
1 
 
 

 

 

INTRODUCTION TO VLSI  
EITF35 

 

LAB REPORT FOR EXTRA LABS 4 and 5 – Implementation of 
Convolutional Neural Networks on FPGA   

 

By 

 

ILAYDA YAMAN  

2018-11-12 

 

Department of Electrical and Information Technology 
Faculty of Engineering, LTH, Lund University 

SE-221 00 Lund, Sweden 

 
 

 

  

 

2018 



2 
 
 

  



3 
 
 

Abstract 

The purpose of this report is to explain the design that have been done in 
the extra labs of class “Introduction to VLSI”. The aim of the design is to 
detect images as circles or rectangles in real time with low power and high 
speed. As a result, the design is implemented on a FPGA board and a 
Convolutional Neural Network (CNN) has been used. The weights were 
given beforehand and the architecture of the CNN was fixed. First layer 
includes a convolutional layer and an activation layer (RELU) which is the 
main focus of lab 4. Other layers, a pooling layer, two FC layers, one sigmoid 
and another RELU layer, are implemented for lab 5.  

 

  



4 
 
 

Contents 

Abstract ......................................................................................................... 3 

Contents ........................................................................................................ 4 

1. Design specifications ............................................................................. 5 

2. Introduction ........................................................................................... 5 

3. Convolutional Neural Networks ............................................................ 5 

3.1. Equations ....................................................................................... 7 

4. Hardware architecture .......................................................................... 7 

4.1. Convolution Layer.......................................................................... 8 

4.2. Pooling layer .................................................................................. 9 

4.3. Fully Connected Layer ................................................................. 10 

5. Implementation results and analysis .................................................. 12 

5.1. FPGA implementation ................................................................. 12 

5.2. Result analysis ............................................................................. 13 

6. References ........................................................................................... 13 

 

  



5 
 
 

1. Design specifications 

The design should be able to classify 64x64 sized images into having 
either circle or rectangle, which means the valid output of the system will be 
either a one or zero. The board, Nexys 4 Artix-7 FPGA Trainer Board, is 
provided in the lab. For compatibility with predefined clock of the board, it 
is desired that the design can operate on 100 MHz clock frequency. Power 
should not be more than 1W in order to achieve low power. The area is limited 
by the resources that FPGA can provide.   

2. Introduction 

The main aim of the design is to detect if a 64x64 image is a circle or 
rectangle. As it can be seen from the Fig. 1. if the output of the CNN is a 0, 
the image is interpreted as a circle and if the output is 1, it is a rectangle.  

 

 
Figure 1. showing the image classification by Convolutional Neural 

Network 

The motives to build such a design is to be able to do image detection 
with low power, high efficiency and in real time which can be used in many 
purposes such as autonomous vehicles, drones, medical equipment etc. To 
achieve this, the design was built as hardware efficient as possible.  

 

3. Convolutional Neural Networks  

For image detection, the most common deep learning architecture is to 
build a Convolutional Neural Network (CNN). The main operation of this 
architecture is the convolution layer as the name suggests.  



6 
 
 

In my design, the 64x64 image is convolved with a 4x4 matrix which 
includes the precalculated weights to obtain a 61x61 matrix. Since the images 
are only black and white only one dimensional convolution is needed. The 
basic representation of convolution in one dimension can be seen in Fig. 1.   

 

Fig. 1. Showing the Basic Concept of Convolution [1] 

 

Convolution layer is followed by an activation layer which was chosen 
to be a ReLU, a Rectified Linear Unit. The function is shown in (1) and a 
basic graphical representation of RELU is given in Fig. 2.  

 
Fig. 2. Showing the graphical representation of ReLU  

Another key layer is the max pool layer where the number of elements in 
the matrix is reduced considering their magnitude which is also called down 
sampling. This allows the network to be less prone to noise and not to be 
affected by small changes. Normally, the stride size is equal to one side of the 
max pool matrix [1]. A simplified version of max pool is provided in Fig. 3.  



7 
 
 

 
Fig. 3. Showing a Simplified Version of Max Pool Layer [1] 

 

Fully Connected (FC) layer includes matrix multiplication of the outcome 
of max pool layer and accumulation of the matrix elements. Weights are given 
for this layer specifically. It is similar to convolution layer, but more weights 
are presented.  

 

3.1. Equations 

 
(1) 

4. Hardware architecture 

 

 

Fig. 1. General Architecture of the Convolutional Neural Network 



8 
 
 

 

The weights were initialized from a different top module which was 
provided in the lab files. There are 67 weights in total; 16 conv, 48 FC1 & 3 
FC2. In order to store them, they were placed in registers when the data 
signal is valid.  

4.1. Convolution Layer 

 

Convolution layer is divided into 5 different modules: Controller, 
memory unit, PE, Accumulator and ReLU. A general view of these modules 
is given in Fig. 2.  

 

Fig. 2. Overall Architecture of Convolution Layer 

 

Controller mainly synchronizes modules with each other by control 
signals and make sure memory module is in the right address when read. 
The 64x64 image data was stored in 4 distributed memories as .COE files. 
By having 4 different RAMs, we achieve both area and speed efficient 
design, the basic idea behind the memory unit can be seen from Fig.3.  

 



9 
 
 

 
Fig. 3. Showing How Memory and PE Module are Connected 

 

By having 4 different memories, convolution can start without waiting 
for the first complete 16 data which saves a lot of area and time which can be 
again seen from Fig. 3.   

 

4.2. Pooling layer  
 

The second part of the design starts with a max pool layer where the 
number of values carried to the next layer is reduced. A 15x15 filter is applied 
to find the maximum value in each case and passed to the next stage. Since 
the output of convolution in this case is a 61x61 matrix the last row and 
column of the matrix is discarded. At the end a 4x4 matrix is obtained which 
includes the highest number in each section. Fig. 4. shows the general idea of 
max pool layer in my design.   



10 
 
 

 
Fig. 4. Showing the Max Pool Layer 

 

4.3. Fully Connected Layer  
 

Fully Connected (FC) layer includes matrix multiplication of the outcome 
of max pool layer and 48 weights that were given for this layer specifically. 
In Fig. 4, it is shown that the output of max pool layer (4x4 matrix) is 
multiplied with 3 different sets of weights 3x16, which are represented as 
Weight1, Weight2, Weight3. Each set includes 16 unique weights.  



11 
 
 

 
Fig. 5. Showing the First Fully Connected Layer   

 

First FC layer is followed by another ReLU and second FC layer which 
includes 3 weights. These weights are multiplied and accumulated in one final 
value which is sent to last layer. If this value is bigger than zero, the image is 
classified as a rectangle and the design gives a value of 1 or if the value is 
smaller than zero the image is classified as a circle. 

 

 

 

 

 

 

 

 

 

 



12 
 
 

5. Implementation results and analysis 

5.1. FPGA implementation 
This session presents the FPGA implementation results, including the 

resource utilization and timing performance.  

First of all, Table 1. shows the area utilization of the design in the FPGA 
and available resources. Also, it can be seen what percentage of the FPGA is 
used by the design  

 

 Utilization of Resources  

Resource Utilization Available Utilization % 

LUT 1677 63400 2.65 

LUTRAM 256 19000 1.35 

IO 5 210 2.38 

FF 777 126800 0.61 

BUFG 1 32 3.13 

 

All user specified timing constraints are met according to timing reports 
of Vivado. Also, it can be seen from the reports that “Worst Negative 
Slack” is 1.193 ns, “Worst Hold Slack” is 0.110 ns and “Worst Pulse Width 
Slack” is 3.750 ns. From these values, we can conclude that, the design will 
perform as it was designed and there won’t be unknown states. The power 
analysis of the design can be seen from Fig. 1.  

 
 



13 
 
 

 
Fig. 1. Showing the Power Analysis of the Design 

5.2. Result analysis 
Considering the timing, it can be seen from the timing reports that all the 

specifications are met. However, there are some remarks that should be noted. 
In the first version of my design, I didn’t properly pipeline my fully connected 
layer, so it was acting like a bottleneck of my design. I didn’t meet my time 
requirements since Fully Connected layers requires a high number of 
multiplications and additions and most of the time this part includes the 
longest critical path. As a result, I changed my design to be properly pipelined 
by adding registers in proper places. 

Furthermore, some compression algorithms can be applied to increase the 
number of arithmetical operations which will highly increase the 
performance. Also, more research should be done considering the 
requirements of the convolutional neural networks and look if there are more 
hardware friendly algorithms to be applied.  

6. References  

[1] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of 
Deep Neural Networks: A Tutorial and Survey," in Proceedings of the 
IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017. 

 


