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Solutions to Chapter 1. 1

11

U = {ice, water, steam} x [—273, c0)
B= ({ice} x [-273,0)) U ({water} x [0,100)) U ({steam} x [100, 00))

1.2

The universe consists of all conceivable force/position vectors; that is i = R? x R3.
The behavior is

B={(F,r) € R® x R?(1.20) satisfied}

The behavioral equation describes a static situation. Hence, we do not need to specify the time axis 7.

1.3

C(t)=cGNP(t — 1) (1)

{GNP(t) =C(t)+I(t)+G(t)
I(t)=i(C(t) — C(t — 1))

=
GNP(t) = c(i + 1) GNP(t — 1) — ciGNP(t — 2) + G(¢). @)
Thus,
T=1
W=R? Manifest variables: GN P(t) and G(t)
L=R? Latent variables: C(t) and I(t)
By ={wys : T — (W x L)| such that (1) is satisfied }
B={w:T — W] such that (2) is satisfied }
(1.4

We are interested in the relation between the voltage V' and the current I and choose these as the manifest
variables. Take W = R? as the signal space and 7 = R as the time axis. Let the currents I, through resistor Ry
and I3 through resistor 3 be our two auxiliary variables that help us to formulate the relation between V' and
I. £ = R? is our latent variable space.

By Kirchoff’s voltage law we know that

Roly = R3l;3 3)
and V =RiI+ Rol, = RiI+ Rsl3 (4)

Kirchoft’s current law gives us
I'=1,+1I3 5)
Using (3) and (5) we obtain
Roly = R3(I — I2)

R3
d h L=—"—1T 6
and hence 2= % R (6)
Now (4) and (6) yield
RyR3 Ry R3
V=RI+——"—I=1|R — ) I 7
Y Ryt R < 1+R2+R3) @)

We have eliminated our latent variables I, and I3 and obtained the behavioral equation (7). The behavior of
our model is

B={w:T — R*(V,I) satisfies (7)} (8)



2 Solutions to Chapter 1.

1.5

a) ...(b,B);(a,0);(a,C);(b,C);(a, A); (b,C) ...
b) ...(b,B);(a, B);(b,C); (b,C); (b,C); (a, A) ...
¢) Let

wy: T — S ={a,b}
wy: T = M={A,B,C}

then (w1, wy) is the unique input/output partion.



Solutions to Chapter 2. 3

21

(a) to + 1; The edge points at the state which the system updates to when it is clocked. This is the next state
function, 0(s, 7).

(b) to; The label on the edge is given directly as output. This is the output function, A(s, ).

2.2

a) False. The number of entering edges can be different for different states. There can for example be an edge
from every state that resets the system to the starting state.

b) False. See a.
c) False. There can be more than one edge from one state to another.
d) False. Seee.

e) True. The next state function is a function of both the state and the input. In every state, each input value
corresponds to an edge leaving the state.

f) False. The statement is not true if the number of states is less than the number of inputs.

2.3

a) The statement means that independent of the current state, the input 001 results in the output 1. This is
true for all three graphs since two O:s drives the machine to state so. Then a 1 will outputa 1.

b) This means that independent of the current state, the only way to get output 1 is to give 001 as input. In
the first graph we can only get to state s, by giving two 0:s. The only output 1 is given from state s with
input 1. Hence, it is true for the first graph.

The second graph always gives output 1, so the statement is not true. In the third graph we can also get
output 1 for input 101, hence, the statement is not true.

¢) If and only if means that both a and b should be true. That gives graph 1.

24

(a) In the first graph we can get stuck in state s4, which gives a 1 out independent of the input. In the second
graph, state s3 means that the three most resent inputs are iyi;79. Then input i; will generate output z;.
This is the only way to get z; and, hence, the statement is true for the second graph. The third graph will

resent inputs are igi19p%1 will not generate z;.

Concluding the above, we see that it is only the second graph that fulfills the statement.

(b) In the first graph input 414071 will lead to state s4, which will generate z; for ever. Hence, the statement
is true for the first graph. For the other two it is false.

(c) The statement means that the output becomes z; after the first occurrence of iyi1i9é1, and stays that way
until the next occurrence when it is reset to zg. This is not true for any of the three graphs.

25




4 Solutions to Chapter 2.

2.6
0/0 0/0 0/0
0/0 1/0
—() (2 —(
‘ 1/0
1/0 0/0

2.8

0/0

1/0

0/1

211
01
00 closed 00
01 11 01

212

B1,B2/pony,rocking-horse

00/00

01/00 00/00 01/00 00/00

6; 00/00 01/00 @ 00/00

10/01

00/00

01/01
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1213
L1,L2/x x/count (increment for each 1)
00/0 0/0 00
any
2w S
ROS=OB} o
01/0

00/1
0/1

Alternative solution:

L1,L.2/count (increment for each 0 — 1)

11/0 10/0

10/0 01/1 00/0

00/1 s0 sl 01/1
00/1 11/1

10/1 S3 )= s2 00/0
11/0 10/1 01/0
01/0

[
—_
~
—

2.14

nIOR,NnWRITE,nAddrSTB/nWAIT




6 Solutions to Chapter 2.
1216
(a) T1X2T3 JL X1 V i) L X9 \/$3 L (331 V 33‘2) \Y T3 l X1 V (.1‘2 V 373)
000 0 0 0 0
001 0 1 1 1
010 1 1 1 1
011 1 1 1 1
100 1 0 1 1
101 1 1 1 1
110 1 1 1 1
111 1 1 1 1
1217
a) Choose fi(x1,x2,23) = (x1Vas)Ves and fo(xy,x9,23) = x1V(22Vr3). Then we can make a list

fi(z1, 22, x3) and fa(z1, 2, x3) for all possible input 3-tuples z;1 z3 3.

L1X2T3

|| filwr, m2,23) | falzy, 32, 23)

R R, R, OO0
__ 0 OO

0

0

RO RO R OR

0

—_ OO R O =

0

—_ OO R O =

From the table we see that fi(z1, z2,x3) and fa(z1, 22, z3) are equal. Thus, the XOR operation is associa-

tive.

b) The XOR function for several inputs gives a 1 as output if exactly one input is 1 and the other 0.

Take x; = 29 = 3 = 1. Then 21 Va2 Vas = 0. It follows then that the three-input XOR function is not equal

to fi(x1, z2, z3).

218

x1

x2

—1

ke
=

z1wy || 2wy | B ATy [ 2l Ay |z Aah || u
00 11 0 0 1
01 10 1 0 1
10 01 0 1 1
11 00 0 0 0

=P
— —
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2.19
x1
fl
x2 v1zs || f1 ] fo
00 111
01 0|0
10 0|0
x1 11 0 0
2
x2
2.20
x1
Do
2 T1X2 JL f1 L f2
00 111
01 111
u 10 111
2
x2
2.21

0/00 1710

~ /11

0/01

the smallest number of binary digits by which any two sequences differ is dgee = 3
= we can always correct 1 error

1222

We only give the trellis and the state transition graph. The calculation of the free distance is omitted.
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12.23

(1) The figure gives that

qr || " | u

B ) 001 11
u=z\Vyq 01l o |1
- =@ng V(@ N) 10/ 010
111 1|1

OK,Withiozl,il :0,20:0,21 :1,30:0,and31 = 1.

(2) The figure gives that

qr || ¢" | u

B , 001010
u=2xNg 01 1|1
=@V V) 10110
11 0o

OK,WithiOZO,il :1,2’0:1,21 :0,50:1,and51 =0.

(3) The figure gives that

+

qr q U

oy 00 0 |1
w=rva 01 110
¢-=xd®¢q 101 1|1
111 0 |1

OK,Wlch():O,Zl :1,2’0:0,2’1 zl,sozl,and51 =0.

Hence, all of the sequential circuits are realizations of the graph.

2.24

10

il
il Q i0 il
—{( s0 > sl >@ ><s§> 10,11

_/

10
Use the following encoding.
H So S1 S92 S3 H io il H Z0 Z1
qoq [00 01 11 10 z][0 1 wl[0 1

This gives the state transition table and output table

waz | qgd ooz || o g q0q || v
000 00 10 0 10 00 0
001 ol 1011 10 01 || 0
010 11 110 00 10 |1
011 o1 1111 10 1 || o
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It can be realized by the following equations

u = qoq}
a5 = ¢ar' V gtz V iz V gz
4 = qaiz Vv ear’ vV ga

An alternative (minimal) solution can be
found as

u = qoqy

4% = q4) V @V gq’

4" = aq Vg

2.25

102

113

102

102

Use the following encoding.

H S0 S1 S92 S3

i

1113

goqr ][00 01 11 10 z |

This gives the state transition table and output table

Q@ || qo ql Q@ || qo ql

00 0 10 0 00
00 1 10 1 01
010 110 10
01 1 111 11

It can be realized by the following equations

4 = Gne V q@dir’ vV oaa’ V qq

a = iz V @’ V ahqrx V qogiz V goqrz’

Y= QOQS

q091 \Ly_

0

O = O

102

_J 20 21
S0t

An alternative (minimal) solution can be
found as
a5 = qoz’ V i
" =qr' VgV
Y= qoqy

2.26

Use for example

state || q1q2

S0 00
S1 01
S92 11
S3 10

This leads to the following functional table

aqi || af @ 2

000 010
001 101
010 001
011 111
100 111
101 001
110 101
111 010




10 Solutions to Chapter 2.

The state transition functions and the output function can be realized as

a7 = 1451V q1gai V q1ghi vV quged’
a3 = q1ah7" V dia2i V quahi’ V qrgai
z=(2) = (157" V q1q21)’

Another way to realize the state transition functions is with

o =q®i
G5 =q®i

The realization then becomes

i ql ql’ g2 q2°
e
P
hany
D
|
— > Z
L)
T —
L
T
L
2.27
1
0 0 0
—» 0,1
1
1
Use the following state encoding We get the state transition table
state || q1g2 wqz || g afu
S0 00 00 0 01 0
51 01 001 00 0
So 11 010 11 0
53 10 011 00 0
100 10 1
101 10 1
110 10 0
11 00 0
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11

Functions:
4 =anr' vV aa 'V qqz V gpq’
a =q0q17’ v qyqa’

u :(10(1/1

Alternative (minimal) functions

a¢ =q1' V qoq;

ai =q7’
Y =qoq;

2.28

In the alternative solution of 2.11 we need four states that we, for example, can encode as

state || q1q2

So 00

S1 01

S9 11

S3 10

This results in the functional table

qqe ivie || ¢fad 2
00 00 00 1
00 01 01 1
00 10 00 O
00 11 00 O
01 00 01 O
01 01 01 1
01 10 01 O
01 11 11 1
10 00 00 1

01 10 O
10 10 10 1
10 11 10 O
11 00 11 0
11 01 11 0
11 10 10 1
11 11 11 1

This can be expressed, for example, by

qi = qeiria V qiq2 V quia V qiin
43 = qyitia V qiq2 V g2} V qaiz
z = q1q51) V @122 V q1gaia V q1g50h

(The figure of the realization is omitted!)
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Solutions to Chapter 2.
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3.1

(@) 45=6-7+3 = R;(45) = 3
(b) —45=—T7-T+4=> Ry(—45) =4

Th.3.2
) =

(c) R7(45+63) = Ry(45+9-7 R;(45) =3

3.2
o)
Ra(na +n2) = Ra((@1d + Ra(n)) + (2 + Ra(n2)) )
= Ra((@ + @2)d + Ra(n) + Ra(nz))
Th3.2 Ry (Rd(nl) + Rd(ng)) .
(i)
Ra(nang) = Ra((0rd + Ra(n1))(22d + Ra(n2))
= Rq <Q1QQd2 + q1dRa(n2) + Ra(n1)gqzd + Rd(nl)Rd(n2)>
= Ra((g1924+ @1 Ra(nz) + Ra(m)g2)d + Ra(n1) Ra(n) )
ThiB'Q Rd(Rd(TLl)Rd(’I’Lg)) .
3.3

(a) Letn; = 1946 and ny = 1956. Euclid’s algorithm gives

1956 =1-1946 + 10
1946 =194-10+46
10=1-6+4
6=1-4+42
4=2-24+0= gcd(1956,1946) = 2.

Then, get Bezout’s identity as

2=6-4
=6—(10—6)=—-10+2-6
= —10+2(1946 — 194 - 10) = 2 - 1946 — 389 - 10
= 21946 — 389(1956 — 1946) = —389 - 1956 + 391 - 1946.

Alternatively, this can be solved with Euclid’s extended algorithm as

i gi Si t;

-2 || 1956 1 0
-1 || 1946 0 1

0 10 1 1 -1
1 6 194 -194 195
2 4 1 195 -196
3 2 1 -389 391
4 0
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Which gives that gcd(1956, 1946) = 2 = —389 - 1956 + 391 - 1946.
(b) Letn; = 1870 and ny = 222. Use Euclid’s extended algorithm to get

i g st

-2 || 1870 1 0
-1 222 0 1

0 94 8 1 -8
1 34 2 -2 17
2 26 2 5 42
3 8 1 -7 59
4 2 3 26 -219
5 0

Hence, gcd(1870,222) = 2 = 26 - 1870 — 219 - 222.

(c) Let ny = 561 and ny = 341. Use Euclid’s extended algorithm to get

-2 || 561 1 0
-1 || 341 0 1
0220 1 1 -1
11221 1 -1 2
2 9 1 2 -3
3 22 1 -3 5
4 11 4 14 -23
5 0

Hence, ged(561,341) = 11 = 14 - 561 — 23 - 341.

134

(a) Use Euclid’s extended algorithm on n; = 73 and ny = 11:

2173 - 1 0
111 - 0 1
0 7 6 1 -6
1 4 1 -1 7
2 3 1 2 -13
3 1 1 -3 20
4 0o 3 - -

ged(73,11) =1=—-3-73+20- 11 = (z,y) = (20, —3).

(b) Divide the equation by two and solve 17z + 3y = 1 instead. Use Euclid’s extended algorithm:

2117 - 1 0
1403 - 0 1
02 5 1 -5
1 1 1 -1 6
2440 2 -

ged(17,3) =1=—1-17+6-3 = (z,y) = (—1,6).
(c) Multiply the result in (b) by two. Hence, (z,y) = (—2,12).

(d) Since ged(34,6) = 2 does not divide 3, there is no solution.
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3.5

We want to find x and y such that
3+ Ty =5. 9)
Since ged(3,7) = 1, we know that ged(3 - 5,7 - 5) = 5 and Euclid’s algorithm will yield to a solution to (9).
{35 =2.15+5
15=3-540

We see that 5 = 35—2-15 = 5-7—10- 3. Hence we can time 5 minutes as the time from the tenth turning of the
3-minute hourglass to the fifth turning of the 7-minute hourglass. Note that we will have to wait 30 minutes
before we can start boiling.

There is an alternative, more efficient solution. Another solution to (9) is x = —3, y = 2. In other words, we
can time 5 minutes as the time from the third turning of the 3-minute hourglass to the second turning of the
7-minute hourglass. This way we can start boiling the egg after 9 minutes.

3.7

Rlng (Zlg, @7 ®)

@ 5®a=054+a=0 mod12=a="T.

(b) 50 a=145-a=1 mod 12 = a=>5(since5-5=25=1+2-12).

() 2/5=2®5"1=2®5=10.Then5® (2/5) =5-10 mod 12 = 2.

(d) By Thm. 3.10, the units are all elements u such that ged(12,u)=1,ie., U = {1,5,7,11}.

3.8

Rlng (Z35a @7 ®)

(@ 22®0a=0<224+a=0 mod 35=a=13.

(b) We want to find a such that2-a =1 mod 35, i.e., such that2-a+ 35-b = 1. We can solve this by Euclid’s
extended algorithm, but here it is easily seen that a = 18, b = —1 is a solution. Hence 27! = 18 in Zss.

(© 7/2=7®2 1 =7®18 =126 mod 35 =21. Then2® (7/2) = 2-21 mod 35 = 7.

(d) By Thm. 3.10, the units are all elements u such that ged(35, )=1, i.e.,
U={u€Zss\{0} |5 fuand 7 fu}. (Jmeans “does not divide”.)

3.9

Ring (Z11,®, ®).

@ 1®a=0<1+a=0 mod 11 = a = 10.
(b)) 5®a=1<5-a=1 mod 11 =a=9(since5-9=45=1+4-11).
(€ -1/5=-1®51=10®9=90 mod 11 =2. Then5® (-1/5) =5-2=10 = —1.

(d) Since 11 is a prime, all elements except 0 are units.

1311

Ring (Z3, ®, ®). Solve

P2y = 1 (1)
DYy

I

jan}
—

[N}
~

(1)@ (2)=>2r®3y=1«2r=1(since3=0 mod 3). Hencex =27! =2,andy = -2 = 1.
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13.12

Ring (Zs, @, ®). Solve

T B2y
Dy

1
S =
—~
N =
S—

1H-Q2)=y=1l=z=-1=4.

13.13 |

We have direcly thata-0 =0-a =0anda-1 =1-a = a. Whatisleftis2-2,2-3, 3-2,and 3 3. Since all elements
in a field are units it follows thata - b = a - ¢ = b = ¢ and, hence, all rows and all columns must contain each
element exactly once. Therefore, 2 -2 = 3 and 3 - 3 = 2. We complete the tableby 2-3=1and 3-2 = 1.

o 12

3
0
3
1
2

0
2
3
1

0
1
2
3

W N =

3.14
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3.15

To decrypt the message by exhaustive search we write the complete alphabet below each letter. In this example,
it is already after a few letters possible to guess the key that delivers the correct message, since the other

alternatives hardly make any sense.

YREEZSRCZJTEDZEXREUYVYRJVCVGYREKJ
ZSEFFATSD
ATGGBUTE
BUHHCVUF
CVIIDWVG
DWJJEXWH
EXKKFYXI
FYLLGZYJ
GZMMHAZK
——> HANNIBALISCNMINGANDHEHASELEPHANTS
IBOOJCBM
JCPPKDCN
KDQQLEDO
LERRMFEP
MEFSSNGFQ
NGTTOHGR
OHUUPIHS
PIVVQJIT
QJIWWRKJU
RKXXSLKV
SLYYTMLW
TMZ ZUNMX
UNAAVONY
VOBBWPOZ
WPCCXQPA
XQODDYRQOB

Looking at the first 8 letters we recognize the row with key k£ = 9 to be the message and decrypt the remaining

letters with this key.

Observe that there is an error in the encrypted sequence: the 12th letter should be an F instead of an E. Then

we get the message “Hannibal is coming and he has elephants”.

1317

Write 26 = 2 - 13. Then (3.124) gives ¢(26) = 26(1 — 1/2)(1 — 1/13) = 12.

By Theorem 3.13 we get Rag(3'2) = Rog(3¢(20)) = 1.

13.18

Since 100 = 64 + 32 + 4 we can write R34(12100) = R34(1264 . 1232 . 124) = R34(R34(1264)R34(1232)R34(124)).

12! =12 (mod 34)

122 =8 (mod 34)

124 =122.122 =8-8 (mod 34) =30 (mod 34)

122 =12%.122=30-30 (mod 34) =16 (mod 34)
1216 =12%.128=16-16 (mod 34) =18 (mod 34)
1232 = 1216. 1216 =18 .18 (mod 34) = 18 (mod 34)
1264 =12%2.1232 =18-18 (mod 34) = 18 (mod 34)

R34 (12190) = Ry, (18 - 18 - 30) = 30.
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13.19

m=143=11-13=p =11, = 13. p(m) = ¢(p)p(q) = 10 - 12 = 120.
To find d, ie. the inverse of ¢, we use Euclid’s extended algorithm and Bezout’s identity to solve
ged(120,23) = 5120+ ¢-23 = 1.

il @ st

20120 = 1 0
1023 - o0 1

O 5 5 1 5 =1 =—9.120447-23=>d =47 = ¢ L.
113 4 4 21

20l 2 1 5 -2

3 1 1 9 a7

4 o

Next, we have D(C) = C? = M = M = 9*" (mod 143).
Write 47 =32 +8+4+2+1

9'=9 (mod 143)

9?2 =81 (mod 143)

9*=81-81 (mod 143) =126 (mod 143)

9% =126-126 (mod 143) =3 (mod 143)

932 = (9%)* = 3% (mod 143) =81 (mod 143)

M=9-81-126-3-81=3-9-81-81-126 (mod 143) =3-9-3 (mod 143) = 81 (mod 143).
—

126
————
3

13.21

Sincea’ =1+aandaVb=a-+b+ab
=aVb=a+b+ ab =1=b=1+a=2d.
0

13.22

aVab=aV(l4+ab=aV(b+ab)=a+b+ab+alb+ab)=a+b+ab+ab+ =a+b+ab=aVh.

aab
—_— =~

0 a
Th. 3.16 (idempotence)

13.23

a(a’ Vb) =a(a’ +b+ad'b) = ad +ab+ ada’ b= ab.
0 0

13.24

(iii) = (a V b)(a’ V ¢) = ad’ VacV a'bV be = (i) "= acV a'b = (iv).
0
() =(aVvbd)(a Ve)bVc)= ad (bVc)VachbVaccV a'bbV a'bcV bebV bec = acV a’bV be = (ii).

S——— absorption
b P

= all expressions are equal.
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13.25

(a) B={0,1,5,6}.

(b) Scetch of proof: Check that (B, +, -) is a ring (check the conditions of the definition) and that all elements
are idempodent.

(c) From (3.173)-(3.175) together with (3.213) and (3.214) we obtain

aANb=a-b=a®b
aVb=(a+b)+ab=(a®b®8ab) ® ab® 8(a®b® 8ab)ab =a ® b® 89ab
=a®b®d9Yab
d=14+a=10a®8a=1d 9%

AJO 1 5 6 v]o 1 5 6 L
00 0 0 0 00 1 5 6 01
10 1 5 6 11 1 1 1 10
5/0 5 5 0 505 1 5 1 56
610 6 0 6 6|6 1 1 6 6|5

3.27

M is a subset of N if and only if the intersection of M and N is equalto M,ie. M C N & M NN = M.

MNN=M
MUMON)=MuUM
S——
U
(MUM)N(M'UN)=U
N—_——
U

MUN=U

Hence, M C N & M'UN =U.

13.28

(AnB'nCyuC' =A'uC)n(B'UuC)N(CuUC)
U
= ((Aucyu®Bucyy
(Anc)yuBnC)) .

3.29

Assume the following notation

S = “Sweden will win the World Cup in hockey”
R = “the Russians will be surprised”
H = “Silvia will be happy”

“If Sweden will win the World Cup in hockey, then the Russians will be surprised”: S = R
“If the Russians will be surprised, then Silvia will be happy”: R = H
These two can be combined to

J(S,RH)=(S=R)(R=H)=(SVR)(RVH)=SRVSHVRH .
The complement of f is

f'(S;R,H)=(SVR)(SVH)RVH)=(R VH)RVS) .
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i) f=H=fVH=RSVHRVHSVH-= ((R\/S’)(H\/R’)(H\/S’)H’)/ — (S'R'H'Y.
(i) f= (R = H')=f'V(RVH')= RSVH'RVH'SVRVH = RSVRVH' = (RVS)R'H) = (S'R'H).

(i f=H =8)=fVHVS)=RSVHRVHSVHVS =RSVHRV1=1.
(H'S)!

The following table summarizes the results:

SRH || ff' | f/VH | VRVH | f/VHVS

000 || 10 0 1 1
001 || 10 1 0

010 || 01 1 1 1
011 || 10 1 1 1
100 | 01 1 1 1
101 || 01 1 1 1
110 || 01 1 1 1
111 | 10 1 1 1

= only sentence (iii) follows from f.

13.30

() (P=QR) =(P'VQR) =P(Q'VR)=PQ Vv PR.
(il) P =QVR=PVQVR.
(iii) P= (QR)Y =P'V(QR) =P VQ VR.

>From this we obtain the following table

PQR || (1) | (i) | (iii)

000 0] O 1
001 | 0|1 1
010 (| 0| 1 1 All three expressions have different meanings.
0110 1 1 For the three assignments PQ'R’, PQ'R and PQR’
100 1| 1 1 « all three expressions are true.
101 1] 1 1+
110 1 1 1 +
11110 1 0
13.31
@ 1) (a=0) A
2) (a="b) A
3) a A

4) b 1,3,M PP
5) b 2,3,MPP
6)  bAY 4,5,N1

7) a 3,6,RAA

(

(

(

(

(

(

(
(b)) (@) a A
@ b A
@) ab  12AI
4) b=ab 23,CP
(
(
(
(
(
(

(© 1) (a=Db)(c=0Db) A
2) (a=0) AE
3) (c=b) ANE
4) aVce A
5) b 234VE

6) (aVe)=b 45CP
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13.32

(@) Letc= (aVvb)and d = (a = V'). Then we have

ab H c d L c=d
0040 1 1
011 1 1
101 1 1
1111 0 0
(b) Letc=a’ and d = (a < b).
ab H c d L cVd
001 1 1
o111 0 1
100 O 0
110 1 1
(c) Letd= (bA ) and f = (a = ¢). Then let e = (a = d) to complete the table:
abc L d e f L es f
000 ||0 1 1 1
0010 1 1 1
omo |1 1 1 1
o111 o 1 1 1
1000 0 1 0
1010 0 O 1
11011 1 1 1
1110 0 O 1
The answers are given in the right most columns.
13.33
(i) abVd VI =abV (ab) = 1.
true for all a, b. ab H (1) L (i) l (iii)
Gi) ab v a'b. 00 1100
not true for all a, b. 01y 1 1 0
’ 10 1] 1 0
(iii) (aVd)(a'Vb)(aVV)=(abVba' Vb)(aVl)=abVba=ab. 1] 1] 0 1

not true for all a, b.

Only (i) is a tautology.
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=1

a) x1Vaiwe =z (w2 V 2h) Vaize = x129 V 2175 V T30
=xziwa(x3 V ah) V zrxh(zs V 25) V ajxe(xs V )
= T1Taxs V 12225 V X125%3 V x1xhTh V Tl Taws V T x0nh
=mi11 Vmi1o0 V Mmio1 V Migo V Mo11 V Mo1g = M7 VMg VM5 V My V M3 V Ma.

b) x12h Vaxize Vaixz = x1ah(xs V ah) Vayxe (s V ah) vV ay(za V ah)zs
= x12h23 V x1xhah V 12003 V T1@exh V 212023 V T1xhT3
= 212523 V r12hal V 12003 V T1220%
=mayo1 V Moo V Mm111 V mi1g = ms V my V mz V meg.

) (z1VaaVas)(xiza Vairs) = (x1 Vs Vas)((vrz) (2hzs3))
= (o1 V22 v 23) (2} V ) (o1 V 24))
= (z1 Vo Vas)(zizh Voizh V ahah)
= xxh V r12525 V 2ixexh V xixhes
= xiahas V xyxhah V x1ahaeh V izext V x12has
= x1ahas V xywhal V xixoxh
=mio1 V Migo V Mo10 = M5 V my V my.

d) zizaw3V (21 Vx122 V Tows V x1x3) = T1xex3 V 21 (T2 V 2h) (23 V 2h) V z122(23 V 25)
V(zy Va))zexs Vo1 (xe V xh)xs
= 212273 V T1T2x3 V 12205 V T126x3 V 12515 V 212223 V T1T2Th
VIZows V 2] 2023 V 12223 V X1T5T3
= 212923 V T1Taxh V X153 V myxhal V alxoxs
=mai11 V mi1o V mio1 V migo V mo11 = mr V meg V ms V my V ms.

a) 1V axire = 2120 V x17h V ) X0,
b) x5 Vxixe V x123 = 1 (2h V x2) VX123 = 21 V 2123 = 7
¢) The same solution as in 4.1c.

d) The same solution as in 4.1d.

4.3

a) Compare to the result in 4.1a).

f(x1)enr = /\ Ma(x1) = My A My = Moo1 A Moo = (21 V 2 V 25) (21 V 22 V T3).
acf~=1(0)

b) Compare to the result in 4.1b).
f(x1)ene = Mo AMy AMyAMs=(z1VaaVas)(zyVaeVay) (e VayVas) (e VayVay).
¢) Compare to the result in 4.1c).
f(x1)one = Mo AMyAM3AMgAM7 = (x1VasVas)(xr Vas Vay)(z VahVas)(x) VahVas)(x) Va, V).

d) Compare to the result in 4.1d).

f(Xl)CNF = MO A M1 A MQ = (.231 V i) V .133)(1)1 V o V J)é)(ﬂ?l V I‘IZ \/333).
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(44

a) f(w1) = My = Moo = 1 V z2.
b) The same solution as in 4.2b.
¢) The same solution as in 4.3c.

d) The same solution as in 4.3d.

4.5

=0

—N
a) f(x1,22) =21 Vaiwy =21 O 220 ® 117722 = 21 ® (1 D 31) 72 = 71 © T2 D T172,

or, alternatively,
flzr,20) =21 Vaizs =18 (21 Vaizs)
=1@ ) (2xfza)
=16 (1 D 1‘1)(1 D (1 @331)332)

=101BrP 122D X1 PT1x2 P T1x2 =T1 D X2 P T1X2.

b) f(951730279€3) =T1.
9) f(l‘173327333) =21 D T2 D T3 ® Tr1T273.

d) f(z1,x2,23) = 21 ® x23 G T 12223,

4.6

Use deMorgan’s laws to get

a) f(xl,...,xn): \/ Z‘(lal)A"'/\IgLa”)
acf=1(1)

b) f(z1,...,2,) = /\ :vga/l)\/-..\/x;a%)
acf=1(0)

/
= /\ (xg‘“) /\.../\ngan)>

acf~1(1)
/
’ ’ /
= \/ (xgal) V.- \/xﬁf‘”))
acf=1(0)

4.7

~

T1X2T3 L

00

= f(xlaan'r?))

=== OO OO
_ =0 O = O

RO RO RO
[N e I S W o W o W

= T Tox3 V 1125T3 V T1227% V 1127273

= (z1 Voo Vas)(ry Vo Vay) (e VayVaes) (o) Ve V)
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4.8
(a)
ToX3
00 { 01 ;, 11 | 10
0 1 0 1 1
x
1 0 1 1 0
(b)
DNF : f = 2l whaly V 2) ozl V 2 xews V 112523 V 212273
CNF : f = (ziabhes V x12baly V xixerh) = (21 V @e V ay) (2] V @2 V 23) (2] V 2h V 23)
irpry = (1@ x)(1@22)(1@ x3)
=10z Or2® w3 ® 122D T123 B X123 B T1T23
RSE : hxoxly = o @ w1xo B XT3 D T T2
2hToxs = o3 D XT1T2x3
T1Thrys = X3 D T1T2T3
Hence,
f=1®z1 ® 3D w273 G T1T273
149
F71(1) = {(0000), (0010), (0011), (0101), (0111), (1000)}
={0,2,3,5,7,8}
f£71(0) = {(0001), (0100), (0110), (1001), (1111)}
— {1,4,6,9,15}
F71(=) = {(1010), (1011), (1100), (1101), (1110)}
= {10,11,12,13, 14}
411
(a)

flx1,20,23) =21 Vaiwy = xi(z2Vah)(zsVas)Vriz(es Vay)

x1(T2T3 V oz V Thws V xhrh) V ¥ moxs V X woxh

= T1T2x3 V 113275 V 317523 V TeTh V T w0x3 V T 30Tk
1 -

= f'(1)=1{7,6,5,4,3,2}

All minterms are implicants of three variables. We also have the following seven implicants of two vari-

ables:
T1T2X3 \Y lezzé = X1X2
T1T2x3 V T1THT3 = T3
T1T2x3 V Ty ToT3 = wox3
T1Toxhy V x1THTy = xTh
:1719:2$§ vV x’lezg = xgzg
T1THT3 V T1THTy =TT

Tiwoxs V ximoxhy = iz
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as well as two implicants of one variable:

TV 1Ty = 14
r122 V x'lxg = I
(v1w3 V 12y = 1)
(vows V xoxh = x2)
(b) f(z1, 20, 23) = m125 V 7122 V 7123
Minterms: z1x2x3, T122x%, T1THTs, T1THT,
minterms
Implicants : 2125, 2123, T1T2, 125
T
(c)
f(x1,m2,23) = (21 VaaVas)(zies Valizs) = (21 Vo Vas)(zixe) (2 23)

(x1 Vo Vas)(x) Vay) (o Vah) = z1xh V oyzhah V ol zexh V o1 xhes
= mzh7h V 317573 V T 107l
Minterms:  xyz52%, x1252s, 2fxoxh
Implicants: minterms, x;x)
d) f($17x27.%‘3) = x1T2x3 V (.1?1 \Y xg)(xl V 333) = 212203 VX1 V123V 12XV Tox3 = X1 V Tox3

Minterms: @ zaxs, v1250%, x10503, ¥1 0205, ¥122T3
Implicants: minterms, x5, 2122, €125, T1T3, L2&3, T1

1412

The functions are split into two sub-functions each

f1= (x5 Vo) A(z3V 2wy V aizy)

fl(l) f1(2)
(zows(z1 V 24)) V (2} (22 V 23 V 24) (22 V %))

(1) (2)
2 2

o
|

f3 = (T)@a V 20zl V 2\ 24) ® (1202 V 2174 V THT3T4)

fél) f3(2>

These functions can easily be visualized in Karnaugh maps:

T3y T3y T3T4

fM 00 01 11 10 Ff@ 00 01 11 10 fi=fOaf® 00 01 11 | 10
0| 1| 1] 1|1 oo | 1|11 0| o | 1] 1|1
oo |1 |1]o0o o0 o)1 | 1|1 |1 oo |1 |1]o0|o
xr1x2 x1x2 r1T9
m]l 1|1 |o]o m|lo | o | 1|1 m]lo|o|o]|o
o] 1|11 |1 w|o | o1 |1 w]o|o | 1|1
3Ty T3Ty y T3Ty
00 01 11 | 10 200 01 | 11 | 10 fa=fvP 00 0111 10
00|l o |o]o|o o0of|o|1]o0]o0 o0o|lo|1]o0 o
ot o o] 1o o |1 | 1|11 oo |1 | 1] 1|1
T1xo T1To T1x2
1m|lo o | 1|1 1m|o| oo |o mlo|o| 1|1
w]o|of|o]o 0|lo|ol]o|o 0w]o|of|o]o
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T3xy

T3y

FU 00 ) 01 11 10 #2000 01 11 | 10 fo=fNef? 00 01 11 10

oo |1]|1]o0 o|o|lo|1]o0 o|[o|1]|0]o0

oo |1 |1 |11 otlo|o oo ot | 1|1 |1 |1
X T1To 1T

ml1|1]o0]o nl1 |11 |1 mlo o] 1|1

lo|o]|o]o olo|1]|1]o0 0]o | 1] 1]o0

Then we see that all three expressions realize different functions.

4.13

From the figure we get

y = xiwy V xiwy V xhrh V zoxs

=) !
=x7203 V XT3V Tax3

where we in the second equality used that z/ x5 is the conseneus term of =}z and z,x3. Since we should use
AND-gates and Mod2-adders it should be rewtten in RSE:

! ! ! !
y = 2125 B x57s B raws B ) xs(ToTs D Taxs)

=(1ox)(1ex3)@(1@x) (1@ 23) ©rex3 D (1D 21)(1 D 22)(1 D 3)

=1Pz3PBx179 B 23 D T 12273

Realization:
I —O—O—O—O—v
1417
a)

o=

b)

x1

s

x3

x2
x3

Size = 3

Depth =3

Size = 6

Depth =4

Size = 8

Depth =5
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d)
x1 Size = 6
xi Depth =3
f
1418
a) 14=01110
14 = 001110

b) -14 =-01110 = 10001+1 = 10010
-14 =-001110 = 110001+1 = 110010

¢) -6 =-00110 =11001+1 = 11010
-6 =-000110 = 111001+1 = 111010

d) -7 =-00111 = 11000+1 = 11001
-7 =-000111 = 111000+1 = 111001

e) -12=-01100 = 10011+1 = 10100
-12 =-001100 = 110011+1 = 110100

f) -1=-00001 =11110+1 = 11111
-1=-000001 = 111110+1 = 111111

1419

a) Instead of solving the subtraction we solve the addition of the two-complement, i.e., 101011 4- 100101 + 1.

1 11111
101011
+100101

010001

ov=1@0=1. (21 — 26 = —47 ¢ [-32,31].)
b) Solve 11101101+10110000+1.
111 11

11101101
+10110000

10011110

ov=1®1=0.(—19—79 = —98 € [~128,127].)

b) Solve 11001+11001+1.
11 11
11001

+11001
10011

ov=161=0.(-7—6=—13 € [-16,15].)
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14.20

Overflow occurs when the addition of two positive numbers is negative, or when the addition of two nega-
tive numbers is positive, i.e., when (z,-1,¥n—1, 2n—1) € {(0,0,1),(1,1,0)}. Therefore ov = z,_1y},_17n-1 V
xn—lyn—lzgfl'

14.22

The problem can be solved in the same way as in the binary case, i.e., with one module (Full Adder) for each
level. Therefore, we start by constructing a full adder (FA) for the trinary, or ternary, case. We have two input
digits and onr carry from the previous level. Since 2 + 2 + 1 = 5 = 123 the carry is either 0 or 1 and can be

represented with only one bit. Below we have lited the functional table that will be realized.

(z+y+ce=s)s | zazi yayi

ci || ciyr siasio

(z+y+ce=s)s | zazi yayi

ci | ciy1 sasio

0+0+0=0
0+1+0=1
0+2+0=2
1+0+0=1
1+14+0=2
1+2+0=10
2+0+0=2
2+1+0=10
2+24+0=11

0

el e i e i e B an Bl an B an

0

— e e = OO

0

— OO, OO O

0 0 0
1 0 0
1 0 0
0 0 0
1 0 0
1 0 1
0 0 0
1 0 1
1 0 1

0

O O OO

0

—_ O = O

0+0+1=1 00 00 1 0 0
0+1+1=2 00 01 1 0 1
0+2+1=10 00 11 1 1 0
1+0+1=2 01 00 1 0 1
1+14+1=10 01 01 1 1 0
1+2+1=11 01 11 1 1 0
2+0+1=10 11 00 1 1 0
2+1+1=11 11 01 1 1 0
2+2+1=12 11 11 1 1 1

We have three functions of five variables. Draw the Karnaugh maps to find expressions:

(ci=0)

Yi1Yi2
01 11

(ci=1)

Yi1Yi2
01 11

e 00 10 {o 00 10
oo| o | o] o oo| o | o 1
oo | o | o 1 - o] o |1 1
Ti1Ti2 Ti1Ti2
1] o0 1 1 ‘ 11 [ 1 1 1
[ s
10 - - 10 ‘ -
Yi1Yi2 Yi1Yi2
s©=9 00 | o1 | 1 | 10 | se=b 1 00 | 01 | 1, 10
oo| o | o 1 - 00| o w 0
o1 | o 0 01 | 1 0| o0 -
Ti1Ti2 —f | Ti1Ti2 — [
1)1 0] o0 1110 | o0 1 -
10 | - ‘ - 10 P - -
Yi1Yi2 Yi1Yi2
s5=0 1 00 R s&=D 00 | 01 11 | 10
00| o | 1 1 00 | 1 1 0
¥
— —
01 | 1 0 - 01 | 1 0 1
Li1%q2 T Tjp —F——
1] 1 0 1 1] 0 1 1
10 ( - 10 ‘ - - -
The module ADD can now be realized as
Y3 T3 Y2 T2 AR Yo o
Cy C3 C2 C1 Co
2 0

S3

S92

S1

S0

i—1 = T2l i1Yi i2¥i2Ci V Ti1C; V Yi1C
Ci—1 = Ti2¥i1 V Tij1Yi2 V Ti2¥i2Ci V 416 V Yi1C

/ / ! / ! ! /
8i1 = Xi1Y;i9C; V TioYi1C; V L1 Ti2Yyi1 Yi2C;

A ! ! A
V Zi1Yi1C; V Ti1Ti2Yi9C; V Tiol;1Yi2Ci

/ ! ! / ! ! /
Si2 = Ti2¥;9C; V TiolioC; V Tin¥i1 V T Ti2Yi Yi2C;

’o oo .
V Ti1YinCi V TioYi1Ci V TinYioCi V TioYi1 G

1

—=—_ O = OO
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5.1

(b) Applying the rules zp V 2'q = xp V 2’q V pq (consensus) and p V pxz = p (absorption) successively yields:

o ’o / ’o / .
f1() = xprizy V zpaixe V xpriTe V 2ox Ty V ToT Te V ToX1Ta.
A B c D E F

Add consensus of A through F, then consensus of B through F, and so on.
_ ! ! ! ! / A ! !
=ToT1Ty V XpT1x2 V XyT1T2 V Tox1 Ty V ToX1T2 V ToT1T2
A B c D E F

Voooxgx, Vo xwy, Vo mpze Vo zims Vo xima Vo z0x) V. Zoa
G=cons(A,B) H=cons(A,D) I=cons(B,C) J=cons(B,E) K=cons(C,F) [L=cons(D,E) M=cons(E,F)

After adding the consensus, we now apply the absorption rule. G covers A and B, H covers D, I covers C,
J covers E, and K covers F. Add consensus of G through M, then consensus of H through M, and so on.

= xor) V x)wh V 2w V Tixe V 1172 V 30T V ToTo V )y % ro .
G H I J K L M N=cons(G,L) O=cons(I,M)

N covers G, H, J,and L, and O covers I, K, and M (and ]). Further applications of the consensus rule do not
add any new terms, indicating that the algorithm has terminated. The complete list of prime implicants is

/
=x7 V T2.

One could also have opted for first adding consensus of A and later terms, only, then applying absorption,
and iteratively proceeding in this way. Like this:

A A !’ / ! !
f1() = zpzizy V xpaixe V oprize V 20X Ty V Tox xe V ToT1T2
A B c D E F

= zorh Ty V xoTi T V TYT1T2 V T Th V 0T T2 V TmoT1T2 VT,V 2T
A B c D E F G=cons(A,B) H=cons(A,D)

= xyr12T2 V ToT T2 V ToT1T2 V (T V XiTH N mima Vo myws

c E F G H I=cons(C,F)  J=cons(C,G)
= xox'lzzrg vV :c():v’l vV x’lx; Vzixe V z6x2 \ z’lxg \ xox'l vV ToT2
E G H I J K=cons(E,G) L=cons(E,H) M=cons(E,I)

= z(x) V 2Ty V 2122 V 2T V Xy 32 V 30T V ToTa V )

G H I J K L M N=cons(G,L)
=122 V T(Ta V Toz2 V T V 2o

I J M N  O=cons(I,N)
=]V zo.

Thus, we see that iterative consensus can be run in several ways so long as, at each step, the onset f; (1)
is preserved. Likewise, one can start from any disjunctive form.

In the conjunctive form we can use the duals (z V p)(z' V q) = (z V p)(z’ V ¢)(p V ¢) (consensus) and
p(p V x) = p (absorption) and obtain:

f2() = (w0 V1 Vx2) (o V 2y V x2) (20 V 2y V b)) (2 V 21 V 2) (T V Xy V ) () V Xy V h)
A B c D E F

= (zo V1 Va2)(zo V) Vae)(ze V) Vay)(xy Ve Vas)(ey Vel Ve (g Vay V)
A B c D B F

(xoVa2) (z1Vas) (zoVa)) (¥yVae) (iVvah) (zgVae) (zhVa))
G=cons(A,B) H=cons(A,D) I=cons(B,C) J=cons(B,E) K=cons(C,F) L=cons(D,E) M=cons(E,F)

= (w0 V 2) (x1 V 22) (w0 V &) () V 22) (2 V 25) (g V w2) (26 V 27)  (22) (1)
G H I J K L M N=cons(G,L) O=cons(I,M)

= 2| 12.

5.2

(b) Let f1p and fop denote the functions that describe the don't care sets.

First, we minimize f;() and f1p() separately:

o / / / A /
f10) = xpzyzh V xpxiag V xprire = oy V ToTy

! /
le() =TT T2 V XoT1Ty V ToX1X2 = Tox2 V Lol
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From fi;p we only need to take those terms that help to simplify f;. In this case this is only the second
term xgx1. We obtain:

f10) = xpxh, V zhrr V zoTy = THTh V X1
In the same way:

f2() = (g Va1 Vas)(xg Vo Va) (g Vay Vas) = (x5 V) (zh V)
fop() = (xo Vo Va)(zgValVa)(zgVaVah) = (v Va)(zgVal)

Here we take only the term (x¢ V z2) from f;p and obtain:

f2() = (x Vv 21) (2 V 22) (w0 V 22) = (24 V 1) 22

5.3

(@)

FO) = mimozy V ximozs V miThTh V m13374
A B c D

Add consensus of A and later terms:

= T1ToTh V T Tox3 V 312575 V 312374 V11TV T1T21y4
A B C D E=C(A,C) F=C(A,D)

E covers A and C. Add consensus of B and later terms:

= 2\ @ox3 V 212374 V 1125 V 212024 V ToT3T4
B D E F G=C(B,D)=C(B,F)

Add consensus of D and later terms:

= 2\ Tox3 V 2123T4 V 175 V 212274 V ToT3T4 NV T1T4
B D E F G H=C(D,E)

H covers D and F'. Add consensus of E and later terms:

= 2\ Tox3 V 1175 V Tox3T4 V 1174V T1T0T4
B E G H  1=C(E,G)

I is covered by H.
No further consensus terms can be built and hence all prime implicants of the function are:

/ !
L1 X2X3, L1L3, L2X3T4, L1L4-

5.4
Disjunctive form
T1T2 T1T2
fiyp 00 | 01 11 10 faq 00 | 01 11 10

oDk TR
J80DE T T

/
fi(wo, 1, 22) = 27 V 22
Conjunctive form

12
figp 00 ;01 | 11

fa(zo, x1,22) = hx2

T1xo
foy 00 ;01 | 11 | 10

10
0 1 1 1 m 0 0 1 0 0
o o
1 1 1 1 @ 1 0 1 0 0

fi(@o, w1, 22) = (7173) = 2} V 12 f2(@o, 1, 72) = (21 V 13)" = 222
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Disjunctive form

L1722 T1T9
fiy 00 01 11 10 faq 00 01 11 10
0 1 0 1 1 0 [‘ 1 e ‘)
9 — Zo
1 0 - - - 1 0 0 \L 0
fi(zo, z1,22) = x{zh V 2y fa(zo, @1, 22) =z V 21229
Conjunctive form
Xr1T9 T1x2
fip 00 01 11 10 fa 01 11 10
0 1 /6\ 1 1 0 1 - -

00
[ )
) )
e O ool e ]

. — ! /
, —
fi(wo, 21, 72) = (z0 V 21 22)

o~

X

(z1V 5) Ja(zo, 21, 22) = (25 V 2027)" = 22(7) V 71)

5.6
a) T34
00 [ 0L | 11 | 10 S
! ‘ Prime implicants:
‘ PI = {a) o}y, xha), ¥\ xhxy, ¥\ w32), v1000514 }
00(1J1 1 1)1 — Whrh2y b2y, bbb, Ly b3y, L1020 34
s » All prime implicants are essential.
on o 1] o1
1T ~ o s .
Minimal function:
mflofof1])o
| | f=alal v aha) vaiahes V riese) V x1xaxse,.
| 1)fo]o |1
I I
b) T3Tq
1 1 S
fpooorguye Prime implicants:
oo fo |1 | 1] 1 PI = {z1, 23,24}
All prime implicants are essential.
o0 o |1 |[1| 1
e Minimal function:
w1t} 1
‘ f=x1 Va3V,
10 ‘ ol L] e
C) T3T4
00 | 0L | 11 | 10 S
/ | Prime implicants:
— ! . /
o 1) 1] o |- PI = {waxy, xhaly, x5}
» All prime implicants are essential.
o1 || 1 ‘ - q 0
e ‘ J Minimal function:
mn| -l -Jo
| | f=xoxa Vaha) Vak.
o] - 1] o1
I

d)

0000
u
0

Prime implicants:

! ! / ! ! a7 /
PI = {xyxoaha), 2l whwsx), v ahey, vhriey, x1050s, 210324 }
The essential prime implicants are underlined.

01 0

30
10 0‘1 1
[ [

e Minimal function:

f = xxonhal V aiabasal V ixhezy V x12384 V xhrhay
or

— ! .7 ! . !/ ! a0 /
f= T1X2T3%y V T1X5T3%, V X1T324 V T123T4 V T1X5T4.

e e O°
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e) I3y
111 1 . .
fpo° 0 Prime implicants:
— SN / Lo / / / / N ! ol
ol o T PI = {zxq, 2125, ¥hwy, T x4, ths, 2y T3, To), T12Y, 232 }
= i None of the prime implicants are essential.
o [ ]
BRI Minimal function:
unl - oo |- . .
4 L There are several minimal functions. For example
/ N / /%
o |G- [0 f =2z Vi, Vahes Vases.
] | | I

5.8

(a) Minimal disjunctive form:
fMDFE = 20T V ThT3 V 31T
Minimal conjunctive form:
fvcr = (xg V ag V ag)(x V xh)
(b) Minimal disjunctive form:
SMDE = zoT1 V (T2 V ToT3
Minimal conjunctive form:
fucr = (2 V as)(xo V a1 V x2)
(c) Minimal disjunctive form:
fMDE = z(xh V 2O T2
Minimal conjunctive form:

facr = xg(22 V ) (2] V a)

Notice that the functions are not necessarily unique.
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5.9

a)
IN==- 1v—=1 16— =—

b) From part a and the following Karnaugh-maps we see that the function f; & f is given by (f1 & f2) (1)
{Oa 8; 12} and (fl S f2)71(0) - {37 4, 57 67 93 10}

T3Tq T3T4 T3Tq

fiy 00 01 11 10 foy 00 01 11 10 fi® foy 00 01 11 10
I I

00 1 - 1 - 00 0 - 1 0 00 w - 0 -

01 0 1 1 1 01 0 1 - 1 01 0 0 - 0

T122 T1%2 T122

11 0 - - - 11 1 - - 0 11 (1 - - ‘)
n

10 1 0 - 0 10 0 0 1 0 10 1 0 - 0
N

Corresponding minimal functions can be found in for example
[1® fo = z12a V whalal,
or
f18 fo=ziabal vV ayah)

(This is not a complete list. There are other minimal functions.)

5.10

/ / !
a) PI = {#)xoxs, v105xs, T102Th, T1TaTy, ToT3Ty, T1T3T 4 }

The essential prime implicants are underlined.

b) PI = {z12225, thry, 2424}

All prime implicants are essential.

511

a) Yes. The four minterms and 2| z2q2, x| 22q1, and x2q1 ¢5.
b) Yes.

¢) Yes, since

q;r = 21 T2q2 V Toq1 ¢y = T T2q2 B T2q1q5 D T T2¢1G245
=0
= (1@ 21)r2g2 © 22q1 (1 © q2) = T2g2 © T1T2G2 © T2q1 D T2q1G2

d) Yes. Consider the implicants

A =214

B = 2,

C = x2q145

D = zizoq

E = 112202

Then

¢ =AVBVCVD
¢g =CVE

Notice, that C is not a prime implicant in ¢ .
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513
(b) T3T4 T3T4
xo=0 f, 00 , 01 { 11 | 10 xo=1 fy 00 , 01 | 11 |, 10
o —A— R
00 0 1 1 H 00 o= 1 1 0
s ™ ¢ N
01 1 1 1J / 01 1 1 1 1
T1To N 120 o J

11 1 1 0

10 1 0 0

/
.
\ i

(H ,JW - %
oy
T
\H
)

flz1, 20,23, 24,25) = AV BV CV D =xjxgVaaxh V rjrixy V x0T

15.14
(e) Draw the Karnaugh maps for fi(x), f2(z) and fi(z) A fa(x) P
T3T4 T3T4 T3T4
fiyp 00 | 01 11 10 P fa 00 | 01 11 10 Py  fiNfay 00 | \01 11 10
P15
0 1 N7 N
Py 00 0 0 1 1 00 1 1\ 1 0 00 0 é\ /? 0
P M . P13\ \ )
N s B
01 1 1 1\ 1 \K 1 1\ 1 0 01 1 (1 1\ 0
. y N N
122 T1T2 — T1To
1 /0/'/- s n |l - - 0 1 11| 04 - 0 q
P D, P—— ) .
P -
0] o Bab

(I 1 - 10 - 0 (1 ] 10 0
— F= \ - \ Pig
N/ |
Pl P4 P5 PG

Py
The P-table:
bil fa
2 3 4 5 6 7 11 1410 1 3 4 5 7 11 14
Pl X
Py X X
Ps X X X X
P || ® x X X X X
P5 X
Ps X X
Py X X
Py X X X X
Py X X X X
P10 X X
P X X X X
P12 X X
Pi3 X X X X
Py X X X X
Pis X X X X
P16 X X

Here we see that Py is essential in f;. A reduced table becomes
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bil fa
4 5/0 1 3 4 5 7 11 14
P3O P X
P3O Ps X X
P5 X
Ps D Fs X X
Pi3s D P; X X
P X X X X
Py X X X X
P11 D Py X
P11 X X
P13 D Pio X X
P3| x x X X
P4 X X X
Py D Py X X
Ps D Pig X

P5 dominates Pig. P13 dominates P, P3, P; and P;». Ps dominates Ps. P;; dominates Pg. Py dominates P;5.
Hence,

fi f2

4 50 1 3 4 5 7 11 14
Ps ®
Py ® x X X
Py X X X X
Py X ®
P || ® x X X
Py X X X

P35 is essential in f;. Since, this implicant now is for free we can also use it in f> to cover 4 and 5. The implicants
Ps, P, and Pj; are essential in f. Ps also covers 4 and 5 so we can actually choose if we like to use P;3 in the
minimal cover of f; or not. What is left of the table is now

f2
7
Pg X
P14 X

We can choose if we like Py or P4 to cover 7. Hence, a minmal cover of f; and fs is

f1 =P,V P35 :l'ng/l.rgxé
fQ:P5\/P8\/P9\/P11:l'l.Tﬁl\/l'/lil}g\/‘T/llll\/xIQ(L'giL';;

Notice that P;3 can be added to the cover of f, and it will still be a minimal cover of the functions.

5.15

Let us first consider the function f;( ). Then we have
£ (1) = {000,001,011, 100,101,111}
and

£ H0) = {010,110} .

In the table below we calculate for all minterms their blocking functions, span functions, and core-span func-
tions.
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i

0
1
3
4
5
7

m; L B™i(x) L (B™i(x)) L cs™i(x)
xorhah | w1 Vxexy = 11 x} x}
xpxixe | Ty V xor12h = 112y | (m1xh) =) Vs |zl
THT1To | Th V xoxh = o, T T
xoxhah | xhymy Vo =1 x} x}
xoxh T | THT1Th V 212k xh Va9 xhxo
ToT1T2 | xoTh V ah = o T9 Ta

We now have to check which of the core-span functions are essential signature cubes.

1. We first check if z} is essential. We use Def. 5.7 (page 187 in the Signature cubes hand-out). Since x}
¢s™° (x) and there exists no minterm m; for which z} < ¢s™i(x), it follows that z} is essential.

2. We now check if z}xz, is essential. Again, we use Def. 5.7 and conclude that =)z, is not essential since
iy < es™(x) = .

3. We check if x5 is essential. Clearly, o = c¢s™3(x) and there exists no minterm m, for which s < ¢s™(x).
Thus, from Def. 5.7 it follows that x5 is essential.

There are no other distinct core-span functions. Thus, z} and x, are the only two essential signature cubes.
Since they coincide with the prime implicants in their span functions, the prime-table is trivial and can be
omitted. We conclude that

filz) =21 V.

Let us consider now the second function
fo (1) = {001,101}
f51(0) = {000,010,011, 100, 110,111} .

In the table below we calculate for all minterms their blocking functions, span functions, and core-span func-
tions.

: m; m; ! m;

il mi | B™(x) | (B™i(x)) | cs™i(x)

1 || zpzixe | bV axixh Vo Vxexh V xorizh V xexy | (21 Vah) = 2ias xhxo
=11V

5 || woxhze | xpxh V apzizh V xgzy V ah V x1ah V ay x| @2 x| X2
=11V

If follows directly from Def. 5.7 that z/ = is an essential signature cube. Thus,

fo(z) = 2izs.

5.19

To minimize the size of the AND-matrix and the OR-matrix is the same as minimizing the number of minterms.
Let (2120)2 = (1‘1560)2 @4 (y1y0)2. Then

w0 yiyo || 2120
00 00 00
00 01 01
00 10 10
00 11 11
01 00 01
01 01 10
01 10 11
01 11 00
10 00 10
10 01 11
10 10 00
10 11 01
11 00 11
11 01 00
11 10 01
11 11 10

An implementation with PLA:

Y1Yo
Z1p 00 | 01 11

00 0

T1To

11(?

10
1aD
01 0 0 J

0 0
DK

10 1

21 = xyxoyr V Ty V 11xyy V 211y V T1T0yiYo V Z120Y1Y0

A A
z20 = TpYo V ToYy

T1To

Zip 00 | 01 11 10
! !
00 0 LJ 0
01 ﬂ 0 0 F
11 J 0 0

10




Solutions to Chapter 5.

39

)

n

Yo

v v|vly)

21
20

5.21

We start to write a table for all the functions

Il

=
o
o
=
"
=

8
%

&
N

8
w

| fo=fi@fo| fe=(faNfs)®(fs A fo)

_ = OO0 0O
PR OOR R, OO
_ O R ORORO
O R P R R, = OF
—_ ORFR R, OORFRO
e el = e Y e
—_, OO R R OO

ORPr P OO~k O
—__, OO R kO

a) Yes, fi is linear.

fi=11® xe ® Thx3 D) D T2z B 1
=21 P22 (1B x)zs B (1P x1) Baarsd1

:Ig@zg

1

—OoO RO R OR

OO RO R OFRO

b) The minimal forms are minimal disjunctive form, minimal conjunctive form, and RSE. Here we choose

the disjunctive form. Write the function f; above in a Karnaugh map,

o3
Joy 00 01 11 10
0 1 1 1 0
z
1 0 1 1 0
N

and we get f1 & fo = zizh V x3.

c) f3is given in conjunctive normal form and we see that f; ' (0) = {001, 111}. In DNF we get

f3 = mooo V mo10 V mMo11 V Migo V mio1 V Mo

A / / / I / /
= 212923 V 12203 V T1X2L3 V T1T9T3 V X1Tox3 V T1T2T3

d)

fa = moo1 V Migo V Mio1 V Mii1 = Moo1 © Migo © Mio1 © Mi11

I I /
T1Tox3 O T129T5 D X1T923 O 12273

=21 DT3P a9 P T123 P T2T3.

e) From the table above we get the following Karnaugh map

(1 (5] .%'1)(1 (&) 56'2).’)33 D 331(1 D .’1?2)(1 D 33‘3) (5) 1'1(1 (S5) .%'2)%3 D 17923
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o3
Jey 00 01 11 10
0 0 1 1
T
1 0 1 CO

Hence, f. = z3(z} Vv a5).

5.23

For all combinations of inputs z1, x2, x5 we first calculate values f1(x1, z2, z3), fo(x1, 22, 23), and f3(z1, x2, x3).
Then we calculate f(x1,22,23) = g(f1, f2, f3). For example, input 12923 = 010 gives f1fafs = 011, and

therefore f(010) = ¢g(011) =1

T1X2T3 JLf1f2f3L9Lf
000 0-11]-1]1
001 -10 (1|0
010 011 (0|1
011 010 |10
100 111 1] -
101 -10 (1|0
110 101 (01
111 10-|-1]1

Now we have a choice. Either we realize the function f which is 1 for the input combination 1, 0, 0 or we realize
the function f which is 0 for 1,0,0. Obviously we have to choose the one which gives minimum number of

AND gates in the realization.

The first variant is

= Tywhrh V Ty woxhy V mwhTh V T 30Ty V r1T2x3 = 1 6 13 B 1172T3.

The second variant is

2 AW / / /
f( ) = TiT9T3 V X1 Tox3 V X1T2X3 V T1X2T3 = 1®x1 Bxr3®x120 D 2123

We choose f = f() = 1@ x5 ® x129x5 for realization.

15.24

This problem can be solved by a graph with 13 sates where the state transitions follows

So—>81 —> 8 —~> - —>812 —~>S8) —

If the length of the shift register is L each state is a part of the sequence starting at that position. Since the
period is 13 long that is also the maximum number of state variables needed. That gives the following table

s || Period

So 1101010011011
S1 1010100110111
So 0101001101111
S3 1010011011110
Sy 0100110111101
S5 1001101111010
Se 0011011110101
S7 0110111101010
S8 1101111010100
Sg 1011110101001
s10 || 0111101010011
s11 || 1111010100110
s12 || 1110101001101
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Now, we try to use as few D-elements as possible, i.e., we start from left and try to use as little as possible from
the sequence. We need at least four bits, but if we only use those we get so = sg and s; = s3. With five bits we
get a unique state assignment as follows

S quqwzqa% LU
S0 11010 |1
s1 10101 |0
S 01010 |0
S3 10100 |1
S4 01001 |1
S5 10011 |0
S6 00110 |1
S7 01101 |1
S8 11011 |1
Sg 10111 |1
s;p 01111 |0
s;1/ 11110 |1
si2 11101 |0

where the output is the input for the shift register, i.e., the last bit of the next state.

The prime implicants can be found by the Karnaugh map

4394 4344
fao=0 1 00 01 11 10 fao=1 1 00 01 11 10

ol - | -1 - w o | -1 - 1o
oo [l - | -] EJ ot [ 1| o |(1]-)
q192 9192

nl -1 o]l - unl -1l o

10 gg) 0 10 C D)

—_

|

The Prime table below help us to find a minimal solution

|6 9 13 20 23 26 27 30

A= qyq5 ® x

B = qyq4 X

C' = qoq} ® X x
D = qog293 X X
E=qqqs X X X
F=qqd X X
G=q1q2q3 | x X

H=qg¢qu X X

We directly see that A and C are essential. Implicant B is dominated by G and should be removed. Implicant
F is dominated by E and should be removed. We have the table

|6 23 27
D = qogaq3 X
E = q0q143 X
G=q1gp | ® x
H=q195q X

Now, G is (secondary) essential. To cover minterm 27 we can use either F or H. Hence, a minimal function is

u=AVCVEVG=qqV qqV 00" q19q
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6.1

(@)

P1 : {80},{81,85},{82},{83,84}
P2 : {so},{s1,85},{s2},{s3,84} = P1

Table for the reduced machine:

o | @

S0 52/2’1 534/2’1

S15 815/20 52/21

52 82/21 80/20

s34 | s34/20 | s2/%0

With the coding i = 0,43 =1, 20 =0, 2y = 1 and

H S0 S15  S2 834
qoq1 H 00 01 10 11

we get the realization

@ = @i’ ViV aan
o = qdivai
z = quVai

(b)
Pl : {so},{s1},{s2}, {s3}

Since the states are maximally partitioned already by the output signal, the machine is minimal. With the

natural binary encoding of signals and states we get

@ = qiVadqi
@ = qivVaiVagi
z = @iV qiVaq

(©

P1 : {s0,84,86},{51,85},{s2}, {s3}

P2 : {80,54},{81,85},{82},{83}7{86}

P3 : {so},{s1,s5}, {s2}, {s3}, {sa},{s6}

P4 : {so},{s1,s5},{s2},{s3},{s4},{s6} = P3

With the coding ip = 0,41 =1, 20 =0, 21 = 1 and

H 50 515 52

53

S4

56

qoqige | 000 001 010 011

We get the realization

a q0ds V @1tV q1¢2

+ 3 . /-1 ./
47 = 49192tV @145tV qoget
& = qdiaeV ai Vg

100

z = qugyiV i’V qigz V qoi

101
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6.2

(a) It follows from the figure that

QE = I

QE = 411

q;ﬂ = X2

U = q11Dq2DT1 D g Do D 3.
Let us define
v = q11Dq2D T Dqo1 O wo.
Then, the output u can be written as
u =voPrs.

The problem of finding a minimal realization of u can now be restated as minimizing a realization of v.

We use an octal notation for the state 3-tuple (¢11¢12¢21), i-e., So = (000), S = (001), Sy = (010), etc.,. and
obtain the following table for next state/v:

Present Input
state 00 01 10 11

So So/0 Si/1 Si/1 S5/0
S So/1  S51/0 S4/0  S5/1
Sa So/1  81/0 S4/0 S5/1
S3 So/0  Si/1 S4/1 S5/0
Sy S2/1 S3/0  Sg/0  S7/1
Ss S2/0  S3/1  Sg/1  S7/0
Se S2/0  S3/1  Sg/1  S7/0
S? 52/1 53/0 56/0 57/1

From the table given above we get
P1:{So, S3, 85,56}, {51, 52, S4, 57}
and
P2:{So, Sz}, {51, S2}, {54, S7}, {55, Se}-

Since P2 = P3 the minimal realization has four states, which we can represent by ¢1¢2. We now obtain
the following (minimized) table for next state qi g5 /v:

Present Input z,22
state (goq1) 00 01 10 11

{So,55} =00 [ 00/0 01/1 11/1 10/0
{S1,5,} =01 | 00/1 01/0 11/0 10/1
{S4,5;} =11 | 01/1 00/0 10/0 11/1
{S5,5:} =10 | 01/0 00/1 10/1 11/0

Using Karnaugh maps we obtain

qa' = zl
- = qrirh V@ xize V qiriah V qorias
= QoDr1 S22
vo= Qriah vV Eiee V ¢ riry V ey
= @ Dr1 Dx2

The minimal realization is
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x1

x2

x3

(b)

T1X2T3
| 000 001 010 011 100 101 110 111

0/0 o/1 2/1 2/0 8/1 8/0 A/0 A/1
0/1 o0/0 2/0 2/1 8/0 8/1 A/1 A/0
/0 1/1 3/1 3/0 9/1 9/0 B/0 B/1
/1 1/0 3/0 3/1 9/0 9/1 B/1 B/O
0/1 o/0 2/0 2/1 8/0 8/1 A/1 A/0
0/0 o/1 2/1 2/0 8/1 8/0 A/0 A/1
1/1 1/0 3/0 3/1 9/0 9/1 B/1 B/O
/0 1/1 3/1 3/0 9/1 9/0 B/0O B/1
4/1 4/0 6/0 6/1 C/0 C/1 E/1 E/O
4/0 4/1 6/1 6/0 C/1 C/0 E/0 E/1
5/1 5/0 7/0 7/1 D/0O D/1 E/1 F/0
5/0 5/1 7/1 7/0 D/1 D/O F/0 F/1
4/0 4/1 6/1 6/0 C/1 C/0 E/0 E/1
4/1 4/0 6/0 6/1 C/0 C/1 E/1 E/O
5/0 5/1 7/1 7/0 D/1 D/0 F/0 F/1
5/1 5/0 7/0 7/1 D/0O D/1 E/1 F/0

HEH TN W > 000\ U b WN R~ O|ln

P1 : {0,2,5,7,9,B,C,E},{1,3,4,6,8, A, D, F}
P2 : {0,5,B,E},{2,7,9,C},{1,4, A, F},{3,6,8, D}
P3 : {0)57B7E}7{277’9’0}’{1’4’A7F}7{376787D} = P2

so the minimal realization has four states and is given by

@ = TizeVaixh =1z B 29
+ _ r_
a4 = qoT1Vqory =qo D1

(i T V diz1xh V rzixh V qraixs) @ w3 = 1 a1 B 12 B T3

=
I
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6.3

The graph for the Mealy-machine:

11/0

00/0 01/0
01/1 ‘ , 10/0
10/1 11/1

00/1

Split the states so all entering edges have the same output. Then, move the outputs into the state to get the
graph for the Moore-machine:

Mealy with split states:
01/0

00/0 10/0

=

11/1

01/1
10/1

(64

1) Number the delay elements from below. The equations for the state-transitions and the output is then
y q P
given by
4 = qzV qa'
4 =qa' vV
@ =qr'VgrVen=qar'Vegr=¢ =z2=q

Hence, the D-element on the output implies that the sequential circuit is of Moore-type. From the equa-
tions we construct the state-transition graph:

(2) Number the delay elements from the left hand side. The equations for the state-transitions and the output
is then given by

o=z
4 = @' Vaq Ve

Z=q

Which gives:
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The two graphs differ only in the state assignments. Since this does not affect the behaviour of the construction
we conclude that the two circuits give the same output when given the same input. Hence, u = 0 for all inputs.

6.5

The counter is specified by the following table.

I

S0 || S1
S1 52
52 53
53 || S4
S4 S5
S5 || So

We will use the coding ip = 0, i; = 1 for the input.

11
S5
S0
S1
52
53
S4

(a) The natural binary coding yields the minimal realization

W = 909105V q1q2i’ V qoghi V qogoi

a = 40qiad’ vV q1abi’ V q1g2i V qoghi
+ /

42 = 42

with 2 OR gates and 8 AND gates.
(b)

50, S1 > 80, 51, 52, S5 50, 81,52, 53,54, S5 (nOtuseful)

50,82 — S0, 52; 51, 53,85 — S0, 52, S4; 51, 83, S5
50,83 — S0, 53; 51, S4; 52, S5

Using the last two partitions, we obtain the state assignment

L So S1

52

S5

|
qodrqz || 000 111

001

101

where ¢y discriminates between 35g, 53, 54 and 37, 83, 55, and ¢ g2 between 3,53, 51, 54, and 33, 55. Then the

minimal realization is

% = 0
g = @i’ Vaei
@ = GaVaival
(2 OR gates and 4 AND gates).
(c) The Gray code
H S0 S1 52 S5
qoq1g2 || 000 001 011 100
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(notice that there are several Gray codes to choose from) yields

a = adyi’'Vaidi
o = @i Vaequdg Vi
@ = @ai'Vgai

with 3 OR gates and 7 AND gates.

6.6

There are two state partitions to use for the reduced dependancy encoding:

5081 — S0S1; 5355 — S05152; 535455

5055 — S0S5; 5253 —7 S0S5;5253; 5154

This gives for example the following state assignment and result:

state || qoq1q2 = w0 = | aaa u = U= qoq1
50 000 000 0 110 0 a = a7V qox
81 001 000 1 010 0 4 =dizV qid
S9 010 001 0 100 0 @ =aq
53 110 001 1 010 0
54 101 010 0 101 0
s5 100 010 1 01 0
011 0 -
011 1 S
100 0 010 0
100 1 110 0
101 0 000 0
101 1 110 0
110 0 001 1
110 1 101 1
111 0 .-
11 1 -

6.7

The machine can be described by the following minimal graph:

00/100
10/101

11/000 01/100 01/100 01/100

00/101
10/110
11/001

00/110
10/111
11/010

00/111
01/100
10/100
11/011

Let i1, 49 denote the input variables and ¢, gy the state variables. With the state assignment

s | a9
S0 00
S1 01
S9 10

S3 11
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49

we obtain the following table:

=+
o+

irioq1qo || uauiuogy g

0000 10000
0001 10100
0010 11000
0011 11100
0100 10001
0101 10010
0110 10011
0111 10000
1000 10100
1001 11000
1010 11100
1011 10000
1100 00000
1101 00100
1110 01000
1111 01100

One possible realization of the outputs us, u1, up, in disjunctive form, is

up =iy Vig

uy = igitqr Vioirqr Vinqugy V iniod; o
uo = yigqo V iriogo V i1igqy

a7 = 1i0diq0 V iYioq1q)

+ /
2 = 11104y

6.8

The traffic light can be described by the state-transition
graph to the right (Moore machine). The three output
bits correspond to the lamps for red, yellow and green
light, respectively (r, g and gr). The input z is 1 when
the lamps change.

0

If we use natural state assignment, the outputs can be calculated as

r=q¢,  9g=q@ gr=q g

We choose to realize the graph with a modulo 4 counter (other realizations are possible, as well):

s1/110

s2/001
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1 —= CLEAR

LOAD
START

1 —= P RCO
X ———————————f T @
CLOCK ———— > CLK qc =
| —= D qb
1 — C qa

0 —— B

0 ——= A
T4LS163

It remains to generate the input signal . Again, we use a counter, now modulo 12. It's output, z, is 1 if the
counter’s state equals 9 (1001 in binary notation) or 11 (1011 in binary notation):

CLEAR

START ——— = LOAD

11— P RCO p—= -

11— T qd A

CLOCK ———————> CLK qe

0o—= D qb

00— C qa

00— B

0—=f A
74LS163

The signal that we call START can be used to put the traffic light into the starting state.

611

Consider the graph that we obtained as alternative solution to Problem 2.13:

Zo,T1 /u

11/0 10/0
10/0 01/1 00/0
00/1 sO >( sl 01/1

00/1 11/1

10/1 S3 )= s2 00/0
11/0 10/1 01/0
01/0 11/1

We observe that this graph already is asynchronously realizable (cf. Definition 6.8). In order to avoid race we
can, for example, use the state assignment:

H S0 S1 So S3
q@o¢ |00 01 11 10
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For a hazard free realization we include all prime implicants, which, for example, can be obtained from Kar-
naugh diagrams. This results in:

ag = qoq1 V qoz1 V qoTo V q120T1
4@ =qqn Vv axgV arVgeroT
= qyq1zy V qororr V qoqi1z1 V 1ozt V qogio V qoToxy V qizoxh V qoqiay

16.12

For a synchronous realization of a modulo 4 counter we can immediately obtain a state-transition graph with
four states. This graph is, however, not asynchronously realizable. For an asynchronous counter we have to
introduce additional states:

One race-free state assignment is:

| so0 so1 S0 s11 S0 S;1 Ss0 S31
qoqigz || 000 001 011 111 101 100 110 010

The outputs can directly be derived from the state assignment:

404192 H UpU1
00— 00
11 01 = uo = qoq) V 145 V qo4s
10— 10 w = q
10 11

The complete prime implicant (hazard-free) form of the next-state variables becomes:

Q(J)r = qoqi V Q151 V q1q2xoTt V qoxgh V qoxor1 V qoghT1 V qoq2x] V qogary V qogaTo
a7 = qhdhTor1 V ¢hq270T) V qoghThTy V qogeor1 V ¢hq10hT1 V 40q1927) V q0q1357 V qoq1 g2
V 4091450 V 4pq1920 V 90q145%0 V qoqigato V (12071 V 10T

q;r = ¢\ qh 0T V qoqiT(x1 V G20y V x0Tt V q4q2x) V qogaz1 V ¢4q2%0 V qogazh V q1ge -

|6.14

(a) No, Mealy.
(b) Yes.
(c) No, 10 — 01.
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(d) Yes, x =101

1616

The graph is given in the solution of Problem 2.6. In the following tabulars we write the graph and the state
assignment

Lo 1 | wng
S0 81/0 54/0
S1 81/0 82/0
S92 82/0 83/1
S3 83/0 83/0
S4 52/0 53/0

We get the following Karnaugh maps

Q@ Q@ Q2 Q2

gfyp 00 01 [ 11 | 10 ¢y 00 01 [ 11 | 10 ay 00 | 01 | 11 | 10 wy 00 | 01 | 11 | 10
00 0 0 0 0 00 0 1 1 0 00 1 @ 1 1 00 0 0 0 0
'SR
01 0 1 1 0 01 ‘ 1 1 1 1 ‘ 01 1 1 1 1 01 0 0 0
qoq1 qoq1 qoq1 9091
11 1 1 ‘ 11 ‘ 1 1 ‘ 11 - - 1 1 11 - - 0 0
10 ‘ - ‘ 10| - - 10| - m - - 10| - -

and the functions

Q(J)rzthfﬁ\/qO
er:%\/l'
@ =qaVaeVvr

U= ¢4q1 G

6.17

We first construct a graph that fulfills the requirements.

With the state assignment s = 000, s; = 001, s = 011, s3 = 111, s4 = 101, and s5 = 100 we get the following
functional table. Notice that the output is equivalent to ¢;.
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aeer || o e a aeer || e
000 0 || 000 100 0 |[ 000
000 1| 001 100 1 101
001 0 | o011 101 0 | 100
001 1| 001 101 1 101
011 0 || 111 111 0 || 111
011 1| 001 111 1 101

This can be realized with for example

er =@z’ VqazVag
g = @1’ V ¢igz7’

45 = @2’ Vi@’ Ve

Remark: This problem can also be solved by combining two machines, one that detects the pattern 100 and
one modulo-2 counter as follows. Notice that we have first used a Mealy machine that affects the output
asynchronously, and then a Moore machine so that the timing is correct.

0 0
SR
- — @0
1
618

The graph below can be used to solve the problem.

H S0 S1 S92
q@oq |00 01 11 10

With the state assignment we get the following table
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This can, for example, be realized with

gawiws || qf ¢ wu, ag = w2 V qow1 V qoqs
00001 0000 g = w1V 1w V ghan
0001 1010 R

00101 0101 = Aot
0011 - - - - Ur = Gpq1W1

81 8 (1) (1) 1 88 The realization is omitted.
0110 0100

0111 - - - -

1000 1000

1001 1000

1010 1100

1011 - - - -

1100 0000

1101 1100

1110 1100

1111 - - - -

16.19

Construct a combinational circuit K with three inputs and two outputs. One of the inputs is the ith input x;
and the other two inputs, (ajap), represent the modulo three sum of the inputs 1, z2,...,2;—1. The otputs,
(b1bo), represent the modulo three sum of (ajag)2 and x;. The table for the circuit is

atao ;|| bibo
00 O 00
00 1 01
01 0 01
01 1 10
10 O 10
10 1 00
11 0 - -
11 1 - -

which can be realized as

bl = apx; \ alx'i
by = a\ayz; V apx;
The realization is omitted.
(This is the same combinational circuit we would hae used to construct a sequential modulo three counter.)

Use N such circuits as follows for the solution.

16.20

a) We first draw the graph of circuit 1:
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If we compare the two graphs (and ignore the state coding), we see that circuit 1 does not exactly realize
graph 2, and circuit 2 does not exactly realize graph 1. Since we know, however, that both circuits must
realize the same graph, it can only be that the original graph did not fully specify the behavior of the
circuit. That is, some input combinations are considered to be impossible. Hence, when realizing the
graph, we treat these input combinations as “don’t care” terms. Obviously, for the realizations 1 and 2,
the “don’t care” terms were interpreted differently. If we compare graph 1 and graph 2, and draw parts
that are in common, we can obtain the following graph.

10/0 11/0
00/0 01/0 00/1

Notice that this graph is not unique. For instance, we could have included the fourth state as well.

b) The realization can, for instance, be used to detect when a lion leaves its cage. (State A corresponds to the
lion being in the cage, and the output 1 indicates danger.)

16.22

This can be implemented as a Moore machine where the output and the state is the same thing. Define one
state variable for each witch and let it be 1 if she eats and 0 if she does not eat. Here we will use a synchronous
state machine with a high frequence clock signal so that only one witch can decide to start or stop to eat during
one clock cycle.

We can now concentrate on one witch, say witch i. Then the corresponding state variable ¢; updates as follows

¢i-1Gi%i+1  Ti H q,i+ Comment ¢i-19i¢i+1  Ti H q;r Comment
000 0 0  Thinking 100 0 0  Thinking
000 1 1  Start eating 00 1 0  Wait for witch i — 1
001 0 0  Thinking 101 0 0  Thinking
001 1 0  Wait for witch i + 1 101 1 0  Wait for witches i — 1 and i + 1
010 0 || 0 Stop eating 110 0 - Cannot happen
010 1 1 Continue to eat 110 1 - Cannot happen
011 0 - Cannot happen 111 0 - Cannot happen
011 1 - Cannot happen 111 1 - Cannot happen
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This can be realized with ¢;” = ¢/_, ¢}, %, i.e., eat if neighbours are not eating. The realization becomes

Since the functions only use one implicant each there are no risks for hazard and the delay elements can be
dropped and we get an asyncronous sequential circuit. Also notice that the same type of realization can be
used for an arbitrary number of witches.

16.23

The following (minimal) graph desribes the state machine:

With the state assignment so = 00, s; = 01, s3 = 10, and s3 = 11 (NBCD) and minimization by Karnaugh maps

we get the following functions:

u=qoq

4 = a2’ V @iz

+ _
qg =T

The figure is omitted in this solution.

16.24

If the two machines are equivalent, we see that the first machine (M1) is non-minimal, since the second machine

(M2) has at most four states. Hence, we try to minimize M1 and see what we get.

State transition table:

QM /ul 0 1
S1 85/1 54/0
S92 56/1 83/0
S3 s4/1 s1/1
S4 s3/1 s/l
S5 83/1 86/1
S6 84/1 55/1

State minimization:

Py =5153;53545556
P, =5183;5354; 8556
P; =P
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A minimal graph is given by:

Qt/ul o 1
512 ss6/1  $34/0
834 sga/l  s12/1
856 s34/1  s56/1

Now, we draw the graph for M2. Write expressions for the functions and draw the corresponding state transi-
tion table (one way is to write the functions in Karnaugh maps and then rewrite it as a normal table). Here we
denote the state variable in the upper D-elelment ¢; and the lower gs.

u:ql\/x/ Q+/UH 0 1

o=@V Vv 00 11;1 10?0
01 |l11/1 11/0

a5 =g} Va)VieVve)) =(¢Va) (V) 11 | 10/1 11/1
10 |/ 10/1 00/1

With the mapping si2 = 00, s34 = 10, and s5¢ = 11 (the state 01 is unreachable from the others) the two tables
are equal, and therefore the machines equivalent (assuming M2 does not start in the state 01).

16.25

First draw a graph and decide on a state assignment (we assume that the trains can be more that 2km):

01
1C

_ij qoq1 L

so|l 00 O
sl 01 1
soff 11 1
S3 10 1

0cC
11

10
Use Karnaugh maps to realize the functions:
G1Go G1Go 741
g 00 | 01 | 11 | 10 q 01 | 11 | 10 Ly 0

00 0 - 0 00

00
0 0
01 m 0 1 0 01 m ‘ 1 1 ‘ 1J 1 1
qoq1 qoq1
0 0
0 0

SBE

11 ‘1 1‘ lw 11
‘1 -‘j 10 0 \;/ 0

10

g5 = G2V @GV 1 GGV G1Go
af = ¢hG2 V ¢\G1 V 1 GGy V G1Gy
L=qgVaq

The figure is omitted.

Remark: An alternative graph can also be used:
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7.1 |

First express the function in disjunctive normal form (DNF). Each minterm is 1 for only one combination of
the variables, and there are not two minterms that are one for the same combination. Therefore, applying the
definition of OR (3.152) on minterms we get

Ma Vmy =mg S mp B memy =mg Smy, aFb.
Hence,

DNFE 1 1 ’ 1ot
flz1,x0,3) "= ziwhms V 2 2273 V 210525 V X1T2T3

RiE (Q?1 D 1)(%2 D 1)1?3 D (1‘1 D 1).’L‘gx3 D Il(l‘g D 1)(333 b 1) D x1T2T3

= 11 Dxr3sDT1To.

The function is not linear.

7.2

Similar to 7.1 we get

DNFE 1 1 ’ / / /
f(z1,x0,23) "= ziwhws V 2 2275 V 212523 V T1T2T5

FEE (21 @ 1) (22 © Vg @ (21 B V)aa(z3 ® 1) @ 21 (32 ® 1) 73 B 3122(73 B 1)

= X2 D xs3.

The function is linear.

7.3

The following table specifies the conversion from NBCD to Gray (unit distance) code.

T1T9L3T4 H abed T1X9L3T4 Hrabcd
0000 0000 1000 1100
0001 0001 1001 1101
0010 0011 1010 1111
0011 0010 1011 1110
0100 0110 1100 1010
0101 0111 1101 1011
0110 0101 1110 1001
0111 0100 1111 1000

The realisation is given by,

a =T
b:,IlEBLZEQ
c=2o2Dx3

d=1x3® x4

7.4

Write g(k) in the following way,

gk)=(loz)o(l@r)d o1l =fk)olole - ol.

k—terms
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7.5

See Example 7.2.

7.6

(a) Consider a sequential circuit given in Problem 6.2 (a). Assume we enumerate delay modules from the left
to the right and from the top to the bottom. The next state variables and the output can be expressed by
the following system of linear equations

qf=x1 Uu=21 D¢ D Dr2dqsDrs
q;rzth
q;=$2

An equivalent representation is

gt = Aq+ Bx
u=Cq+ Hx
where
0 00 100
A=1{1 0 0 B=[0 0 0 c=01 1 1) H=(1 1 1)
0 0 O 01 0

First we compute the diagnostic matrix K:

CA=(1 0 0)
CA>=(0 0 0)

Hence
1 1 1
K=1[1 0 0
0 0 O

It can be observed that rank(K) = 2 since a system of the two first rows of K is linearly independent
but the system of all three rows is linearly dependent. We form a matrix 7' from the first two linearly
independent rows of K

111
T(100)

One of the right inverses of 7" is

R:

o = O

1
1
0
The reduced form L,in = (Amin,

1 1 1
Amin - TAR - <1 0 0>

1 11
Bmin—TB—<1 0 0)

Coin=CR=(1 1 1)

Hun=H=(1 1 1)
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(b)

It results in the equation system

er:CIZ@ffl@CQ u=q1 Dr1 Dx2Dx3

+
qo = T1

Realizations in CCF and OCF:
First derive the transfer function G(D)

o= o ((h el o) (14 e 1

=(leDaD* 1&D 1)

Controller canonical form: lO_bserver canonical form:
1
Z2
T T3
T2
xa
Consider a sequential circuit given in Problem 6.2 (b). Assume we enumerate delay modules from the left

to the right and from the top to the bottom. The next state variables and the output can be expressed by
the following system of linear equations

qf:xl U=21Dq DqgDr2DqsDxs

qum
q;rzﬂﬂz
4 =a

An equivalent representation is

gt = Aq+ Bx
u=Cq+ Hx
where
0 0 0O 1 00
1000 0 0 O
A=10 0 0 o B=1. 1 o C=(1 10 1 H=(1 1 1)
0 010 0 00

First we compute the diagnostic matrix K:

CA=(1 0 1 0
CA*>=(0 0 0 0)
cCA*=(0 0 0 0

Hence

OO ==
SO O
o o = O
o O O

It can be observed that rank(K) = 2. We form a matrix T from the first two linearly independent rows of

K
110 1
T(101o)
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One of the right inverses of 7' is

R:

OO = =

0
1
0
0
The reduced form Lin = (Amins Bmin, Cmins Hmin) of the linear circuit is now determined:

“(0 o)

1 1 0 1
b ran= (110 1)

o o oo

0
0
0
0

OO = O
OO = O
OO = =

1 0 0
1 10

o O O O

~— — o oo
|

oo o

Coin=CR=(1 1 0 1)

OO = O ~

OO = =

Hpm=H=(1 1 1)
It results in the equation system

erth@ﬂﬁ u=q Dxr1Prs®d s

+ _
q; =1 D2

Realizations in CCF and OCEF:
First derive the transfer function G(D)

G(D)=(1 0)(<(1) 2)@(8 (1)>D>_1G (1) 8)D®(1 1 1)

=(leDeD* 1®D* 1)

Controller canonical form: gbserver canonical form:
1
T2
T T3

4»(%)—»(@—» u w W u

T2

7.7 |

We number the D-elements from left to right and from top and down. Then we get the following matrix
representation:

% 01 0 0\ /g 1
¢ | _ |1 00 0] @ 0
|~ oo o oflael®|1]”
a 00 1 0/ \g 0
q0
q1
—(1 11 1 & (0
u=( ) | g | ® O

q3
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Derive the diagnostic matrix

C 1111
CA 1110
E=1ca 1 100
CA3 1 100

This has rank = 3. Use the first 3 linearly independent rows to form
11 1
T=1|(11 0
11 0

0 0

1

1

0

A right invers can be found in

0

1

R= 1

0

= O O

0
1
1
Hence, a minimal realization yields

0
Apin =TAR= (0

o O =
=)

o

[t

0
Bmin=TB = 0)

Crmin=CR=(1 0 0)

Hpyim=H=0
Hence,
&% =0
er =q2
q;r =q28x
U =4qo

The realization:

7.8

Assume we enumerate delay modules from the left to the right. The next state variables and the output can be

expressed by the following system of linear equations

G =rSR®Edu u=@p®dq

QSFZ%EB%EB(M
QJZ%@QQ@%
QI:%@%

An equivalent representation is

gt = Aq+ Bx
u=Cq+ Hx
where
0 1 1 1 1
1 01 1 0
A= 111 0 B = 0 C'_(O 1 0 1)
1 01 0 0
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First we compute the diagnostic matrix K:

CA=(0 0 0 1)
CA>’=(1 0 1 0)
CA*=(1 0 0 1)

Hence

== O O
OO O
o R OO
— O~

Since rank(K) = 4 the circuit is already in minimal form.

To get the transfer function matrix we derive

—1

1 D D D
D 1 D D
-1
UeAD)"=|pH b 14D o
D 0 D 1
Del1e D?*q D? D¢ D? D@ D? D@ D?
_ D @ D? D@1 D@ D? D@ D?
’1@1)@1)3@1)4 D3@D2@D D3eD*®eD D31 0
D3 DeD? Depl1e D2 D3
Hence,
DS

B T
G(D) = (C(1oAD)'BD@O H) = VLT r Y

Realization in controller canonical form:

@ @

Realization in obser\%er canonical form:

Nos u
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17.10

a) From the figure we get

ar _ (1D @Dr) _ (1
4 q1 B o 1

()= (mem) -0 D (@)= )

Hence,

() 56y o6 o

o) ()@ (o

b) Derive G(D) from the marices above,

G(D)=C(I®AD)"'BD& H = (1 0) (1@1) D

The inverse of (I ® AD) is

1eD D\ ' 1
D 1 1@ Do D?

Hence,

1 D? D?
_ | 17#DeD? 16D&D?
G(D) = | 18D% !
16DeD? 16D®D?

For an alternative solution see the exam from August 2003, Problem 5.

¢) Controller canonical form:

0 1 D

1 D
D 1®D

A\
®

I —»@ -

e

T —(+ >

L

0
1

)

T1
T2

T1
T2

)
)

D 0
0 D

)< (0 7)

d) Observer canonical form:

Zy

Z2

-0

ar

|

— U]

——» U9

1711

a) from the figure it is clear that the first output for the second (right) encoder equals the input, i.e., v] = «’.
Therefore, we can directly get the input sequence as the sequence for v;. Hence,

u' =0111111100. ..

b) The two encoders are both linear sequential circuits. To get some more knowledge about the behaviour we
find the generator matrices for the two encoders. We start with the left encoder and write the D-transform

for the outputs.

U1 (D)
UQ(D)

u
u

(D) ®uw(D)D & u(D)D?* =uw(D)(1® D& D?)
(D) ® w(D)D* ® u(D)D* = u(D)(1 ® D* & D?)
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In matrix form this is equivalent to

v(D) = (v1(D) v2(D)) = u(D)G(D) where G(D)= (1@ D®D* 1®D*® D?)
Similarly, for the right encoder we get

v(D) = (D)

vy(D) = /(D) & u'(D)D* & u'(D)D* & vh(D)D & vhD?
The second output can be rewritten as

vy(D)(1@ D ® D*)=/(D)(1® D* & D?)

or, equivalently,

19 D?® D3
"(D) =4 (D) —————_
w(D) = (D) T ohaps
Hence, in matrix form we get
1o D?® D3
U/(D) = ('U;(D) 'Ué(D)) = U/(D)G/(D) Where G/(D) = (1 ]W)

If the left encoder produces the output v(D) for the input (D), then
v(D)=uD)(l® D& D* 16 D*@ D?)

1® D?>® D3 1® D?>® D3
=uwD)(1eoDaeD3}) (1 ———— | =uD)|1 —————
u(D)(1® Do )< 1@D€BD3) wl )( 16 D& D3

Hence, the right encoder will generate the same output for the input
u'(D) =u(D)(1® D& D?)
Similarly, if the right encoder produces the output v'(D) for the input (D), then

2 3
1€BDEBD>:,() 1

—— _(1eDbeD® 1eD*aD?
1®D® D3 1@1)@1)3(@ ® ® D* @ D)

Hence, the left encoder will generate the same output for the input

WD) =12 De D8

17.12

(a) The connection polynomial is C(D) = 1 & D? & D*. The state-transition graphs are

[N
0000
0010 1000 1100 1111
v * v i
[ o101 0100 [ 1001 0111

(b) The connection polynomial is C(D) = 1 & D*. The corresponding state-transition graphs are

[N [N
0000 1111 B
0101
[ o010 | [ 1000 | [ o110 | [ 1001 | [ 1110 | [ 1011 |
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(c) The connection polynomial is C(D) = 1 & D3 & D*. The corresponding state-transition graphs are

[ 1010 [—» o101 |
7.13
(a)
s = [1001] = S(D) = ﬁgj T 6(911?51?21;23%?12%)' B 1@11?5167921;2173'
(b)
s = [1010]® =5 S(D) = 1:52 = (11;9522)2 =1 @1D2 (= s =[10]7).
(c)
D D?
s = [0001]* —= S(D) = oD

(d) denote t = 0 with a dot (). Then

s = 101[01]> = 1010101010101 . ...

2,8(D)=D?e1eD*eD'aDe ...
1
1¢ D?’

=D?*1leD*¢eD*¢eD%q..)=D"2

7.14

(a) This problem can be solved in two ways. The first is by series expansion, in our case long division,

D?3D®  @D’eD®  @D*®D% - 2 00110110110, .. = 00[110]°° = 0[011]>°
1o Do D? [ D?
D*¢D3¢D*
D3 @D?
D? @D*¢D®
D’
D® aDS¢D"
DY ¢D7
DS &D"a D"
DB

In the alternative solution we notice that (1 ® D @ D?)(1® D) = 1 @ D3. Then, S(D) can be expressed as

D? D*(1® D) 1eD pt
S(D) = = —~ = D? — — 00[110]°°.
(D) 1o D@ D2 1@ D3 1@ D? [110]
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(b) Againuse (1 D @ D?)(1® D) = 1@ D? to rewrite S(D),

1eD (1@ D)(1® D) 1@ D? pt %
D) =D -D -D D s =0[101]®.
SD)=Pioha e 1o D3 Tops =00l

(c) Again use the D-transform and rewrite S(D),

leD*  (1eD)(1®D* 1&DoD?*¢D?

S(D)

“1eoDoD? 13 D3 1o D3
1eD® DoD? 14D pt
= - — =19 D——— —— 1[110]*°.
a0 “Taps P TaD8 [110]
(d) Similarly,
D 1 D(1® D@ D? 1® D
S(D) = @ 5 = ( 3 ) ® 3
1&D 1eeD®D 1&D 1eD
lo D> D? D? D .
_ — ——— =1 D— — s =1[010]".
1e D3 ®iaps  19Pigpr e =100
17.15
a) Expand C(lD) = 15 — zpr with long division until the rest is R(D) = D?, then the period is T' = p.
1®DIS@D4$D6 @DS@DQGBDI()@DH
1eD*@D* [1
1@D3eD*
D3@D*
D.‘S @DG@D7
D'eDSeD”
D* eD"eD?
DS ®D?
DG @DQ@DH)
DS@DQ@Dlo
D8 @Dll@DIQ
D°%eDYeD" oD
D? oD?gD"
Dl[)@Dll @DIS
DlO @Dlg@Dl4
Dll @D14
Dll @DM@Dls
Dl5
Hence, T' = 15.
b) Expand zpizp0-
I@DS
1eD3®D% [ 1
1eD3eDS
D3@DS
D3@DSaD?
D9
Hence, the period is T' = 9.
7.16

First use the D-transform to get S(D)

D(1eDaeD3eD*®D*®D"eD*a DM e D?¢ D'3)

s = [011011101010111] 25 (D) = 16D

Calculate ged(16 D' 1@ DeD3@ D* @ D*© D¢ D& D' @ D'? ¢ D'3) with Euclid’s algorithm
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1@D15 — (1@D@D3®D4@D5@D7@D9@D11@D12@D13)(D@D2)
e(leDeD*eD*eD"eD e D’ D¢ D' @ D'?)

leDeD*eD*@D°e D@D @D ®D"?&D" = 1e#DeD*eD*'e@D'@D*eD*® D'’ @ D" @ D'?)D
o(1leD?*eD*eD"eD*e D)
1®D®D3®D4@D7@D8@DS)@DIO@DII@DIQ — (1@D2@DJ@D7@D8@D10)(D@D2)
o(leD*@D*'eD°*®D"® DY)
1oD*¢D*eD"aD*e D' = (1eD*¢D*@e D¢ D" D°)D
o(leDeD?*&D e Da D)
leD*¢D*eD’eD"eD° = (1oDeD?*@ D¢ D e D") (19 D& D?) @0
= gcd = 19DeD*¢ D Da DT,

Extracting this from S(D) gives

S(D) = leDeD*¢D’eDa D’ Da D3¢ D7
C1eDeD2eD3@DSe D7 16D®D3®DA*eD @ D"a D8
- Do D3¢ DT
C1eDeD3®Di*eDeD e D8

Hence, the connection polynomial for the shortest shift register is

C(D)=1eDeD*®&D*e D’ D" ®D®.

1717 |

We start with the upper LFSR. The connection polynomial is C;(D) = 1 & D & D*. Since the starting state is
505152583 = 1000 we get the numerator P(D) from

Do 1 0 0 0\ /1 1
| |1 1 0o0]|o] |1
p| T lo 1 1 0]lof |0
Ps 001 1/ \0 0

Hence, the sequence generated by the upper LFSR can be written as

_ Pi(D) 1®D

Sl(D)’cl(D) “1oDao D!

Similarly, the connection polynomial for the lower LFSR is C»(D) = 1 ® D & D? @ D? and the numerator can
be derived as

Do 1 0 0\ /1 1
ml=11 10| [0o]=11
Po 11 1) \1 0

Hence, the sequence from the lower LFSR can be written as

_ P(D) 1+ D
- Cy(D) 1@DaeD?@ D3

So(D)

Combining these two sequences with a modulo two adder yields
_ 1eD 1+D
leDeD* " 1e®DoD?*@ D3
(1leD)(1leD®D?*® D3 & (1+D)(1® Do DY)
(1o Do DY) 1® Dd D2e D3)
D2EBD5
loD>o D@ D7
D2 @DB EBD4
leDaD?*@e D3¢ D*@ DS

5(D) = 51(D) & S2(D)
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since ged(D? @ D, 1@ D@ D& D7) = 16 D. This implies that the sequence s can be generated by an LFSR of
length 6 and connection polynomial C(D) = 14 D & D? & D* & D* & DS. The construction is not the cheapest
one.

An alternative solution is to notice that the sequence from the lower LFSR can be written as

P>(D) 1+ D 1

Co(D)  1@DeD2@a D3 1@ D?

S (D) =

That is, we can replace the lower LFSR with an LFSR of length 2 and connection polynoimial C3(D) = 1 & D?.

7.18

Denote the upper sequence by « and the lower sequence by y. Then the resulting sequence is z = A y. The
sequences are:

x = [110]*° = 110110110110110110110110. ..
y = [1011100]*° = 101110010111001011100101 ...

z =100110010110000010100100 . .. = [100110010110000010100]>
Hence,
2(D) = 1oD*eD* @ D" Do Do D e D'  P(D)
- 1@ D2t 1 @ D21
B (1® D* @ D*)G(D)
" (1®D?@® D*® D5 @ DS)G(D)
B 1 D?*® D?
1®D2@ Di¢ D5a DS’
where

G(D) = ged(P(D),14 D*) =19 D*¢ D° & D* @ D° @ D'?> ¢ D'* @ D',

17.19 |

With long division of ﬁ we get the period T' = 15, which is the longest possible period for a linear shift
register of length L = 4. (There are 2 = 16 states and one of them is the zero state, which we cannot use)

a) false.
b) true.
¢) false.

d) true.
Again use long division to get the series expansion of S(D),
3 7 8 D
S(D) = —1oD*®eD"® D@ --- == 100100011. ..,
from which we conclude that the starting state for the LFSR is 1001.

e) false.

f) true.

The starting state for the observer canonical form of C(D) is P(D) in S(D) = %.

|

g) true.
h) false.
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7.20
(a)
i |l si| 6 T(D) | C(D) | L | Cp(D) l
—=T1T-= = 1 0 1 1
ol oo - g 7 g 2
1foj]o - " ” " 3
211 1 1o D? 3 " 1
311 1o D? 1¢ Do D* " g 2
4011 1@ Do D? l@eDeD*@ D? " " 3
51010 " " " " 4
6|0|1|1leDeD*eD’ | 1eDeD*¢9D’eD" |4 |1oDeD*0D |1
71 11]0 " " " " 2
(b)
i||lsi| 6] TMD) | CD) | L|GCD) |1
—1=-T1T- - 1 0 1 1
o 1]1 1 1®D 1 g 1
Lf1]o ” " ” ” 2
2 110 ” ” " ” 3
310101 1eD 1eDeD? |3 | 10D |1
40|1|1eDeD* |1¢eD*0D?|” ” 2
51 110 ” ” ” ” 3
61 010 ” " ” " 4
7110 " " " ” 5
81 11]0 ” ” ” ” 6
91 11]0 ” " ” ” 7
(©)
i||si| 6] T(D) | CMD) | L|GCyD) |1
-1r-T1- - 1 0 1 1
0o 1]1 1 1®D 1 g 1
1|o|1]1®D 1 " " 2
2 1] 1 1 1®D? 2 " 1
31010 ” " ” " 2
41110 ” " " " 3
51010 ” ” ” " 4
61 110 ” " " ” 5
71010 " " ” ” 6
81 11]0 ” ” " " 7
9| 1|1|1eD* | 1®D*®D" |8 |16D? |1
7.25

The output sequence from the LSFRis s = [11110]°°. Thus S(D) = (14 D& D?>® D3) /(14 D5). First we can try
to find a shorter LFSR by using either Euclid’s algorithm for polynomials or the Berlekamp-Massey algorithm
with stop criterion i = N + L. However, by computations we see that ged(1® D @ D* @ D3,1® D) =1® D
and (1 D%)/(1® D) =1® D & D? ® D?* & D* which is the coupling polynomial in the original LFSR. Thus
no shorter LFSR exists.

From the starting state, we get the following (reachable) state transitions graph where the labels on the brances

are the outputs

0111

N

1111

Oy

\\1
1110

/

1011

1101

~A
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We now try to find a (non-linear) sequential circuit. Note that the following solution is not unique.

From the table we see that only five states are reachable from the starting state, so we need [log, 5] = 3 state
variables. For example we can use the following mapping

IS

doq192 H ququi €

100 101 1
101 111 1
111 110 1
110 000 1
000 100 0

That is, gog192 = 100 corresponds to the state 1111, gog1g2 = 101 to 1110 and so on. Then we have

The

% =aVa
o =
G =qVd
U =dqo
circuit layout is omitted.

7.26

a)

b)

Q)

The output for a given state is the left-most bit. A state with a 1 as output is the inverse of a state with a 0
as output. Therefore, we conclude that half of the states give output 1 and half of the states give output 0.
A cycle in a maximal-length sequence run through all possible non-zero states. Hence, there are 2" ~! 1s
and 2m~! — 1 0s.

Since (a ® b)? = a? ® b we can write the sequence as
1 1 2
So(D) = = =(S(D 2: D D2 ”.2: D2 D4
D)= ey (cw)) (S(D)* = (s0 @51 D& 5:D* @ ---)? = 50 & 51 D* & ;D" @

or, equivalently,
Sg = 800510520 PN

Hence, the period for sy is 7o = 2T = 2™+ — 2. The number of ones is still 2”71, Since there is one 0
inserted afeter every bit in s the number of Os is 2™~ — 1+ 2™ —1=3.2m"1 — 2,

Since C'(D) is irreducible and that deg(C'(D) > 2 we have that gcd(C(D),1& D) = 1. By using the hint we
get
1 C(D)A(D)® (19 D)B(D)

S5(D) = cD)1eD) C(D)1® D)

From deg(A(D)) < deg(1 & D) we get that A(D) = 1. Then we can rewrite the above expression as

C(D)& (1® D)B(D) _ B(D) 1

S0 =—emiien oD TeD)

B(D)

Since deg(B(D)) < deg(C(D) and that S(D) is a maximal-length sequence we know that oDy is a shift of

S (D). We also know that m is the all one sequence. Therefore, the sequence S3(D) must be the inverse

of a shift of S(D) and that will have the same period as S(D), T5 = 2™ — 1. The number of 1s and zeros is
2m=1 — 1 and 2™~!, respectively.

7.27

a)

Use the Berleycamp-Massey algorithm to find (one of) the shortest linear feedback shift register that gives
the output v = 1001101.
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il si]é] T(D) | C(D) | L | Cy,(D) | 1
-r-T1- - 1 0 1 1
o171 1 1®D 1 1
11011 1eD 1 2
21010 3
3111 1 1® D3 3 1
40111 1@ D3 19 Do D3 2
510101 1oDoD? 1o Do D> D3 3
6| 1|1|1eDeD*oD? 1® D@ D? 4 |1eDeD*dD? |1
7 || Stop

Hence, the shortest LFSR that generates the sequence s ones is

&)

The starting state is marked in the figure.

b) To get a minimal LFSR that generates the sequence cyclically we continue the BM algorithm until ¢

N+ L.
i | si]d] T(D) | Cc(D) | L | C,(D) | 1
6 |1 ]1]1eDeD?>¢D? 19 D@ D? 4]1eDeD*eD?]1
710 2
8 010 3
91011 1® Do D? leDoD*eD3®D*eD*® D8 | 6 1@ Do D? 1
10110 2
11110 3
120010 4
13 || Stop
This gives that the following LFSR is of minimal length
) () T\ () T\
AU U AU AUy AU
-— 1 0 0 1 1 0
¢) We can use the result in b) to derive the ged. First we notice that
S(D)_IEBD3@D4@D6_ P(D)
N 1¢ D7 " 1eD&D2aD3@D*e D5¢ DS
where gcd(P(D),1® D @ D?*@ --- @ DY) = 1. Since
(leDeD?*¢---eD% (1@ D)=1&D"
we have that ged(1 ® D7,1® D*@® D*® D%) =1® D.
7.28
Use the Berlecamp-Massy algorithm to find the linear complexity:
i s ] 6| T(D) | C(D) | L | C,(D) | !
[ — 1 1 1
"0]ofo0 1 2
1111 1 1+ D? 1
211 1+ D? 1+ D+ D? 2
31100 3
41011 14+ D+ D? 1+D+D?+D? 14+ D+ D? 1
5 110 2
6| 0|1]|1+D+D%+D? 1+ D+ D* 1+D+D*+D? |1
7]o0]o0 2
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Since the last L is 4 the linear complexity is L;(s) = 4. To get the cyclic complexity we continue with the
algorithm to see if the minimum length of an LFSR that generates the sequence cyclically also is 4. To get the

cyclic recursion we must continue until i = N + L.

iJlsi]o]| T | C(D) | L] Cy(D) l
7Tofo - 1+ D+ D? 4 [1+D+D?*+D3[2
gifofo 3
9110 4
101110 5
110 |1|1+D+D* | 1+D+D*+D>+DS+ D"+ D% |8 1+ D+ D* 1

In step 11 the complexity grows to 8, and since it will not decrease, and the length of s is 8, we conclude that
this will also be the result. Hence, the two complexities are not equal.

(If we would have continued the algorithm until ; = 16 we get the feedback polynomial

C(D)=1+D*+D*+D*+D°+ D"+ D®

and L = 8. Since we also have the obvious polynomial C(D) = 1 + D® we see an example that there can be

several LFSRs of the same length that solves the problem.)

7.29

See solution to Problem 5.24.



