
EITF45 - Computer Communication
Lab 1 - Specifications

Point to Point Communication
Manual Version 4.1.2

Electrical and Information Technology

November 20, 2019

1

2

Table of Contents

Part I Protocol and Communication Specifications 1

I.1 A layered model . 1

I.2 Application . 1

I.3 The Link Layer . 2
I.3.1 Frame structure . 2
I.3.2 Addressing (Not used in this lab) . 2
I.3.3 DATA and ACK frames . 2
I.3.4 Sequence numbers (Not used in this lab) 3

I.4 Reliable transmission (Not studied in this lab) 3

I.5 The Physical layer . 4
I.5.1 Collision avoidance . 4

I.6 Interfaces . 4
I.6.1 Application – Layer 2 (L2) interface . 4
I.6.2 L2 – Layer 1 (L1) interface . 5

Part II Some Background Theory 5

II.7 L1 Pulses and L2 Frames . 5

II.8 Preamble and Start Frame Delimiter (SFD) 6

Part III Arduino, Code and Shield 6

III.9 Arduino Software . 7
III.9.1 Arrays in Arduino (C/C++) . 8
III.9.2 Data types in Arduino (C/C++) . 8
III.9.3 Bit operations . 8

III.9.3.1 Read or write a specific bit from a byte 9
III.9.3.2 XOR . 9

III.9.4 Ternary (Conditional) operator . 9
III.9.5 Useful Arduino function(s) . 10

III.9.5.1 millis() . 10
III.9.5.2 memmove() . 10

III.10 Debugging tools . 10
III.10.1 Serial Monitor . 10
III.10.2 Debug LEDs . 10

III.11 The Development Node . 10

III.12 The Skeleton and the Library . 11
III.12.1 Skeleton Details . 11

III.12.1.1Variable Declarations . 11
III.12.1.2The setup function . 11
III.12.1.3The loop function . 12
III.12.1.4Your functions area . 12

i

III.12.2 Library Details . 12

III.12.2.1Global Constants . 13

III.12.3 The Shield class . 14

III.12.3.1Shield() . 14

III.12.3.2Shield’s public variable(s) . 14

III.12.3.3Shield::begin() . 15

III.12.3.4Shield::get address() . 15

III.12.3.5Shield::select led() . 15

III.12.3.6Shield::adConv() . 15

III.12.3.7Shield::allLedsOn() . 15

III.12.3.8Shield::allLedsOff() . 15

III.12.3.9Shield::allDebsOff() . 15

III.12.3.10Shield::halt() . 16

III.12.3.11Shield::int to binarray() . 16

III.12.3.12Shield::binarray to int() . 16

III.12.4 The Transmitter class . 16

III.12.4.1Transmitter() . 16

III.12.4.2Transmitter::transmit frame() . 16

III.12.5 The Receiver class . 17

III.12.5.1Receiver() . 17

III.12.5.2Receiver::receive frame() . 17

III.12.6 The Frame class . 17

III.12.6.1Frame() . 17

III.12.6.2Frame::generate() . 18

III.12.6.3Frame::decompose() . 18

III.12.6.4Frame::print() . 18

III.12.6.5Frame::get dst() . 18

III.12.6.6Frame::get payload() . 19

III.12.7 The Payload class . 19

III.12.7.1Payload() . 19

III.12.7.2Payload::get payload() . 19

III.13 The RECEIVED struct . 19

III.14 Arduino Hardware . 20

III.15 Board . 20

III.16 Shield . 21

III.16.1 Communication . 22

III.16.2 Application . 23

III.16.3 Service and debug . 23

ii

Part IV The Master Node 24
IV.16.4 States . 24
IV.16.5 L1 PHY RECEIVE . 25
IV.16.6 L2 LINK FRAME DECOMPOSE . 26
IV.16.7 L7 APP ACT . 27
IV.16.8 L1 PHY SEND . 27
IV.16.9 Controlling the Master Node . 27

iii

iv

Part I

Protocol and Communication
Specifications

I.1 A layered model

The base for the communication protocol in this and the following lab is a layered reference
model. The model has three layers. As can be seen in Figure I.1, the transport and network
layers are not defined in the model.

L7 - Application

L6 - Presentation

L5 - Session

L4 - Transport

L3 - Network

L2 - Link

L1 - Physical

Figure I.1: The lab three layered reference model.

The naming convention follows [7] regarding encapsulation. A message is passed from
and to the application layer. On the Layer 2 (L2) layer a frame is defined.

The layers as well as the interfaces between the layers are described in the following
sections.

I.2 Application

The Development Node and the Master Node have different objectives on the application
layer. The Development Node supports the operator’s control of the application, while
the Master Node reacts on the data sent to it from the Development Node. The message
structure is similar in both use cases as can be seen i Table III.10. For simplicity, the two
application message fields are implemented as integer arrays in the library.

1

Table I.1: Application layer message structure.
Field Length (bits) Description

Payload 8 Message content

I.3 The Link Layer

This layer defines the frame that is passed between the nodes. Addressing, reliable trans-
mission, i.e. Automatic Repeat Request (ARQ), and fault detection is also defined here.

I.3.1 Frame structure

The L2 frame format is seen i Table I.2. The frame size is fixed. Each frame has two
address fields, the destination and the source. Each address field is four bits long. There
are two types of frames defined, DATA and ACK.

Each frame has a 4-bit sequence number.

The payload is allocated 8-bits and used for the application layer message payload.

Each frame can carry 8 parity bits using the CRC-8 Bluetooth generator 0xA7 calcu-
lated over the frame. If Cyclic Redundancy Check (CRC) is not used, this field should be
set to zero.

Table I.2: L2 frame structure. See ?? for corresponding variable names.
Field Length (bits) Description

From 4 Source address

To 4 Destination address

Type 4 Type of message [ACK | DATA]

SEQ 4 Sequence number

Payload 8 Data, i.e. application message payload

CRC 8 CRC of frame

I.3.2 Addressing (Not used in this lab)

Each node has a four-bit address, i.e. an address space of 16. The Development Node’s
address should be code in the Development Node’s sketch. The destination’s address is set
using the four-toggle dip-switch located on the board. A node shall only process Receiverd
messages address to it. If addressing is not used, these fields should be set to zero.

I.3.3 DATA and ACK frames

A DATA frame carries application data, which is stored in 8 bits Payload field. A DATA
frame is denoted by a 00102 in the Type field.

2

An ACK frame is the answer to a correctly Receiverd DATA frame. It is only sent
once, and carries an empty payload. The SEQ number field contains the sequence number
of the acknowledge DATA frame. An ACK frame is denoted by a 00012 in the Type field.

I.3.4 Sequence numbers (Not used in this lab)

The sequence number must be incremented for each new DATA frame. In an ACK frame
it is used to identify the successfully Receiverd DATA frame that is acknowledged. If
sequence numbers are not used, this field should be set to zero.

I.4 Reliable transmission (Not studied in this lab)

The nodes employ a Stop-and-wait ARQ scheme. The sender of a DATA frame shall
reTransmitter that frame, persisting the sequence number, if it does not Receiver an ACK
frame with the same sequence number from the recipient within a certain time. The
number of re-transmissions must be limited. Similarly, if retrieved successfully and is
correctly addressed, the recipient of a DATA frame shall Transmitter an ACK to the
sender pertaining the same sequence number, see Figure I.2

Propagation

Propagation

Pr
oc

es
si

ng

R
ec

ei
vi

ng
 D

AT
A

In
sp

ec
tin

g
fr

am
e

R
ec

ei
vi

ng
 A

C
K

Sender Receiver

tim
e

DATA

ACK

Tx

Tx

Figure I.2: Example communication scenario (The time lines are not proportional)

3

I.5 The Physical layer

The communication link is physically achieved by using a pair of Infra-red (IR) Light
Emitting Diodes (LEDs) (λ = 900nm) over a half duplex channel. Communication on the
link is coded and propagated using On-Off keying; the symbol 0 is coded as no light and
and the symbol 1 is coded as light. On Layer 1 (L1), symbols corresponds to one bit on
L2. A pulse length, corresponding to one symbol, is defined as Ts = 100ms. The node’s
respective clocks are not synchronised.

As an example of a signal, the preamble is shown in Figure I.3.

s(t)

t [s]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 0 1 0 1 0 1 0

Figure I.3: The preamble as a signal.

The symbols, that corresponds to the L2 frame bits, must be preceded by a preamble
of eight symbols followed by an Start Frame Delimiter (SFD) of eight symbols. The full
L1 symbol train can be seen in Table I.3

Table I.3: Train of symbols on the L1 layer
Field Length (bits) Description

Preamble 8 0b10101010, for synchronisation of Receiver to Transmitterted pulses

SFD 8 0b01111110, marks start of a frame

Data 32 The L2 layer frame

I.5.1 Collision avoidance

Accessing the channel is done without checking if it is available or not. Thus, the channel
mimics Pure ALOHA. [2]

I.6 Interfaces

Between each two layers in the reference model, an interface is defined.

I.6.1 Application – L2 interface

The interface between the application and the Layer 2 (L2) equals the message format,
see Table III.10. The address field should contain the destination’s address when sending

4

the message from the application to the L2 layer, and the source’s address when the
application Receivers a message from the L2 layer. The payload field should contain the
selected LED when sending the message from the application to the L2 layer, and the
LED to turn on when the application Receivers a message from the L2 layer.

I.6.2 L2 – L1 interface

The interface between the L2 and the L1 layers is a buffer containing the bits forming
the L2 frame. The bit buffer is 32 bits long. As discussed above, it is suggested that this
buffer is implemented as an array of bytes, each byte contains exactly one bit.

Part II

Some Background Theory

II.7 L1 Pulses and L2 Frames

Source Dest Type Seq Payload CRCStart Flag (SFD)Preamble

8 bits 8 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

1st Byte 2nd Byte 3rd Byte 4th Byte

L2 frame[]

L1 symbol train

Figure II.4: The L2 frame structure as seen on L1 and L2.

The L1 symbol train, as seen in Figure II.4, consists of three parts, the preamble, the
SFD and payload. The payload contains the L2 frame with its header, payload and tail,
correspond to individual integer variables. The SFD is stored as a byte, but is actually
bit oriented. Since the frame has a fixed length, there is no need for a stop flag.

On L1, information is transferred as pulses of light or the absence of light. Since On-
Off keying is used, the pulses are all of the same duration, i.e. the sample time Ts, which
in our case is 100 ms. The bytes and integers forming the frame has to be converted to
something bit oriented, i.e. the symbols, before we can transmit a frame. Let the binary
value 1 represent a light pulse and the binary value 0 represent a pulse with no light.
Our task is now send all the symbols as pulses. In our case the symbols are the same

5

as L2 frame bit values. Once the symbols corresponding to the preamble, the SFD and
the L2 are at hand, we can send the symbol train by reading out pulse representations
from the arrays PREAMBLE[], SFD[] and the tx_frame, one symbol by one symbol, with
an interval of Ts, and let them control the sending device, in our case the IR diode. Note
that the preamble and the SFD belongs to the physical layer, L1, while the tx_frame and
rx_frame belongs to the link layer, L2, but is also defined as the interface between the
two layers.

The reception of signals or pulses works more or less the same way, but backwards.
Light pulses are sampled each Ts once the preamble has trigged the Receiver. The sampled
values will be represented by a 1 or a 0, which will be stored in a Receiver buffer. Ones
the SFD has been identified, the data part of the frame is located. The bits can now be
converted and stored directly in the RECEIVED::frame, i.e. the interface between L1 and
L2, which is sent to the L2 where the decomposition to L2 frame variables can take place.

II.8 Preamble and SFD

Each frame is preceded by an eight symbol preamble. The objective of the preamble is
twofold. The first objective is to trigger the Receiver to start sampling. This is solved
by allowing the idle Receiver to be triggered by a positive flank. Since no light is used
when the link is idle, a transition to light, i.e. a high pulse, is this positive flank. The
other objective of the preamble is to allow the Receiver’s sampler to synchronise to the
Receiver. If the Transmitter shifts between light and no light in a well-known fashion,
the Transmitter can adjust the timing of the sampler so that it synchronises with the
Transmitter. The preamble has the bit pattern 10101010, which solves both objectives.

In our case, we only use the leading positive flank of the preamble for to trigger the
Receiver. The synchronisation of the clocks can be skipped, because the micro-controllers’
clocks are stable enough when compared to the pulse time Ts and the frame length.

Once the Receiver has started to sample pulses in a synchronised fashion, the Receiver
has to detect the start of the L2 frame. This is done by comparing a consecutive number,
equal to the length of the SFD, of Receiverd symbols with the SFD. The SFD is a byte in
our case, so each time a new incoming symbol has been decoded it, and the seven symbols
preceding it, is compared against the SFD. One way of doing this is to left shift the
incoming symbols into a buffer of the same length as the SFD and simply perform bitwise
XOR with the SFD. Once this operation results in a zero value the SFD has been found,
and the buffer can be omitted, and symbols can be translated to bits and stored in the
interface buffer Receiver::frame_buffer[].

6

Part III

Arduino, Code and Shield

This chapter contains reference information on the Arduino software and hardware. Doc-
umentation of the skeleton and library, i.e. the basis for your coding, is found here.

III.9 Arduino Software

An Arduino micro-controller is programmed using a language which has many similarities
with C/C++. You preferably develop your code in the Arduino Integrated Development
Environment (IDE) [4].

A sketch has two primary functions, setup() and loop(). [3] The setup() function
is where you declare how you want the Input/Output (I/O) to behave and initialise your
global variables, see Listing III.1. The code contained inside the loop() is looped in run-
time. You can declare your own functions, variables, and constants outside of the these two
functions. Please consult the Arduino beginners guide [5] (https://www.arduino.cc/en/Guide/HomePage)
before you begin the lab. There are numerous code example to be found by a quick web
search. Have a look at the typical Blink.ino sketch. This is the equivalent to the “Hello
World” program.

Listing III.1: Sample Arduino code, Transmit (Tx) and Receive (Rx)

// Assign pin num
const int PIN RX = 0 ; // Receiver pin \#
const int PIN TX = 13 ; // Transmitter pin \#

void setup () {
S e r i a l . begin (9 6 0 0) ; // Conf igure s e r i a l por t
pinMode (PIN TX , OUTPUT) ; // Conf igure output pin

}
void loop () {

// Transmitter
d i g i t a l W r i t e (PIN TX , HIGH) ; // turn on the IR LED
delay (1 0 0) ; // wai t f o r a 100ms
d i g i t a l W r i t e (PIN TX , LOW) ; // turn o f f the IR LED

// Receiver
r x b i t = analogRead (PIN RX) ; // read input pin
S e r i a l . p r i n t l n (r x b i t) ; // p r i n t input

// Delay u n t i l next c y c l e
delay (1 0 0 0) ; // wai t f o r a 1 s

7

}

III.9.1 Arrays in Arduino (C/C++)

In Arduino, as in C/C++, a vector is represented by an array, typically initiated with a
declaration like int Values[10];. Then an array of length 10 is allocated. The values
are accessed by indexing starting at 0, so the values are Values[0], Values[1], . . .,
Values[9]. As in C/C++ there is no runtime check of the indexing, so you can continue
to write and read outside the array without any complaints. If so, you are writing and
reading other memory elements then intended, which will typically cause strange errors.
So be aware of your index pointers. Apply the modulus operator % with an appropriate
constant on the index pointer. 1

The C++ library string.h contains some useful functions for handling arrays. On is
memmove(), see Section III.9.5.2, which you can use directly in your sketch.

III.9.2 Data types in Arduino (C/C++)

Table III.4 lists some data types that might be useful in this lab. Using proper types for
different variables helps to save the memory and accelerate the process. For example, we
claim variable SFD as type byte since the SFD contains 8 bits.

Table III.4: Ardunio data types
Datatype RAM usage Range

boolean 1 byte logical

byte 1 byte 0 ∼ 255

int 2 bytes -32,768 ∼ 32,767

unsigned int 2 bytes 0 ∼ 65,636

long 4 bytes -2,147,483,648 ∼ -2,147,483,647

unsigned long 4 bytes 0 ∼ 4,294,967,295

III.9.3 Bit operations

To read, write or manipulate individual bits in variables, bit operations are needed. Bit
operations can be performed on any type of signed and unsigned integer variables, byte,
integer, word or long. In the following, operations on bytes are used as example.

1Initialisation of the array allocates space for 10 integers in this case. The variable Value is a pointer to
the first value in the memory, and the index is used to increment the pointer a number of positions in the
memory. An integer uses 4 bytes so the value of Value[i] is read by pointing to the memory at position
Value[0]+i*4.

8

III.9.3.1 Read or write a specific bit from a byte

Vital bit operations are the setting and resetting as well as reading of individual bits in
a variable. The Arduino programming language has a set of bit operations which allows
you to address individual bits. These operations are considered slow. Instead you can use
logical AND (&), logical OR (|) and shift operations.

Left shift << and right shift >> are used to move bit(s) a defined number of steps left
or right. When shifting left, the most significant bits are shifted out and 0s are shifted
in from the right. Similarly, shifting right means that the least significant bits are shifted
out of the byte and 0s are shifted in from the left.

Logical AND (&) can be used to mask out not valid bits or to set bits to 0. If you want
to set a specific bit to 1 you use logical OR (|).

Listing III.2 shows an example to read the third bit from the right-hand side of a byte.

Listing III.2: Sample Arduino code, read a bit

byte my byte , t h i r d b i t ;
t h i r d b i t = (my byte >> 2) & 0x01 ;

In this example, >> 2 moves the content of my_byte two steps to the right. Thus the third
bit is moved to the Least Significant Bit (LSB) position, and & 0x01 zeros all the bits
other than the LSB.

To write bits e.g. the lower part of a byte, use << to move the bits to the right position
and the use logical or (|) to add the bits in. See the example below, Listing III.3 to save
parameter_1 to the higher 4 bits of the frame and parameter_2 to the lower 4 bits.

Listing III.3: Sample Arduino code, write bits

byte parameter 1 = 0x07 ; // parameter 1 = [0 1 1 1]
byte parameter 2 = 0x0A ; // parameter 2 = [1 0 1 0]
byte frame ;
frame = (parameter 1 << 4) | parameter 2 ;

Note that the bit-shift operator will not change the variable itself. The result have to
be assigned a variable with the = operator.

III.9.3.2 XOR

The XOR operator, ^, in Arduino works bitwise. XOR of two bits returns 0 if they are
the same, otherwise returns 1. XOR of two bytes returns 0 if they are the same, otherwise
returns a non-zero value.

III.9.4 Ternary (Conditional) operator

condition ? <if true> : <if false>

The ternary, or conditional, operator can be very hand. Instead of writing if-else state-

9

ments, you can assign a variable a value depending on a condition. In the following example
the variable largest is assigned the greater value of a and b: largest = (a>b) ? a : b;.

III.9.5 Useful Arduino function(s)

III.9.5.1 millis()

unsigned long millis() : Returns the number of milliseconds since the start of the
Arduino bord. See [1].

III.9.5.2 memmove()

void * memmove (void * destination, const void * source, size_t num) :
Copies t_num bytes from the memory position pointed out by source to the memory
position pointed out by destination. The pointers source and destination can be
pointing to the start of arrays. To copy the L2 frame in rx.frame[] to tx.frame[], issue
the commmand memmove(rx.frame, tx.frame, LEN_FRAME);.

III.10 Debugging tools

There are two debugging tools available: the Serial Monitor and LEDs on the shield.

III.10.1 Serial Monitor

For debugging purpose, you can let the sketch send text messages to the Serial Monitor
by using the Serial functions in your code. Open the Serial Monitor by clicking the
magnifying glass in the upper right corner of the Arduino IDE.

The functions that are most used are Serial.print() and Serial.println(). Both
take a string or a variable as input parameter, and both accept formatting strings. But
for this lab it is enough to know that Serial.println() prints the content of the input
parameter, and finishes with a carriage return and a line feed, while Serial.print() only
prints the content.

III.10.2 Debug LEDs

There are three debug LEDs on the shield for your disposal. The pins associated with
each LED are found in Table III.12. Writing a HIGH to a pin turns the corresponding
LED on; turn it of by writing a LOW.

III.11 The Development Node

During the lab you will have access to one Master Node and a Development Node. The
Development Node’s Hardware (HW) is identical to the Master Node but the Development

10

Node will not come with a complete Software (SW) stack. It will be your task to achieve the
goals outlined in ?? by programming the Development Node accordingly. When developing
the node you can seek help from Master Node specifications in Part IV and the supplied
SW skeleton. A state machine is provided in the void loop() function.

III.12 The Skeleton and the Library

For your help, a skeleton and a supporting library has been devised.

The skeleton is the base for your code. For one thing, it defines the Arduino sketch
functions setup() and loop(). The state machine is the major part of the loop() func-
tion, and it is here you add your code. At the end of the code there is a place-holder for
your functions. Also, a few constants and variables are defined. The skeleton is described
in Section III.12.1.

The library defines global constants, arrays and variables, and classes you can use in
your code. As with all classes, they have to be instantiated into objects before you can
use them. The library is described in Section III.12.2

III.12.1 Skeleton Details

The skeleton begins with the library include statement: #include <etsf15lib.h>. The
skeleton is then divided into four major areas:

• Variable declarations

• The setup function

• The loop function

• Area for optional functions

III.12.1.1 Variable Declarations

In this area of the skeleton a number of variables are declared, that can be used in the
state machine and your functions.

Note that the constructors of the classes are called without parenthesis. This is because
these constructors takes no arguments when they are initiated. You may need to re-assign
the arguments to some of them in you implementation if needed.

III.12.1.2 The setup function

Initialisation of the hardware at hand and the software is performed in the setup function.
The Shield class has a begin() method which is called from here.

11

Table III.5: Global variables
Type Name, declaration Description

int state = NONE state machine control variable

int selected_led for temporary storage

int src source address

int dst destination address

int type message type

Shield sh Declaration of object, instance of class Shield

Transmitter tx Declaration of object, instance of class Transmitter

Receiver rx Declaration of object, instance of class Receiver

Payload Payload Declaration of object, instance of class Payload

RECEIVED received Received message struct

Frame tx_frame Transmit frame

Frame rx_frame Receive frame

III.12.1.3 The loop function

The loop function hold the main part of the sketch, i.e. the state machine. Each state
has its own code area, and is finished of with a break statement. See the skeleton code
for more details.

III.12.1.4 Your functions area

This area is found at the end of the skeleton. If you are to construct your own functions,
this is the recommended area for them.

III.12.2 Library Details

The library ETSF15lib contains constants and methods that supports the construction
of the lab sketch. As with all Arduino libaries, the ETSF15lib is built on classes that
defines variables and methods. The global constants are not defined in classes and can
thus be used once the library is included in the main sketch. To include the library an
\#include <etsf15lib.h> statement has to be deployed in the beginning of the sketch.
The global constants and the classes Shield, Transmitter, Receiver, Frame, Payload
and RECEIVED are described in the following sections.

12

III.12.2.1 Global Constants

Table III.6: Definition of the library ETSF15lib constants.
Type Name, declaration Value Description

int T_S 100 ms Ts, symbol length

int AD_TH 900 A/D converter threshold

int MAX_TX_ATTEMPTS 3, see note 1) Max transmission attempts

int LEN_PREAMBLE 8 preamble size

byte PREAMBLE_BYTE 0b10101010 preamble

byte PREAMBLE[] {1,0,1,0,1,0,1,0} byte array version of preamble

byte SFD_BYTE 0b01111110 Start Frame Delimiter (SFD)

int LEN_SFD 8 SFD size

byte SFD[] {0,1,1,1,1,1,1,0} byte array version of SFD

int LEN_BUFFER see note 2) L1 buffer size

int LEN_FRAME_PAYLOAD 8 L2 frame payload size

int LEN_FRAME_TYPE 4 L2 frame message type size

int LEN_FRAME_SEQNUM 4 L2 frame sequence number size

int LEN_FRAME_ADDR 4 L2 frame address size

int LEN_FRAME_CRC 8 L2 frame CRC size

int LEN_FRAME see note 3) L2 frame length

int FRAME_TYPE_ACK 1 ACK message type

int FRAME_TYPE_DATA 2 DATA message type

byte test_frame[] see note 4) a full test frame

int LED_B 10 Blue LED pin

int LED_R 11 Red LED pin

int LED_G 12 Green LED pin

int DEB_1 9 Debug LED #1

int DEB_2 8 Debug LED #2

int DEB_3 7 Debug LED #3

int PIN_RX 0 Rx diode pin

int PIN_TX 13 Tx LED pin

int BUTTON 2 Button pin

Note 1): The number of transmission tries for each unique message is limited. Note 2):
The LEN_BUFFER is equal to the sum of LEN PREAMBLE + LEN SFD + LEN FRAME ADDR*2

+ LEN FRAME TYPE + LEN FRAME SEQNUM + LEN FRAME PAYLOAD + LEN FRAME CRC.
Note 3): The LEN_FRAME is equal to the sum of LEN FRAME ADDR*2 + LEN FRAME TYPE

+ LEN FRAME SEQNUM + LEN FRAME PAYLOAD + LEN FRAME CRC, i.e. the L2 frame header,
payload and tail.

13

Note 4): The test_frame[] contains a full L2 frame excluding preamble and SFD. It is
not a Frame type object but a simple array, you can send it bit by bit by reading all the
elements in the array. See Listing III.2 to know how to send this test_frame[] array.

For the state machine, a number predefined states, have been defined as constants.

Table III.7: Predefined states (constants)
Type Name Value Description

int NONE -1 No state

int L1_PHY_Receiver 0 Rx: Receiver frame

int L1_PHY_SEND 1 Tx: Transmitter frame

int L2_LINK_FRAME_DECOMPOSE 10 Process Receiverd payload on layer L2

int L2_LINK_FRAME_COMPOSE 11 Process the L2 payload to be sent

int L2_LINK_ACK_REC 12 Process reception of an ACK frame

int L2_LINK_ACK_SEND 13 Process sending of an ACK

int L2_LINK_RETransmitter 14 Control of ARQ

int L7_APP_PRODUCE 20 Produce content/message to send

int L7_APP_ACT 21 Act on Receiverd payload

int WAIT -2 Wait

int DEBUG -3 Print all system proporties

int HALT -4 ”halt” the system, i.e. an infinite loop

Note that the WAIT and DEBUG states are not included in the skeleton’s state ma-
chine.

III.12.3 The Shield class

The Shield class contains variables and methods that are related to hardware and the
sketch. Two of the methods are defined static, thus they must be called with the class
name, not the object name.

III.12.3.1 Shield()

The class constructor Shield() is empty and takes no arguments.

III.12.3.2 Shield’s public variable(s)

The public variable of this class is an integer to hold the node’s own address.

Table III.8: Shield()’s public variable(s)
Type Name, declaration Description

int my_address node’s own address

14

III.12.3.3 Shield::begin()

void begin() : Initialisation of sketch and shield. Must be called in the beginning of the
sketch’s setup function.

• Input: None

• Returns: Nothing

III.12.3.4 Shield::get address()

int get_address() : Reads the adress Dual In-line Package (DIP) switches and returns
the values as one integer.

• Inpute: None

• Returns: Address accordning to DIP switch settings

III.12.3.5 Shield::select led()

int select_led() : Returns the pin number of the selected LEDs on the shield. When
called, all three LEDs are lit. You can now press the button. As long as you hold down
the button the LEDs will be turned on in a round robin fashion. Release the button when
the LED of your choice is lit.

• Input: none

• Returns: pin number of selected LED

III.12.3.6 Shield::adConv()

int adConv(int value) : A very simple A/D converter. Takes the integer value, which
is the sampled IR detector value, and returns a binary value, 1 or 0. The constant AD TD
contains the threshold value used in the conversion.

III.12.3.7 Shield::allLedsOn()

void allLedsOn() : Turn all application LEDs on.

III.12.3.8 Shield::allLedsOff()

void allLedsOff() : Turn all application LEDs off.

III.12.3.9 Shield::allDebsOff()

void allDebsOff() : Turn all debug LEDs off.

15

III.12.3.10 Shield::halt()

void halt() : Infinity empty loop, that effectively finishes execution of a sketch.

• Input: None

• Returns: Nothing

III.12.3.11 Shield::int to binarray()

static void int_to_binarray(int in, int len, byte bin_array[], int start) :
Converts decimal value in in to byte array bin_array of len bit values from start cell
in the array.

• Input: in integer to convert, len number of bits to convert to, bin_array[] desti-
nation array, start where in bin_array[] to start filling in the bits

• Returns: nothing

III.12.3.12 Shield::binarray to int()

static int binarray_to_int(byte bin_array[], int start, int len): Converts a
binary value, stored as a len bytes in an array from cell start, to an integer.

• Input: bin_array[] array contaning the binary value, start start in bin_array[]

of binary value, len number of cells of binary value

• Returns: integer containing the decimal value

III.12.4 The Transmitter class

The Transmitter class contains methods and variables for creating a byte array version
of an L2 frame. The variables corresponds to the individual fields of the L2 frame.

III.12.4.1 Transmitter()

The class constructor Transmitter() is empty and takes no arguments.

III.12.4.2 Transmitter::transmit frame()

Sending a frame on the physical layer. Takes a Frame as argument.

• Input: Frame

• Return: Nothing

16

III.12.5 The Receiver class

The Receiver class contains a method and variables for decomposing a Receiverd L2
frame into individual integers corresponding to the L2 frame fields.

III.12.5.1 Receiver()

The class constructor Receiver() is empty and takes no arguments.

III.12.5.2 Receiver::receive frame()

Receive a frame on the physical layer. Takes the time out as argument:

• Input: int time_out (ms), the maximum waiting time to receive an ACK after a
frame is transmitted.

• Return: RECEIVED message struct.

III.12.6 The Frame class

The Frame class private variable:

Table III.9: Frame struct private variables
Name type Description

from address int Source address

to address int Destination address

type int Type of message [ACK | DATA]

seqnum int Sequence number

payload int Data, i.e. application message payload

crc int CRC of frame

III.12.6.1 Frame()

The class constructor Frame(). Several constructions can be used.

• Frame(), empty construction, takes no arguments, the variables are empty with this
construct.

• Frame(byte frame_array[]), construct the frame with an array of bits, the bits
will be converted to the int variables.

• Frame(Payload payload,int src,int dst,int type,int seqnum,int crc), con-
struct the frame with all the arguments and assign the to the variables. The payload
is an Payload object but will be converted to an int to assign the Frame::payload

variable.

17

• Frame(Payload payload, int src, int dst, int frame_type), construct with
only payload, source address, destination address and the frame type, the other
variables remain 0 in this construction.

If a Frame object needs to be reconstructed, operator= is provided in the library for copy
assignment, example usage: ’

// Empty c on s t r u c t i on
Frame tx frame ;
// Reconstruct (copy assignment)
tx frame = Frame(payload , src , dst , type , seqnum , c rc) ;
}

III.12.6.2 Frame::generate()

Convert all the int variables into bits and form an array with all the information, may
return error if some variables are empty.

• Input: Nothing.

• Return: An array of byte[]

III.12.6.3 Frame::decompose()

Outputs and prints all the int frame information with human readable format.

• Input: Nothing.

• : Return: Nothing.

III.12.6.4 Frame::print()

Prints all the int frame in the format of an array with 0 and 1.

• Input: Nothing.

• Return: Nothing.

III.12.6.5 Frame::get dst()

Get the destination address of the frame.

• Input: Nothing.

• Return: int, the destination address.

18

III.12.6.6 Frame::get payload()

Get the payload message of the frame.

• Input: Nothing.

• Return: int, the payload message.

III.12.7 The Payload class

Table III.10: Payload struct private variables
Variable type Description

led int Message content

III.12.7.1 Payload()

The class constructor Payload(). Several constructions can be used.

• Payload(), empty construction, takes no arguments, the variables are empty with
this construct.

• Payload(int data), construct with the application message, assigned to the Payload::led
variable.

Reconstruction method is similar to Frame if needed.

III.12.7.2 Payload::get payload()

Get the payload message.

• Input: Nothing.

• Return: int, the payload message.

III.13 The RECEIVED struct

This struct is returned by Receiver::receive_frame() method, it consist s of two vari-
ables:

• Frame frame, the franme converted from the received bits by the Receiver, empty
if time out.

• boolean time out, indicating if the receiving process was time out or not.

19

III.14 Arduino Hardware

Both the Master Node and the Development Node are constructed using an Arduino board
and micro-controller [6], complimented by a custom made shield attached to the board.
The micro-controller is single threaded and is programmed using a language called Pro-
cessing. The programming environment used in the lab is the default Arduino software,
that can be downloaded from [3]. Both the Arduino board and the development environ-
ment are open source. In this lab you will not modify the HW but focus on implementing
the desired functionality in SW. In Section III.15 you will get an overview of the Arduino
board, followed by an introduction to the shield in Section III.16. A brief introduction to
the software is given in Section III.9.

III.15 Board

The Arduino micro-controller is fitted onto a small board with a set of digital and analogue
I/O pins, see Table III.11. These pins can easily be manipulated and read from the
programmable micro-controller. The RISC micro-controller is 8-bit and is clocked to 16
MHz. You communicate with the board over USB, see Figure III.5

Figure III.5: Arduino UNO board

20

Table III.11: Arduino specifications
Component Property

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB

Flash Memory for Bootloader 0.5 KB

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

III.16 Shield

The shield attaches to the board and supplies the communication, interaction, and ser-
vice/debugging functionality. The boards pins have been assigned according to Table III.12.
The shield is laid out as Figure III.6.

Table III.12: Pin assignments
Assignment Pin number Type

Rx diode 0 Analogue

TX diode 13 Digital

Button 2 Digital

Address DIP 1 6 Digital

Address DIP 2 5 Digital

Address DIP 3 4 Digital

Address DIP 4 3 Digital

Debug LED #1 7 Digital

Debug LED #2 8 Digital

Debug LED #3 9 Digital

Application Blue LED 10 Digital

Application Green LED 11 Digital

Application Red LED 12 Digital

21

Debug LED 3
Debug LED 2
Debug LED 1

1 2 3 4

Red LED

Green LED

Blue LED

Button

IR LED (Tx)

Address DIP switches

IR Photo diode (Rx)

Tx indicator LED

Figure III.6: Shield layout

III.16.1 Communication

The communication circuit provides the board with a set of Rx and Tx IR diodes. The
Tx diode is complimented with a red LED to provide visual feedback whether the node is
Transmitterting.

To be able to assign the node an address, the communication circuit is also equipped
with a four-toggle dip-switch, see Figure III.7. The most significant bit is set using the
left-hand-side switch, DIP Switch 1 which is connected to PIN 6.

22

135v Analouge: 0
IR LED

Address DIP Switches

1
2

IR Photo diode

3
4

5

6

4

3

Tx indicator LED

Figure III.7: Communication circuitry

III.16.2 Application

The application circuit consists of three differently coloured LEDs and a button, see Fig-
ure III.8.

101112

BlueGreenRed

15v

Button

Figure III.8: Application circuitry

III.16.3 Service and debug

In addition to the debug messages sent to the Arduino IDE Serial Monitor , the shield has
been equipped with the three user customisable LEDs accessible on pins 7, 8, 9, labelled
D3, D4 and D5 on the circuit board. Additionally, as previously mentioned, the Tx LED
will light when the Tx diode is activated.

23

789

Debug LED 1
Debug LED 2

Debug LED 3

Figure III.9: Service and debug circuitry

Part IV

The Master Node

The Master Node consists of an Arduino and the lab-shield. Its HW is identical to the
Development Node. The Master Node is a fully functioning node for receiving data and
acting upon that data. The documentation below details how the node’s functionality has
been implemented and how you can expect it to behave.

IV.16.4 States

The Master Node has been implemented with the states detailed below. The state transi-
tions can be configured in any manner to achieve different functionalities and behaviours.
As the Arduino node is single-threaded it cannot work in parallel for both receiving data
and Transmitterting data. In Figure IV.10 the behaviour for receiving data and replying
with an ACK is shown.

24

Start L1 RECEIVE L1 SEND

L2 ACK SEND

APP ACTL2 FRAME REC

Figure IV.10: Master Node states

IV.16.5 L1 PHY RECEIVE

The L1 Receiver state, depicted in Figure IV.11, starts with continuously reading the
input source. This continues until the preamble has been detected or the process has
timed out. When the preamble has been found, sampling of the Receiverd symbols starts.
These symbols are first stored in a byte buffer to detect the SFD. Once the SFD has been
found, the sampled symbols can be stored in the Receiver buffer, which is here used as
the interface between L1 and L2.

If no preamble or SFD has been detected within a time-out, the execution exits this
state and the sketch’s loop() funtion gets control.

Because execution is sequential, sampling and SFD detection is done in sequence. To
keep the symbols synchronised a delay of Ts− T̂c, where T̂c is the estimated SFD detection
time, is added between samplings.

25

Start

Read IR

Start of
preamble? Time out?

Read IR
and

check for SFD

SFD
found?

Time out?

Read symbols,
store as bits
in interface

buffer

Stop=True

Stop=False

Yes

No

No

No

No

Yes

Yes

Yes

Figure IV.11: Flow chart of the L1 Receiver state.

As soon as the Receiver detects signals the debug LED #1 starts to flash, following
the Receiverd symbol. When the Master Node detects an SFD it will show a fixed light on
debug LED #1, and the debug LED #2 will flash following the Receiverd symbol. Once
all symbols of the frame are Receiverd Debug LED #2 will go to fixed light.

IV.16.6 L2 LINK FRAME DECOMPOSE

The L2 LINK FRAME DECOMPOSE state is depicted in Figure IV.12. The Receiverd
frame is decomposed into the frame field integers. A successful outcome of a conditional
CRC validation will light debug LED #3 on the Master Node’s shield. Now other con-
ditions can be applied to for example check the correct recipient and follow the type of
frame.

26

Start

Decompose
message

Validate
CRC? CRC OK?

Check
Address?

Address
OK?

Stop=True

Stop=False

Yes

No
Yes

No

Yes

No Yes

No

Figure IV.12: L2 frame Receiver state

IV.16.7 L7 APP ACT

The message that was decoded in the L2 LINK FRAME DECOMPOSE state is acted
upon in this state. If for example, the Receiverd message instructed the node to turn on
the blue LED this state will carry out that action.

IV.16.8 L1 PHY SEND

This state sends the content of the Transmitter::frame[], preceeded by a preamble and
SFD. The state is set to L1_PHY_Receiver and the major loop continues.

IV.16.9 Controlling the Master Node

The four DIP switches have an extended functionality on the Master Node. The objective
has been changed from mere addressing to control of different functions, see Table IV.13.

The two DIP switches #1 and #2 are used to both activating addressing and to set
the address of the Master Node. If both switches are set to off, frame addresses are not
relevant. If one of the switches is set to on, addressing is active and the address of the
Master Node is determined by the switches, i.e. 1, 2 or 3.

DIP switch #3 controls the sequence number in the returned ACK. If set to off, the
Master Node ACKs with the sequence number of the Receiverd frame. If set to on, the
sequence number is decremented by one before stored in the ACK frame. This allows for
test of the Development Node’s ARQ.

27

DIP switch #4 controls whether CRC functionality should be active (DIP switch set
to on) or inactive (DIP switch set to off).

Table IV.13: Master NodeDIP switch functions
DIP switch State Function

1 & 2 off, off Addressing not active

1 & 2 off, on Addressing active, address = 1

1 & 2 on, off Addressing active, address = 2

1 & 2 on, on Addressing active, address = 3

3 off normal sequence number handling

3 on ACKed sequence number = Receiverd sequence number - 1

4 off CRC inactive

4 on CRC active

28

References

[1] https://www.arduino.cc/en/reference/millis.

[2] Alohanet, pure aloha. https://en.wikipedia.org/wiki/ALOHAnet#Pure_ALOHA.

[3] Arduino software. https://www.arduino.cc/en/Main/Software, 2015.

[4] Arduino software (ide). https://www.arduino.cc/en/Guide/Environment, 2015.

[5] Getting started with arduino. https://www.arduino.cc/en/Guide/HomePage, 2015.

[6] Introduction to the arduino board. https://www.arduino.cc/en/Reference/Board,
2015.

[7] James Kurose and Keith Ross. Computer Netwroking, A Top Down Approach. Pearson,
7th edition, 2017.

29

