, for the realizations 1 and 2,
the “don’t care” terms were interpreted differently. If we compare graph 1 and graph 2, and draw parts
that are in common, we can obtain the following graph.

01/1

A B C

00/0
10/0

11/0

01/0
11/0

00/1

00/0

10/0

Notice that this graph is not unique. For instance, we could have included the fourth state as well.

b) The realization can, for instance, be used to detect when a lion leaves its cage. (State A corresponds to the
lion being in the cage, and the output 1 indicates danger.)

6.22

This can be implemented as a Moore machine where the output and the state is the same thing. Define one
state variable for each witch and let it be 1 if she eats and 0 if she does not eat. Here we will use a synchronous
state machine with a high frequence clock signal so that only one witch can decide to start or stop to eat during
one clock cycle.

We can now concentrate on one witch, say witch i. Then the corresponding state variable qi updates as follows

qi−1qiqi+1 xi q+i Comment
0 0 0 0 0 Thinking
0 0 0 1 1 Start eating
0 0 1 0 0 Thinking
0 0 1 1 0 Wait for witch i+ 1
0 1 0 0 0 Stop eating
0 1 0 1 1 Continue to eat
0 1 1 0 - Cannot happen
0 1 1 1 - Cannot happen

qi−1qiqi+1 xi q+i Comment
1 0 0 0 0 Thinking
1 0 0 1 0 Wait for witch i− 1
1 0 1 0 0 Thinking
1 0 1 1 0 Wait for witches i− 1 and i+ 1
1 1 0 0 - Cannot happen
1 1 0 1 - Cannot happen
1 1 1 0 - Cannot happen
1 1 1 1 - Cannot happen

56 Solutions to Chapter 6.

This can be realized with q+i = q′i−1q
′
i+1xi, i.e., eat if neighbours are not eating. The realization becomes

x1u1

x2

u2

x3

u3

x4

u4

x5 u5

x6

u6

x7

u7

x8

u8

Since the functions only use one implicant each there are no risks for hazard and the delay elements can be
dropped and we get an asyncronous sequential circuit. Also notice that the same type of realization can be
used for an arbitrary number of witches.

6.23

The following (minimal) graph desribes the state machine:

0/0

1/0 0/0

1/0

0/0

1/0

0/1

1/0

s0 s1 s2 s3

With the state assignment s0 = 00, s1 = 01, s2 = 10, and s3 = 11 (NBCD) and minimization by Karnaugh maps
we get the following functions:

u = q0q1x
′

q+0 = q1x
′ ∨ q0q′1x

q+1 = x

The figure is omitted in this solution.

6.24

If the two machines are equivalent, we see that the first machine (M1) is non-minimal, since the second machine
(M2) has at most four states. Hence, we try to minimize M1 and see what we get.

State transition table:

Q+/u 0 1

s1 s5/1 s4/0
s2 s6/1 s3/0
s3 s4/1 s1/1
s4 s3/1 s2/1
s5 s3/1 s6/1
s6 s4/1 s5/1

State minimization:

P1 = s1s2; s3s4s5s6

P2 = s1s2; s3s4; s5s6

P3 = P2

Solutions to Chapter 6. 57

A minimal graph is given by:

Q+/u 0 1

s12 s56/1 s34/0
s34 s34/1 s12/1
s56 s34/1 s56/1

Now, we draw the graph for M2. Write expressions for the functions and draw the corresponding state transi-
tion table (one way is to write the functions in Karnaugh maps and then rewrite it as a normal table). Here we
denote the state variable in the upper D-elelment q1 and the lower q2.

u = q1 ∨ x′

q+1 = q2 ∨ x′ ∨ q′1
q+2 = ((q′1 ∨ x)′ ∨ (q2 ∨ x′)′)′ = (q′1 ∨ x)(q2 ∨ x′)

Q+/u 0 1

00 11/1 10/0
01 11/1 11/0
11 10/1 11/1
10 10/1 00/1

With the mapping s12 = 00, s34 = 10, and s56 = 11 (the state 01 is unreachable from the others) the two tables
are equal, and therefore the machines equivalent (assuming M2 does not start in the state 01).

6.25

First draw a graph and decide on a state assignment (we assume that the trains can be more that 2km):

01
10

00

00
11

01
10

01
10

00
11

00

01
10

s0/0 s1/1

s2/1s3/1

S q0q1 L

s0 0 0 0
s1 0 1 1
s2 1 1 1
s3 1 0 1

Use Karnaugh maps to realize the functions:

10

11

01

00

q0q1

00 01 11 10
G1G2

q+0

0 0 0-

1 0 01

0 1 1-

1 1 11

�

�

�

�

�

�

�
�

�

�
�

�
 10

11

01

00

q0q1

00 01 11 10
G1G2

q+1

0 1 1-

1 1 11

0 0 0-

1 0 01

�

�

�

�

�

�

�
�

�

�
�

�
 1

0
q0

0 1
q1

L

0 1

1 1

�

�

�

�� �

q+0 = q0G2 ∨ q0G1 ∨ q1G′1G′2 ∨G1G2

q+0 = q′0G2 ∨ q′oG1 ∨ q1G′1G′2 ∨G1G2

L = q0 ∨ q1

The figure is omitted.

Remark: An alternative graph can also be used:

58 Solutions to Chapter 6.

01

10

00

10

01
00
11

00

01
10

01
10
00
11

s0/0 s1/1

s2/1s3/1

Solutions to Chapter 7. 59

7.1

First express the function in disjunctive normal form (DNF). Each minterm is 1 for only one combination of
the variables, and there are not two minterms that are one for the same combination. Therefore, applying the
definition of OR (3.152) on minterms we get

ma ∨mb = ma ⊕mb ⊕mamb = ma ⊕mb, a 6= b.

Hence,

f(x1, x2, x3)
DNF

= x′1x
′
2x3 ∨ x′1x2x3 ∨ x1x′2x′3 ∨ x1x2x3

RSE
= (x1 ⊕ 1)(x2 ⊕ 1)x3 ⊕ (x1 ⊕ 1)x2x3 ⊕ x1(x2 ⊕ 1)(x3 ⊕ 1)⊕ x1x2x3
= x1 ⊕ x3 ⊕ x1x2.

The function is not linear.

7.2

Similar to 7.1 we get

f(x1, x2, x3)
DNF

= x′1x
′
2x3 ∨ x′1x2x′3 ∨ x1x′2x3 ∨ x1x2x′3

RSE
= (x1 ⊕ 1)(x2 ⊕ 1)x3 ⊕ (x1 ⊕ 1)x2(x3 ⊕ 1)⊕ x1(x2 ⊕ 1)x3 ⊕ x1x2(x3 ⊕ 1)

= x2 ⊕ x3.

The function is linear.

7.3

The following table specifies the conversion from NBCD to Gray (unit distance) code.

x1x2x3x4 abcd

0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100

x1x2x3x4 abcd

1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000

The realisation is given by,
a = x1

b = x1 ⊕ x2
c = x2 ⊕ x3
d = x3 ⊕ x4

7.4

Write g(k) in the following way,

g(k) = (1⊕ x1)⊕ (1⊕ x2)⊕ · · · ⊕ (1⊕ xk) = f(k)⊕ 1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
k−terms

.

Thus,

g(k) =

{
f(k) , k even
f(k)⊕ 1 = f ′(k) , k odd;

60 Solutions to Chapter 7.

7.5

See Example 7.2.

7.6

(a) Consider a sequential circuit given in Problem 6.2 (a). Assume we enumerate delay modules from the left
to the right and from the top to the bottom. The next state variables and the output can be expressed by
the following system of linear equations

q+1 = x1 u = x1 ⊕ q1 ⊕ q2 ⊕ x2 ⊕ q3 ⊕ x3
q+2 = q1

q+3 = x2

An equivalent representation is

q+ = Aq +Bx

u = Cq +Hx

where

A =

0 0 0
1 0 0
0 0 0

 B =

1 0 0
0 0 0
0 1 0

 C =
(
1 1 1

)
H =

(
1 1 1

)
First we compute the diagnostic matrix K:

CA =
(
1 0 0

)
CA2 =

(
0 0 0

)
Hence

K =

1 1 1
1 0 0
0 0 0

It can be observed that rank(K) = 2 since a system of the two first rows of K is linearly independent
but the system of all three rows is linearly dependent. We form a matrix T from the first two linearly
independent rows of K

T =

(
1 1 1
1 0 0

)
One of the right inverses of T is

R =

0 1
1 1
0 0

The reduced form Lmin = (Amin, Bmin, Cmin, Hmin) of the linear circuit is now determined:

Amin = TAR =

(
1 1 1
1 0 0

)0 0 0
1 0 0
0 0 0

0 1
1 1
0 0

 =

(
0 1
0 0

)

Bmin = TB =

(
1 1 1
1 0 0

)1 0 0
0 0 0
0 1 0

 =

(
1 1 0
1 0 0

)

Cmin = CR =
(
1 1 1

)0 1
1 1
0 0

 =
(
1 0

)
Hmin = H =

(
1 1 1

)

Solutions to Chapter 7. 61

It results in the equation system

q+1 = q2 ⊕ x1 ⊕ x2 u = q1 ⊕ x1 ⊕ x2 ⊕ x3
q+2 = x1

Realizations in CCF and OCF:
First derive the transfer function G(D)

G(D) =
(
1 0

)((1 0
0 1

)
⊕
(

0 1
0 0

)
D

)−1(
1 1 0
1 0 0

)
D ⊕

(
1 1 1

)
=
(
1⊕D ⊕D2 1⊕D 1

)
Controller canonical form:

x1

+ +

x2

+

x3

u+

Observer canonical form:
x1

x2

x3

u++

(b) Consider a sequential circuit given in Problem 6.2 (b). Assume we enumerate delay modules from the left
to the right and from the top to the bottom. The next state variables and the output can be expressed by
the following system of linear equations

q+1 = x1 u = x1 ⊕ q1 ⊕ q2 ⊕ x2 ⊕ q4 ⊕ x3
q+2 = q1

q+3 = x2

q+4 = q3

An equivalent representation is

q+ = Aq +Bx

u = Cq +Hx

where

A =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 B =

1 0 0
0 0 0
0 1 0
0 0 0

 C =
(
1 1 0 1

)
H =

(
1 1 1

)

First we compute the diagnostic matrix K:

CA =
(
1 0 1 0

)
CA2 =

(
0 0 0 0

)
CA3 =

(
0 0 0 0

)
Hence

K =

1 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0

It can be observed that rank(K) = 2. We form a matrix T from the first two linearly independent rows of
K

T =

(
1 1 0 1
1 0 1 0

)

62 Solutions to Chapter 7.

One of the right inverses of T is

R =

0 1
1 1
0 0
0 0

The reduced form Lmin = (Amin, Bmin, Cmin, Hmin) of the linear circuit is now determined:

Amin = TAR =

(
1 1 0 1
1 0 1 0

)
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

0 1
1 1
0 0
0 0

 =

(
0 1
0 0

)

Bmin = TB =

(
1 1 0 1
1 0 1 0

)
1 0 0
0 0 0
0 1 0
0 0 0

 =

(
1 0 0
1 1 0

)

Cmin = CR =
(
1 1 0 1

)
0 1
1 1
0 0
0 0

 =
(
1 0

)
Hmin = H =

(
1 1 1

)
It results in the equation system

q+1 = q2 ⊕ x1 u = q1 ⊕ x1 ⊕ x2 ⊕ x3
q+2 = x1 ⊕ x2

Realizations in CCF and OCF:
First derive the transfer function G(D)

G(D) =
(
1 0

)((1 0
0 1

)
⊕
(

0 1
0 0

)
D

)−1(
1 0 0
1 1 0

)
D ⊕

(
1 1 1

)
=
(
1⊕D ⊕D2 1⊕D2 1

)
Controller canonical form:

x1

+ +

x2

+

x3

u+

Observer canonical form:
x1

x2

x3

u+++

7.7

We number the D-elements from left to right and from top and down. Then we get the following matrix
representation:

q+0
q+1
q+2
q+3

 =

0 1 0 0
1 0 0 0
0 0 0 0
0 0 1 0

q0
q1
q2
q3

⊕

1
0
1
0

x

u =
(
1 1 1 1

)
q0
q1
q2
q3

⊕ (0)x

Solutions to Chapter 7. 63

Derive the diagnostic matrix

K =

C
CA
CA2

CA3

 =

1 1 1 1
1 1 1 0
1 1 0 0
1 1 0 0

This has rank = 3. Use the first 3 linearly independent rows to form

T =

1 1 1 1
1 1 1 0
1 1 0 0

A right invers can be found in

R =

0 0 0
0 0 1
0 1 1
1 1 0

Hence, a minimal realization yields

Amin = TAR =

0 1 0
0 0 1
0 0 1

Bmin = TB =

0
0
1

Cmin = CR =

(
1 0 0

)
Hmin = H = 0

Hence,

q+0 = q1

q+1 = q2

q+2 = q2 ⊕ x
u = q0

The realization:

x + u

7.8

Assume we enumerate delay modules from the left to the right. The next state variables and the output can be
expressed by the following system of linear equations

q+1 = x⊕ q2 ⊕ q3 ⊕ q4 u = q2 ⊕ q4
q+2 = q1 ⊕ q3 ⊕ q4
q+3 = q1 ⊕ q2 ⊕ q3
q+4 = q1 ⊕ q3

An equivalent representation is

q+ = Aq +Bx

u = Cq +Hx

where

A =

0 1 1 1
1 0 1 1
1 1 1 0
1 0 1 0

 B =

1
0
0
0

 C =
(
0 1 0 1

)
H =

(
0
)

64 Solutions to Chapter 7.

First we compute the diagnostic matrix K:

CA =
(
0 0 0 1

)
CA2 =

(
1 0 1 0

)
CA3 =

(
1 0 0 1

)
Hence

K =

0 1 0 1
0 0 0 1
1 0 1 0
1 0 0 1

Since rank(K) = 4 the circuit is already in minimal form.

To get the transfer function matrix we derive

(I ⊕AD)−1 =

1 D D D
D 1 D D
D D 1⊕D 0
D 0 D 1

−1

=
1

1⊕D ⊕D3 ⊕D4

D ⊕ 1⊕D2 ⊕D3 D ⊕D3 D ⊕D3 D ⊕D3

D ⊕D2 D ⊕ 1 D ⊕D3 D ⊕D3

D3 ⊕D2 ⊕D D3 ⊕D2 ⊕D D3 ⊕ 1 0
D D3 D ⊕D2 D ⊕ 1⊕D2 ⊕D3

Hence,

G(D) =
(
C
(
I ⊕AD

)−1
BD ⊕H

)T
=

D3

1⊕D ⊕D3 ⊕D4

Realization in controller canonical form:

x

u

+

+ +

Realization in observer canonical form:
x

u+ +

Solutions to Chapter 7. 65

7.10

a) From the figure we get(
q+1
q+2

)
=

(
q1 ⊕ q2 ⊕ x1
q1 ⊕ x2

)
=

(
1 1
1 0

)(
q1
q2

)
⊕
(

1 0
0 1

)(
x1
x2

)
(
u1
u2

)
=

(
q1 ⊕ x1
q2 ⊕ x2

)
=

(
1 0
0 1

)(
q1
q2

)
⊕
(

1 0
0 1

)(
x1
x2

)
Hence,

A =

(
1 1
1 0

)
B =

(
1 0
0 1

)
C =

(
1 0
0 1

)
H =

(
1 0
0 1

)
b) Derive G(D) from the marices above,

G(D) = C(I ⊕AD)−1BD ⊕H =

(
1 0
0 1

)(
1⊕D D
D 1

)−1(
D 0
0 D

)
⊕
(

1 0
0 1

)
The inverse of (I ⊕AD) is(

1⊕D D
D 1

)−1
=

1

1⊕D ⊕D2

(
1 D
D 1⊕D

)
Hence,

G(D) =

(
1⊕D2

1⊕D⊕D2
D2

1⊕D⊕D2

D2

1⊕D⊕D2
1

1⊕D⊕D2

)
For an alternative solution see the exam from August 2003, Problem 5.

c) Controller canonical form:
+

u1+

u2+

+

+

x1

+

+

x2

d) Observer canonical form:
x1

x2

+ + + u1

+ + + u2

7.11

a) from the figure it is clear that the first output for the second (right) encoder equals the input, i.e., v′1 = u′.
Therefore, we can directly get the input sequence as the sequence for v′1. Hence,

u′ = 0111111100 . . .

b) The two encoders are both linear sequential circuits. To get some more knowledge about the behaviour we
find the generator matrices for the two encoders. We start with the left encoder and write theD-transform
for the outputs.

v1(D) = u(D)⊕ u(D)D ⊕ u(D)D3 = u(D)
(
1⊕D ⊕D3

)
v2(D) = u(D)⊕ u(D)D2 ⊕ u(D)D3 = u(D)

(
1⊕D2 ⊕D3

)

66 Solutions to Chapter 7.

In matrix form this is equivalent to

v(D) =
(
v1(D) v2(D)

)
= u(D)G(D) where G(D) =

(
1⊕D ⊕D3 1⊕D2 ⊕D3

)
Similarly, for the right encoder we get

v′1(D) = u′(D)

v′2(D) = u′(D)⊕ u′(D)D2 ⊕ u′(D)D3 ⊕ v′2(D)D ⊕ v′2D3

The second output can be rewritten as

v′2(D)
(
1⊕D ⊕D3

)
= u′(D)

(
1⊕D2 ⊕D3

)
or, equivalently,

v′2(D) = u′(D)
1⊕D2 ⊕D3

1⊕D ⊕D3

Hence, in matrix form we get

v′(D) =
(
v′1(D) v′2(D)

)
= u′(D)G′(D) where G′(D) =

(
1

1⊕D2 ⊕D3

1⊕D ⊕D3

)
If the left encoder produces the output v(D) for the input u(D), then

v(D) = u(D)
(
1⊕D ⊕D3 1⊕D2 ⊕D3

)
= u(D)

(
1⊕D ⊕D3

)(
1

1⊕D2 ⊕D3

1⊕D ⊕D3

)
= u′(D)

(
1

1⊕D2 ⊕D3

1⊕D ⊕D3

)
Hence, the right encoder will generate the same output for the input

u′(D) = u(D)
(
1⊕D ⊕D3

)
Similarly, if the right encoder produces the output v′(D) for the input u′(D), then

v′(D) = u′(D)

(
1

1⊕D2 ⊕D3

1⊕D ⊕D3

)
= u′(D)

1

1⊕D ⊕D3

(
1⊕D ⊕D3 1⊕D2 ⊕D3

)
Hence, the left encoder will generate the same output for the input

u(D) =
u′(D)

1⊕D ⊕D3

7.12

(a) The connection polynomial is C(D) = 1⊕D2 ⊕D4. The state-transition graphs are

0000

0001

1000

0100

0010

0101

1010

1110

1111 1100

1001 0111

0011

0110

1011

1101

(b) The connection polynomial is C(D) = 1⊕D4. The corresponding state-transition graphs are

0000 1111
1010

0101

0001

1000 0010

0100

0011

0110 1001

1100

0111

1110 1011

1101

Solutions to Chapter 7. 67

(c) The connection polynomial is C(D) = 1⊕D3 ⊕D4. The corresponding state-transition graphs are

0000

0001

0010

0100

1001

0011

0110

1101

1010 0101

1000

1100

1110

1111

0111

1011

7.13

(a)

s = [1001]∞
D−→ S(D) =

1⊕D3

1⊕D4
=

(1⊕D ⊕D2)(1⊕D)

(1⊕D ⊕D2 ⊕D3)(1⊕D)
. =

1⊕D ⊕D2

1⊕D ⊕D2 ⊕D3
.

(b)

s = [1010]∞
D−→ S(D) =

1⊕D2

1⊕D4
=

1⊕D2

(1⊕D2)2
=

1

1⊕D2
(⇒ s = [10]

∞
).

(c)

s = [0001]∞
D−→ S(D) =

D3

1⊕D4
.

(d) denote t = 0 with a dot (˙). Then

s = 101̇[01]∞ = 101̇0101010101 . . .

D−→ S(D) = D−2 ⊕ 1⊕D2 ⊕D4 ⊕D6 ⊕ . . .

= D−2(1⊕D2 ⊕D4 ⊕D6 ⊕ . . .) = D−2
1

1⊕D2
.

7.14

(a) This problem can be solved in two ways. The first is by series expansion, in our case long division,

D2⊕D3 ⊕D5⊕D6 ⊕D8⊕D9⊕· · · D
−1

−→ 00110110110 . . . = 00[110]∞ = 0[011]∞

1⊕D ⊕D2 D2

D2⊕D3⊕D4

D3 ⊕D4

D3 ⊕D4⊕D5

D5

D5 ⊕D6⊕D7

D6 ⊕D7

D6 ⊕D7⊕D8

D8

In the alternative solution we notice that (1⊕D ⊕D2)(1⊕D) = 1⊕D3. Then, S(D) can be expressed as

S(D) =
D2

1⊕D ⊕D2
=
D2(1⊕D)

1⊕D3
= D2 1⊕D

1⊕D3

D−1−→ 00[110]∞.

68 Solutions to Chapter 7.

(b) Again use (1⊕D ⊕D2)(1⊕D) = 1⊕D3 to rewrite S(D),

S(D) = D
1⊕D

1⊕D ⊕D2
= D

(1⊕D)(1⊕D)

1⊕D3
= D

1⊕D2

1⊕D3

D−1−→ s = 0[101]
∞
.

(c) Again use the D-transform and rewrite S(D),

S(D) =
1⊕D2

1⊕D ⊕D2
=

(1⊕D)(1⊕D2)

1⊕D3
=

1⊕D ⊕D2 ⊕D3

1⊕D3

=
1⊕D3

1⊕D3
⊕ D ⊕D2

1⊕D3
= 1⊕D 1⊕D

1⊕D3

D−1−→ 1[110]∞.

(d) Similarly,

S(D) =
D

1⊕D ⊕
1

1⊕D ⊕D2
=
D(1⊕D ⊕D2)

1⊕D3
⊕ 1⊕D

1⊕D3

=
1⊕D2 ⊕D3

1⊕D3
= 1⊕ D2

1⊕D3
= 1⊕D D

1⊕D3

D−1−→ s = 1[010]
∞
.

7.15

a) Expand 1
C(D) = 1

1⊕D3⊕D4 with long division until the rest is R(D) = Dp, then the period is T = p.

1⊕D3⊕D4⊕D6 ⊕D8⊕D9⊕D10⊕D11

1⊕D3⊕D4 1
1⊕D3⊕D4

D3⊕D4

D3 ⊕D6⊕D7

D4⊕D6⊕D7

D4 ⊕D7⊕D8

D6 ⊕D8

D6 ⊕D9⊕D10

D8⊕D9⊕D10

D8 ⊕D11⊕D12

D9⊕D10⊕D11⊕D12

D9 ⊕D12⊕D13

D10⊕D11 ⊕D13

D10 ⊕D13⊕D14

D11 ⊕D14

D11 ⊕D14⊕D15

D15

Hence, T = 15.

b) Expand 1
1⊕D3⊕D6 .

1⊕D3

1⊕D3⊕D6 1
1⊕D3⊕D6

D3⊕D6

D3⊕D6⊕D9

D9

Hence, the period is T = 9.

7.16

First use the D-transform to get S(D)

s = [011011101010111]∞
D−→ S(D) =

D(1⊕D⊕D3⊕D4⊕D5⊕D7⊕D9⊕D11⊕D12⊕D13)

1⊕D15
.

Calculate gcd(1⊕D15, 1⊕D⊕D3⊕D4⊕D5⊕D7⊕D9⊕D11⊕D12⊕D13) with Euclid’s algorithm

Solutions to Chapter 7. 69

1⊕D15 = (1⊕D⊕D3⊕D4⊕D5⊕D7⊕D9⊕D11⊕D12⊕D13)(D⊕D2)

⊕(1⊕D⊕D3⊕D4⊕D7⊕D8⊕D9⊕D10⊕D11⊕D12)

1⊕D⊕D3⊕D4⊕D5⊕D7⊕D9⊕D11⊕D12⊕D13 = (1⊕D⊕D3⊕D4⊕D7⊕D8⊕D9⊕D10⊕D11⊕D12)D

⊕(1⊕D2⊕D3⊕D7⊕D8⊕D10)

1⊕D⊕D3⊕D4⊕D7⊕D8⊕D9⊕D10⊕D11⊕D12 = (1⊕D2⊕D3⊕D7⊕D8⊕D10)(D⊕D2)

⊕(1⊕D2⊕D4⊕D5⊕D7⊕D9)

1⊕D2⊕D3⊕D7⊕D8⊕D10 = (1⊕D2⊕D4⊕D5⊕D7⊕D9)D

⊕(1⊕D⊕D2⊕D5⊕D6⊕D7)

1⊕D2⊕D4⊕D5⊕D7⊕D9 = (1⊕D⊕D2⊕D5⊕D6⊕D7)(1⊕D⊕D2)⊕0

⇒ gcd = 1⊕D⊕D2⊕D5⊕D6⊕D7.

Extracting this from S(D) gives

S(D) =
1⊕D⊕D2⊕D5⊕D6⊕D7

1⊕D⊕D2⊕D5⊕D6⊕D7
· D⊕D3⊕D7

1⊕D⊕D3⊕D4⊕D5⊕D7⊕D8

=
D⊕D3⊕D7

1⊕D⊕D3⊕D4⊕D5⊕D7⊕D8

Hence, the connection polynomial for the shortest shift register is

C(D) = 1⊕D⊕D3⊕D4⊕D5⊕D7⊕D8.

7.17

We start with the upper LFSR. The connection polynomial is C1(D) = 1 ⊕D ⊕D4. Since the starting state is
s0s1s2s3 = 1000 we get the numerator P (D) from

p0
p1
p2
p3

 =

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

1
0
0
0

 =

1
1
0
0

Hence, the sequence generated by the upper LFSR can be written as

S1(D) =
P1(D)

C1(D)
=

1⊕D
1⊕D ⊕D4

Similarly, the connection polynomial for the lower LFSR is C2(D) = 1⊕D ⊕D2 ⊕D3 and the numerator can
be derived asp0p1

p2

 =

1 0 0
1 1 0
1 1 1

1
0
1

 =

1
1
0

Hence, the sequence from the lower LFSR can be written as

S2(D) =
P2(D)

C2(D)
=

1 +D

1⊕D ⊕D2 ⊕D3

Combining these two sequences with a modulo two adder yields

S(D) = S1(D)⊕ S2(D) =
1⊕D

1⊕D ⊕D4
⊕ 1 +D

1⊕D ⊕D2 ⊕D3

=
(1⊕D)(1⊕D ⊕D2 ⊕D3)⊕ (1 +D)(1⊕D ⊕D4)

(1⊕D ⊕D4)(1⊕D ⊕D2 ⊕D3)

=
D2 ⊕D5

1⊕D5 ⊕D6 ⊕D7

=
D2 ⊕D3 ⊕D4

1⊕D ⊕D2 ⊕D3 ⊕D4 ⊕D6

70 Solutions to Chapter 7.

since gcd(D2⊕D5, 1⊕D5⊕D6⊕D7) = 1⊕D. This implies that the sequence s can be generated by an LFSR of
length 6 and connection polynomial C(D) = 1⊕D⊕D2⊕D3⊕D4⊕D6. The construction is not the cheapest
one.

An alternative solution is to notice that the sequence from the lower LFSR can be written as

S2(D) =
P2(D)

C2(D)
=

1 +D

1⊕D ⊕D2 ⊕D3
=

1

1⊕D2

That is, we can replace the lower LFSR with an LFSR of length 2 and connection polynoimial C2(D) = 1⊕D2.

7.18

Denote the upper sequence by x and the lower sequence by y. Then the resulting sequence is z = x ∧ y. The
sequences are:

x = [110]∞ = 110110110110110110110110 . . .

y = [1011100]∞ = 101110010111001011100101 . . .

z = 100110010110000010100100 . . . = [100110010110000010100]∞

Hence,

Z(D) =
1⊕D3 ⊕D4 ⊕D7 ⊕D9 ⊕D10 ⊕D16 ⊕D18

1⊕D21
=

P (D)

1⊕D21

=
(1⊕D2 ⊕D3)G(D)

(1⊕D2 ⊕D4 ⊕D5 ⊕D6)G(D)

=
1⊕D2 ⊕D3

1⊕D2 ⊕D4 ⊕D5 ⊕D6
,

where

G(D) = gcd(P (D), 1⊕D21) = 1⊕D2 ⊕D5 ⊕D8 ⊕D9 ⊕D12 ⊕D14 ⊕D15.

7.19

With long division of 1
C(D) we get the period T = 15, which is the longest possible period for a linear shift

register of length L = 4. (There are 2L = 16 states and one of them is the zero state, which we cannot use)

a) false.

b) true.

c) false.

d) true.

Again use long division to get the series expansion of S(D),

S(D) =
P (D)

C(D)
= 1⊕D3 ⊕D7 ⊕D8 ⊕ · · · D

−1

−→ 100100011 . . . ,

from which we conclude that the starting state for the LFSR is 1001.

e) false.

f) true.

The starting state for the observer canonical form of C(D) is P (D) in S(D) = P (D)
C(D) .

g) true.

h) false.

Solutions to Chapter 7. 71

7.20

(a)

i si δ T (D) C(D) L Cp(D) l

− − − − 1 0 1 1
0 0 0 − ” ” ” 2
1 0 0 − ” ” ” 3
2 1 1 1 1⊕D3 3 ” 1
3 1 1 1⊕D3 1⊕D ⊕D3 ” ” 2
4 0 1 1⊕D ⊕D3 1⊕D ⊕D2 ⊕D3 ” ” 3
5 0 0 ” ” ” ” 4
6 0 1 1⊕D ⊕D2 ⊕D3 1⊕D ⊕D2 ⊕D3 ⊕D4 4 1⊕D ⊕D2 ⊕D3 1
7 1 0 ” ” ” ” 2

(b)

i si δ T (D) C(D) L Cp(D) l

− − − − 1 0 1 1
0 1 1 1 1⊕D 1 ” 1
1 1 0 ” ” ” ” 2
2 1 0 ” ” ” ” 3
3 0 1 1⊕D 1⊕D ⊕D3 3 1⊕D 1
4 0 1 1⊕D ⊕D3 1⊕D2 ⊕D3 ” ” 2
5 1 0 ” ” ” ” 3
6 0 0 ” ” ” ” 4
7 1 0 ” ” ” ” 5
8 1 0 ” ” ” ” 6
9 1 0 ” ” ” ” 7

(c)

i si δ T (D) C(D) L Cp(D) l

− − − − 1 0 1 1
0 1 1 1 1⊕D 1 ” 1
1 0 1 1⊕D 1 ” ” 2
2 1 1 1 1⊕D2 2 ” 1
3 0 0 ” ” ” ” 2
4 1 0 ” ” ” ” 3
5 0 0 ” ” ” ” 4
6 1 0 ” ” ” ” 5
7 0 0 ” ” ” ” 6
8 1 0 ” ” ” ” 7
9 1 1 1⊕D2 1⊕D2 ⊕D7 8 1⊕D2 1

7.25

The output sequence from the LSFR is s = [11110]∞. Thus S(D) = (1⊕D⊕D2⊕D3)/(1⊕D5). First we can try
to find a shorter LFSR by using either Euclid’s algorithm for polynomials or the Berlekamp-Massey algorithm
with stop criterion i = N + L. However, by computations we see that gcd(1⊕D ⊕D2 ⊕D3, 1⊕D5) = 1⊕D
and (1 ⊕D5)/(1 ⊕D) = 1 ⊕D ⊕D2 ⊕D3 ⊕D4 which is the coupling polynomial in the original LFSR. Thus
no shorter LFSR exists.

From the starting state, we get the following (reachable) state transitions graph where the labels on the brances
are the outputs

1

1

1

1

0
1111

1110

11011011

0111

72 Solutions to Chapter 7.

We now try to find a (non-linear) sequential circuit. Note that the following solution is not unique.

From the table we see that only five states are reachable from the starting state, so we need dlog2 5e = 3 state
variables. For example we can use the following mapping

q0q1q2 q+0 q
+
1 q

+
2 u

100 101 1
101 111 1
111 110 1
110 000 1
000 100 0

That is, q0q1q2 = 100 corresponds to the state 1111, q0q1q2 = 101 to 1110 and so on. Then we have

q+0 = q′1 ∨ q2
q+1 = q2

q+2 = q0 ∨ q′1
u = q0

The circuit layout is omitted.

7.26

a) The output for a given state is the left-most bit. A state with a 1 as output is the inverse of a state with a 0
as output. Therefore, we conclude that half of the states give output 1 and half of the states give output 0.
A cycle in a maximal-length sequence run through all possible non-zero states. Hence, there are 2m−1 1s
and 2m−1 − 1 0s.

b) Since (a⊕ b)2 = a2 ⊕ b2 we can write the sequence as

S2(D) =
1

(C(D))2
=

(
1

C(D)

)2

= (S(D))
2

= (s0 ⊕ s1D ⊕ s2D2 ⊕ · · ·)2 = s0 ⊕ s1D2 ⊕ s2D4 ⊕ · · ·

or, equivalently,

s2 = s00s10s20 . . .

Hence, the period for s2 is T2 = 2T = 2m+1 − 2. The number of ones is still 2m−1. Since there is one 0
inserted afeter every bit in s the number of 0s is 2m−1 − 1 + 2m − 1 = 3 · 2m−1 − 2.

c) Since C(D) is irreducible and that deg(C(D) > 2 we have that gcd(C(D), 1⊕D) = 1. By using the hint we
get

S3(D) =
1

C(D)(1⊕D)
=
C(D)A(D)⊕ (1⊕D)B(D)

C(D)(1⊕D)

From deg(A(D)) < deg(1⊕D) we get that A(D) = 1. Then we can rewrite the above expression as

S3(D) =
C(D)⊕ (1⊕D)B(D)

C(D)(1⊕D)
=
B(D)

C(D)
⊕ 1

(1⊕D)
.

Since deg(B(D)) < deg(C(D) and that S(D) is a maximal-length sequence we know that B(D)
C(D) is a shift of

S(D). We also know that 1
(1⊕D) is the all one sequence. Therefore, the sequence S3(D) must be the inverse

of a shift of S(D) and that will have the same period as S(D), T3 = 2m − 1. The number of 1s and zeros is
2m−1 − 1 and 2m−1, respectively.

7.27

a) Use the Berleycamp-Massey algorithm to find (one of) the shortest linear feedback shift register that gives
the output u = 1001101.

Solutions to Chapter 7. 73

i si δ T (D) C(D) L Cp(D) l

- - - - 1 0 1 1
0 1 1 1 1⊕D 1 1 1
1 0 1 1⊕D 1 2
2 0 0 3
3 1 1 1 1⊕D3 3 1
4 1 1 1⊕D3 1⊕D ⊕D3 2
5 0 1 1⊕D ⊕D3 1⊕D ⊕D2 ⊕D3 3
6 1 1 1⊕D ⊕D2 ⊕D3 1⊕D ⊕D2 4 1⊕D ⊕D2 ⊕D3 1
7 Stop

Hence, the shortest LFSR that generates the sequence s ones is

1 0 0 1

+

The starting state is marked in the figure.

b) To get a minimal LFSR that generates the sequence cyclically we continue the BM algorithm until i =
N + L.

i si δ T (D) C(D) L Cp(D) l

6 1 1 1⊕D ⊕D2 ⊕D3 1⊕D ⊕D2 4 1⊕D ⊕D2 ⊕D3 1
7 1 0 2
8 0 0 3
9 0 1 1⊕D ⊕D2 1⊕D ⊕D2 ⊕D3 ⊕D4 ⊕D5 ⊕D6 6 1⊕D ⊕D2 1

10 1 0 2
11 1 0 3
12 0 0 4
13 Stop

This gives that the following LFSR is of minimal length

1 0 0 1 1 0

+ + + + +

c) We can use the result in b) to derive the gcd. First we notice that

S(D) =
1⊕D3 ⊕D4 ⊕D6

1⊕D7
=

P (D)

1⊕D ⊕D2 ⊕D3 ⊕D4 ⊕D5 ⊕D6

where gcd(P (D), 1⊕D ⊕D2 ⊕ · · · ⊕D6) = 1. Since

(1⊕D ⊕D2 ⊕ · · · ⊕D6)(1⊕D) = 1⊕D7

we have that gcd(1⊕D7, 1⊕D3 ⊕D4 ⊕D6) = 1⊕D.

7.28

Use the Berlecamp-Massy algorithm to find the linear complexity:

i si δ T (D) C(D) L Cp(D) l

− − − − 1 0 1 1
0 0 0 1 2
1 1 1 1 1 +D2 2 1
2 1 1 1 +D2 1 +D +D2 2
3 0 0 3
4 0 1 1 +D +D2 1 +D +D2 +D3 3 1 +D +D2 1
5 1 0 2
6 0 1 1 +D +D2 +D3 1 +D +D4 4 1 +D +D2 +D3 1
7 0 0 2

74 Solutions to Chapter 7.

Since the last L is 4 the linear complexity is Ll(s) = 4. To get the cyclic complexity we continue with the
algorithm to see if the minimum length of an LFSR that generates the sequence cyclically also is 4. To get the
cyclic recursion we must continue until i = N + L.

i si δ T (D) C(D) L Cp(D) l

7 0 0 - 1 +D +D4 4 1 +D +D2 +D3 2
8 0 0 3
9 1 0 4

10 1 0 5
11 0 1 1 +D +D4 1 +D +D4 +D5 +D6 +D7 +D8 8 1 +D +D4 1

In step 11 the complexity grows to 8, and since it will not decrease, and the length of s is 8, we conclude that
this will also be the result. Hence, the two complexities are not equal.

(If we would have continued the algorithm until i = 16 we get the feedback polynomial

C(D) = 1 +D2 +D3 +D4 +D5 +D7 +D8

and L = 8. Since we also have the obvious polynomial C(D) = 1 + D8 we see an example that there can be
several LFSRs of the same length that solves the problem.)

7.29

See solution to Problem 5.24.

