
Summary This application note is written for logic designers who are new to HDL verification flows, and
who do not have extensive testbench-writing experience.

Testbenches are the primary means of verifying HDL designs. This application note provides
guidelines for laying out and constructing efficient testbenches. It also provides an algorithm to
develop a self-checking testbench for any design.

All design files for this application note are available on the FTP site at:

PC: https://secure.xilinx.com/webreg/clickthrough.do?cid=134003&license=RefDesLicense

UNIX:
https://secure.xilinx.com/webreg/clickthrough.do?cid=134002&license=RefDesLicense

Introduction Due to increases in design size and complexity, digital design verification has become an
increasingly difficult and laborious task. To meet this challenge, verification engineers rely on
several verification tools and methods. For large, multi-million gate designs, engineers typically
use a suite of formal verification tools. However, for smaller designs, design engineers usually
find that HDL simulators with testbenches work best.

Testbenches have become the standard method to verify HLL (High-Level Language) designs.
Typically, testbenches perform the following tasks:

• Instantiate the design under test (DUT)

• Stimulate the DUT by applying test vectors to the model

• Output results to a terminal or waveform window for visual inspection

• Optionally compare actual results to expected results

Typically, testbenches are written in the industry-standard VHDL or Verilog hardware
description languages. Testbenches invoke the functional design, then stimulate it. Complex
testbenches perform additional functions—for example, they contain logic to determine the
proper design stimulus for the design or to compare actual to expected results.

The remaining sections of this note describe the structure of a well-composed testbench, and
provide an example of a self-checking testbench—one that automates the comparison of actual
to expected testbench results.

Figure 1 shows a standard HDL verification flow which follows the steps outlined above.

Since testbenches are written in VHDL or Verilog, testbench verification flows can be ported
across platforms and vendor tools. Also, since VHDL and Verilog are standard non-proprietary

Application Note: Test Benches

XAPP199 (v1.1) May 17, 2010

Writing Efficient Testbenches
Author: Mujtaba Hamid

R

XAPP199 (v1.1) May 17, 2010 www.xilinx.com 1

© 2000 - 2010 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=134003&license=RefDesLicense
https://secure.xilinx.com/webreg/clickthrough.do?cid=134002&license=RefDesLicense
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Writing Efficient Testbenches
R

languages, verification suites written in VHDL or Verilog can be reused in future designs
without difficulty.

Constructing
Testbenches

Testbenches can be written in VHDL or Verilog. Since testbenches are used for simulation only,
they are not limited by semantic constraints that apply to RTL language subsets used in
synthesis. Instead, all behavioral constructs can be used. Thus, testbenches can be written
more generically, making them easier to maintain.

All testbenches contain the basic sections shown in Table 1. As mentioned, above, testbenches
typically contain additional functionality as well, such as the visual display of results on a
terminal and built-in error detection.

The following examples show some constructs used frequently in testbenches.:

Generating Clock Signals
Designs that use system clocks to sequence logic must generate a clock. Iterative clocks can
easily be implemented in both VHDL and Verilog source code. The following are VHDL and
Verilog examples of clock generation:

VHDL:

-- Declare a clock period constant.
Constant ClockPeriod : TIME := 10 ns;
-- Clock Generation method 1:
Clock <= not Clock after ClockPeriod / 2;
-- Clock Generation method 2:
GENERATE_CLOCK: process
begin

Figure 1: HDL Verification Flow Using Testbenches

Testbench Verification Flow

Testbench Instantiates Design
and Provides Stimulus

Design Under Test
(DUT)

Testbench
Displays Values

on Terminal

Verify Result
on Waveform

Testbench
Checks for

Correctness

XAPP199_01_042001

Table 1: Sections Common to Testbenches

VHDL Verilog

Entity and Architecture Declaration Module Declaration

Signal Declaration Signal Declaration

Instantiation of Top-level Design Instantiation of Top-level Design

Provide Stimulus Provide Stimulus
2 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

wait for (ClockPeriod / 2)
Clock <= ’1’;
wait for (ClockPeriod / 2)
Clock <= ’0’;
end process;

Verilog:

// Declare a clock period constant.
Parameter ClockPeriod = 10;
// Clock Generation method 1:
initial begin
forever Clock = #(ClockPeriod / 2) ~ Clock;
end
// Clock Generation method 2:
initial begin
always #(ClockPeriod / 2) Clock = ~Clock;
end

Providing Stimulus
To obtain testbench verification results, stimulus must be provided to the DUT. Concurrent
stimulus blocks are used in testbenches to provide the necessary stimuli. Two methods are
employed: absolute-time stimulus and relative-time stimulus. In the first method, simulation
values are specified relative to simulation time zero. By comparison, relative-time stimulus
supplies initial values, then waits for an event before retriggering the stimulus. Both methods
can be combined in a testbench, according to the designer’s needs.

Table 2 and Table 3 provide examples of absolute-time and relative-time stimuli, respectively, in
VHDL and Verilog source code.

Table 2: Absolute Time Stimulus Example

VHDL-ABSOLUTE TIME Verilog-ABSOLUTE TIME

MainStimulus: process begin
Reset <= '1';
Load <= '0';
Count_UpDn <= '0';
wait for 100 ns;
Reset <= '0';
wait for 20 ns;
Load <= '1';
wait for 20 ns;
Count_UpDn <= '1';
end process;

initial begin
Reset = 1;
Load = 0;
Count_UpDn = 0;
#100 Reset = 0;
#20 Load = 1;
#20 Count_UpDn = 1;
end
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 3

http://www.xilinx.com

Writing Efficient Testbenches
R

VHDL process blocks and Verilog initial blocks are executed concurrently along with other
process and initial blocks in the file. However, within each (process or initial) block, events are
scheduled sequentially, in the order written. This means that stimulus sequences begin in each
concurrent block at simulation time zero. Multiple blocks should be used to break up complex
stimulus sequences into more readable and maintainable code.

Displaying Results
Displaying results is facilitated in Verilog by the $display and $monitor keywords. Although
VHDL does not have equivalent display-specific commands, it provides the std_textio package,
which allows file I/O redirection to the display terminal window (for an example of this
technique, see Self-Checking Testbenches, below).

The following is a Verilog example in which values are displayed on the terminal screen:

// pipes the ASCII results to the terminal or text editor
initial begin
 $timeformat(-9,1,"ns",12);
 $display(" Time Clk Rst Ld SftRg Data Sel");
 $monitor("%t %b %b %b %b %b %b", $realtime,
 clock, reset, load, shiftreg, data, sel);
 end

The $display keyword outputs quoted parenthetical text (“...”) to the terminal window. The
$monitor keyword works differently, since its output is event-driven. In the example, the
$realtime variable (assigned by the user to the current simulation time) is used to trigger the
display of values in the signal list. The signal list starts with the $realtime variable, and is
followed by the names of other signals whose values are to be displayed (clock, reset, load, and
others). The beginning “%” keywords comprise a list of format specifiers, used to control how
each signal value in the signal list is formatted for display. The format list is positional—each
format specifier is sequentially associated with a successive signal name in the signal list. For
example, the %t specifier formats the displayed $realtime value in time format, and the first %b

Table 3: Relative Time Stimulus Example

VHDL-RELATIVE TIME Verilog-RELATIVE TIME

Process (Clock)
Begin
If rising_edge(Clock) then
TB_Count <= TB_Count + 1;
end if;
end process;
SecondStimulus: process begin
if (TB_Count <= 5) then
Reset <= '1';
Load <= '0';
Count_UpDn <= '0';
Else
Reset <= '0';
Load <= ‘1’;
Count_UpDn <= ‘1’;
end process;
FinalStimulus: process begin
 if (Count = "1100") then
 Count_UpDn <= '0';
 report "Terminal Count
Reached, now counting down."
 end if;
end process;

always @ (posedge clock)
TB_Count <= TB_Count + 1;
initial begin
if (TB_Count <= 5)
 begin
 Reset = 1;
 Load = 0;
 Count _UpDn = 0;
 end
else
 begin
 Reset = 0;
 Load = 1;
 Count_UpDn = 1;
 end
end
initial begin
 if (Count == 1100) begin
 Count_UpDn <= 0;
 $display("Terminal Count
Reached, now counting down.");
 end
end
4 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

specifier formats the clock value in binary format. Verilog provides additional format-specifiers,
for example, %h is used for hexadecimal, %d for decimal, and %o for octal formats (consult a
Verilog reference for a complete list of keywords and format specifiers).

The formatted display results are shown in Figure 2.

Simple
Testbenches

Simple testbenches instantiate the user design, then provide stimuli to it. Testbench output is
displayed graphically on the simulator's waveform window or as text sent to the user’s terminal
or to a piped text file.

Below is a simple Verilog design representing a shift register:

module shift_reg (clock, reset, load, sel, data, shiftreg);
input clock;
input reset;
input load;
input [1:0] sel;
input [4:0] data;
output [4:0] shiftreg;
reg [4:0] shiftreg;
always @ (posedge clock)
begin
 if (reset)
 shiftreg = 0;
 else if (load)
 shiftreg = data;
 else
 case (sel)
 2'b00 : shiftreg = shiftreg;
 2'b01 : shiftreg = shiftreg << 1;
 2'b10 : shiftreg = shiftreg >> 1;
 default : shiftreg = shiftreg;
 endcase
end
endmodule

The following simple testbench examples instantiate the shift register design.

Verilog Example:

 module testbench; // declare testbench name
 reg clock;
 reg load;

Figure 2: Simulation Results Echoed to Terminal
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 5

http://www.xilinx.com

Writing Efficient Testbenches
R

 reg reset; // declaration of signals
 wire [4:0] shiftreg;
 reg [4:0] data;
 reg [1:0] sel;
 // instantiation of the shift_reg design below
 shift_reg dut(.clock (clock),

.load (load),

.reset (reset),

.shiftreg (shiftreg),
 .data (data),

.sel (sel));
 //this process block sets up the free running clock
 initial begin
 clock = 0;
 forever #50 clock = ~clock;
 end
 initial begin// this process block specifies the stimulus.
 reset = 1;
 data = 5'b00000;
 load = 0;
 sel = 2'b00;
 #200
 reset = 0;
 load = 1;
 #200
 data = 5'b00001;
 #100
 sel = 2'b01;
 load = 0;
 #200
 sel = 2'b10;
 #1000 $stop;
 end
 initial begin// this process block pipes the ASCII results to the
//terminal or text editor
 $timeformat(-9,1,"ns",12);
 $display(" Time Clk Rst Ld SftRg Data Sel");
 $monitor("%t %b %b %b %b %b %b", $realtime,
 clock, reset, load, shiftreg, data, sel);
 end
 endmodule

The testbench, above, instantiates the design, sets up the clock, then provides the stimuli. All
process blocks start at simulation time zero and are concurrent. The pound sign (#) specifies
the delay before the next stimulus is applied. The $stop command instructs the simulator to
stop testbench simulation (all testbenches should contain a stop command). Finally, the
$monitor statement echoes the results in ASCII format to the screen or a piped text editor.

Following is a VHDL testbench that instantiates and provides stimulus to the Verilog shift
register design above.

VHDL Example:

library IEEE;
use IEEE.std_logic_1164.all;
entity testbench is
end entity testbench;
architecture test_reg of testbench is
component shift_reg is
6 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

port (clock : in std_logic;
reset : in std_logic;
load : in std_logic;
sel : in std_logic_vector(1 downto 0);
data : in std_logic_vector(4 downto 0);
shiftreg : out std_logic_vector(4 downto 0));

end component;
signal clock, reset, load: std_logic;
signal shiftreg, data: std_logic_vector(4 downto 0);
signal sel: std_logic_vector(1 downto 0);
constant ClockPeriod : TIME := 50 ns;
begin
UUT : shift_reg port map (clock => clock, reset => reset,

load => load, data => data,
shiftreg => shiftreg);

process begin
 clock <= not clock after (ClockPeriod / 2);
end process;
process begin
 reset <= '1';
 data <= "00000";
 load <= '0';
 set <= "00";
 wait for 200 ns;
 reset <= '0';
 load <= '1';
 wait for 200 ns;
 data <= "00001";
 wait for 100 ns;
 sel <= "01";
 load <= '0';
 wait for 200 ns;
 sel <= "10";
 wait for 1000 ns;
end process;
end architecture test_reg;

The VHDL testbench above is similar in functionality to the Verilog testbench shown previously,
with the exception of a command to echo the output to the terminal. In VHDL, the std_textio
package is used to display information to the terminal, and this will be covered in the next
section.

Automatic
Verification

Automating the verification of testbench results is recommended, particularly for larger
designs. Automation reduces the time required to check a design for correctness, and
minimizes human error.

Several methods are commonly used to automate testbench verification:

1. Database Comparisons. First, a database file containing expected output (a “golden
vector” file) is created. Then, simulation outputs are captured and compared to the
reference vectors in the golden vector file (the unix diff utility can be used to compare the
ASCII database files). However, since pointers from output to input files are not provided, a
disadvantage of this method is the difficulty of tracing an incorrect output to the source of
the error.

2. Waveform Comparison. Waveform comparisons can be performed automatically or
manually. The automatic method employs a testbench comparator to compare a golden
waveform against the testbench output waveform. The Xilinx HDL Bencher tool can be
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 7

http://www.xilinx.com

Writing Efficient Testbenches
R

used to perform automatic waveform comparisons (for HDL Bencher information, go to:
http://www.xilinx.com/products/software/statecad/index.htm)

3. Self-Checking Testbenches. A self-checking testbench checks expected results against
actual results at run time, not at the end of simulation. Since useful error-tracking
information can be built into the testbench to show where a design fails, debugging time is
significantly shortened. Further information on self-checking testbenches is provided in the
next section

Self-Checking
Testbenches

Self-checking testbenches are implemented by placing a series of expected vectors in a
testbench file. These vectors are compared at defined run-time intervals to actual simulation
results. If actual results match expected results, the simulation succeeds. If results do not
match expectations, the testbench reports the discrepancies.

Implementing self-checking testbenches is simpler for synchronous designs since expected
and actual results can be compared at a clock edge or after every “n” clock cycles. Comparison
methods also depend on the nature of the design. For example, a testbench for memory I/O
should check results each time new data is written to or read from a memory location. Similarly,
if a design uses a significant number of combinatorial blocks, combinatorial delays must be
taken into account when expected results are specified.

In a self-checking testbench, expected outputs are compared to actual outputs at regular run-
time intervals to provide automatic error checking. This technique works fine in small to mid-
size designs. However, since possible output combinations increase exponentially with design
complexity, writing a self-checking testbench for a large design is much more difficult and time
consuming.

Below are examples of simple, self-checking testbenches written in Verilog and VHDL:

Verilog Example

Following the instantiation of the design, expected results are specified. Later in the code,
expected and actual results are compared, and the results are echoed to the terminal. If there
are no mismatches, an “end of good simulation” message is displayed. If a mismatch occurs,
an error is reported along with the mismatched expected and actual values.

`timescale 1 ns / 1 ps
module test_sc;
 reg tbreset, tbstrtstop;
 reg tbclk;
 wire [6:0] onesout, tensout;
 wire [9:0] tbtenthsout;
parameter cycles = 25;
reg [9:0] Data_in_t [0:cycles];
// /////////////////////////////
// Instantiation of the Design
// /////////////////////////////
stopwatch UUT (.CLK (tbclk), .RESET (tbreset), .STRTSTOP (tbstrtstop),
 .ONESOUT (onesout), .TENSOUT (tensout), .TENTHSOUT (tbtenthsout));
 wire [4:0] tbonesout, tbtensout;
 assign tbtensout = led2hex(tensout);
 assign tbonesout = led2hex(onesout);
///
//EXPECTED RESULTS
///
initial begin
 Data_in_t[1] =10'b1111111110;
 Data_in_t[2] =10'b1111111101;
 Data_in_t[3] =10'b1111111011;
 Data_in_t[4] =10'b1111110111;
8 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com/products/software/statecad/index.htm
http://www.xilinx.com

Writing Efficient Testbenches
R

 Data_in_t[5] =10'b1111101111;
 Data_in_t[6] =10'b1111011111;
 Data_in_t[7] =10'b1110111111;
 Data_in_t[8] =10'b1101111111;
 Data_in_t[9] =10'b1011111111;
 Data_in_t[10]=10'b0111111111;
 Data_in_t[11]=10'b1111111110;
 Data_in_t[12]=10'b1111111110;
 Data_in_t[13]=10'b1111111101;
 Data_in_t[14]=10'b1111111011;
 Data_in_t[15]=10'b1111110111;
 Data_in_t[16]=10'b1111101111;
 Data_in_t[17]=10'b1111011111;
 Data_in_t[18]=10'b1110111111;
 Data_in_t[19]=10'b1101111111;
 Data_in_t[20]=10'b1011111111;
 Data_in_t[21]=10'b0111111111;
 Data_in_t[22]=10'b1111111110;
 Data_in_t[23]=10'b1111111110;
 Data_in_t[24]=10'b1111111101;
 Data_in_t[25]=10'b1111111011;
end
reg GSR;
assign glbl.GSR = GSR;
initial begin
 GSR = 1;
 // ///////////////////////////////
 // Wait till Global Reset Finished
 // ///////////////////////////////
 #100 GSR = 0;
end

// ////////////////
// Create the clock
// ////////////////
initial begin
 tbclk = 0;
 // Wait till Global Reset Finished, then cycle clock
 #100 forever #60 tbclk = ~tbclk;
end
initial begin
 // //////////////////////////
 // Initialize All Input Ports
 // //////////////////////////
 tbreset = 1;
 tbstrtstop = 1;
 // /////////////////////
 // Apply Design Stimulus
 // /////////////////////
 #240 tbreset = 0;
 tbstrtstop = 0;
 #5000 tbstrtstop = 1;
 #8125 tbstrtstop = 0;
 #500 tbstrtstop = 1;
 #875 tbreset = 1;
 #375 tbreset = 0;
 #700 tbstrtstop = 0;
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 9

http://www.xilinx.com

Writing Efficient Testbenches
R

 #550 tbstrtstop = 1;
 // ///
 // simulation must be halted inside an initial statement
 // ///
// #100000 $stop;
end
integer i,errors;
///
///////////////
// Block below compares the expected vs. actual results
// at every negative clock edge.
///
///////////////
always @ (posedge tbclk)
begin
 if (tbstrtstop)
 begin
 i = 0;
 errors = 0;
 end
 else
 begin
 for (i = 1; i <= cycles; i = i + 1)
 begin
 @(negedge tbclk)
 // check result at negedge
 $display("Time%d ns; TBSTRTSTOP=%b; Reset=%h; Expected
TenthsOut=%b; Actual TenthsOut=%b", $stime, tbstrtstop, tbreset,
Data_in_t[i], tbtenthsout);
 if (tbtenthsout !== Data_in_t[i])
 begin
 $display(" ------ERROR. A mismatch has occurred-----");
 errors = errors + 1;
 end
 end
 if (errors == 0)
 $display("Simulation finished Successfully.");
 else if (errors > 1)
 $display("%0d ERROR! See log above for details.",errors);
 else
 $display("ERROR! See log above for details.");
#100 $stop;
 end
end
endmodule

This simple, self-checking testbench design can be ported to any test case—of course,
expected-output values and signal names must be modified for reuse. If a check is not needed
at each clock edge, the for-loop can be modified as needed.
10 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

If the simulation succeeds, the following information is shown on the terminal screen:

VHDL Example

In VHDL, a vector file contains expected results. The VHDL textio package is used to read data
from the vector file, and to display error messages. This testbench instantiates the stopwatch
design in VHDL.

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
LIBRARY ieee;
USE IEEE.STD_LOGIC_TEXTIO.ALL;
USE STD.TEXTIO.ALL;
ENTITY testbench IS
END testbench;
ARCHITECTURE testbench_arch OF testbench IS
COMPONENT stopwatch
PORT (
CLK : in STD_LOGIC;
RESET : in STD_LOGIC;
STRTSTOP : in STD_LOGIC;
TENTHSOUT : out STD_LOGIC_VECTOR (9 DOWNTO 0);

Figure 3: Verilog Example Verification
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 11

http://www.xilinx.com

Writing Efficient Testbenches
R

ONESOUT : out STD_LOGIC_VECTOR (6 DOWNTO 0);
TENSOUT : out STD_LOGIC_VECTOR (6 DOWNTO 0)

);
END COMPONENT;
SIGNAL CLK : STD_LOGIC;
SIGNAL RESET : STD_LOGIC;
SIGNAL STRTSTOP : STD_LOGIC;
SIGNAL TENTHSOUT : STD_LOGIC_VECTOR (9 DOWNTO 0);
SIGNAL ONESOUT : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL TENSOUT : STD_LOGIC_VECTOR (6 DOWNTO 0);
constant ClockPeriod : Time := 60 ns;
FILE RESULTS: TEXT IS OUT "results.txt";
signal i: std_logic;
BEGIN
UUT : stopwatch
PORT MAP (
CLK => CLK,
RESET => RESET,
STRTSTOP => STRTSTOP,
TENTHSOUT => TENTHSOUT,
ONESOUT => ONESOUT,
TENSOUT => TENSOUT

);
stimulus: PROCESS
begin
reset <= '1';
strtstop <= '1';
wait for 240 ns;
reset <= '0';
strtstop <= '0';
wait for 5000 ns;
strtstop <= '1';
wait for 8125 ns;
strtstop <= '0';
wait for 500 ns;
strtstop <= '1';
wait for 875 ns;
reset <= '1';
wait for 375 ns;
reset <= '0';
wait for 700 ns;
strtstop <= '0';
wait for 550 ns;
strtstop <= '1';
end process stimulus;
clock: process
begin
 clk <= '1';
 wait for 100 ns;
 loop
 wait for (ClockPeriod / 2);
 CLK <= not CLK;
 end loop;
end process clock;
check_results : process
variable tmptenthsout: std_logic_vector(9 downto 0);
variable l: line;
12 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

variable good_val, good_number, errordet: boolean;
variable r : real;
variable vector_time: time;
variable space: character;
file vector_file: text is in "values.txt";
begin
 while not endfile(vector_file) loop
 readline(vector_file, l);
 read(l, r, good => good_number);
 next when not good_number;
 vector_time := r * 1 ns;
 if (now < vector_time) then
 wait for vector_time - now;
 end if;
 read(l, space);
 read(l, tmptenthsout, good_val);
 assert good_val REPORT "bad tenthsoutvalue";
 wait for 10 ns;
 if (tmptenthsout /= tenthsout) then
 assert errordet REPORT "vector mismatch";
 end if;
 end loop;
wait;
end process check_results;
end testbench_arch;
library XilinxCoreLib;
CONFIGURATION stopwatch_cfg OF testbench IS
FOR testbench_arch
FOR ALL : stopwatch use configuration work.cfg_tenths;
END FOR;

END FOR;
END stopwatch_cfg;

The following vector file is used with the testbench above. It contains expected simulation
values.

-- Vector file containing expected results
0 1111111110
340 1111111110
400 1111111101
460 1111111011
520 1111110111
580 1111101111
640 1111011111
700 1110111111
760 1101111111
820 1011111111
880 0111111111
940 1111111110
1000 1111111110
1060 1111111101
1120 1111111011
1180 1111110111
1240 1111101111
1300 1111011111
1360 1110111111
1420 1101111111
1480 1011111111
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 13

http://www.xilinx.com

Writing Efficient Testbenches
R

1540 0111111111
1600 1111111110
1660 1111111110
1720 1111111101
1780 1111111011

If an error is detected, it is displayed at the simulator prompt. Figure 4 shows errors displayed
in the MTI transcript window.

Guidelines for
Writing
Testbenches

This section provides guidelines for writing testbenches. Just as planning a circuit design helps
achieve better circuit performance, planning a testbench layout improves simulation verification
results.

• Know the simulator before writing the testbench.

Although commonly-used simulation tools conform to HDL industry standards, these
standards do not address several important simulation-specific issues. Different simulators
have different features, capabilities, and performance characteristics, and produce different
simulation results.

- Event-based vs. cycle-based simulation

Simulators use event-based or cycle-based simulation methods. Event-based
simulators schedule a simulator event when an input, signal, or gate changes value. In
an event-based simulator, a delay value can be associated with gates and nets to
achieve optimum timing simulation. Cycle-based simulators target synchronous
designs. They optimize combinatorial logic and analyze results at clock cycles. This
feature makes cycle-based simulators faster and more memory efficient than event-
based simulators. However, since cycle-based simulators do not allow detailed timing
specificity, they are not as accurate. For further information on these differences, see
Digital Logic Simulation: Event-Driven, Cycle-Based, and Home-Brewed, available at
http://www.ednmag.com/ednmag/reg/1996/070496/14df4.htm.

- Scheduling events

Event-based simulator vendors employ different algorithms for scheduling simulation
events. Therefore, events that occur at the same simulation time may be scheduled in
a different sequence (with delta delays inserted between each event) depending on
the scheduling algorithm used by the simulator. To avoid algorithmic dependencies
and assure correct results, an event-driven testbench should specify an explicit
stimulus sequence.

Figure 4: Simulator-Prompt Error Report
14 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.ednmag.com/ednmag/reg/1996/070496/14df4.htm
http://www.xilinx.com

Writing Efficient Testbenches
R

• Avoid using infinite loops

When an event is added to an event-based simulator, CPU and memory usage increases,
and simulation processing slows. Unless critical to the testbench, infinite loops should not
be used to provide design stimulus. Typically, clocks are specified inside an infinite loop (for
example, "forever" loops in Verilog), but not other signal events.

• Break up stimuli into logical blocks

Within a testbench, all initial (Verilog) and process (VHDL) blocks run concurrently. The
testbench stimulus sequence becomes easier to implement and review if unrelated stimuli
are divided into separate blocks. Since each concurrent block runs relative to simulation
time zero, passing stimulus is easier with separate blocks. The use of separate stimulus
blocks results in testbenches that are easier to create, maintain, and upgrade (see
Advanced Testbench Techniques, below, for examples of this technique).

• Avoid displaying unimportant data

Testbenches for large designs may contain in excess of 100,000 events and numerous
signals. Displaying a large amount of simulation data slows simulation considerably. It is
best to sample only relevant signals every “n” clock cycles to assure adequate simulation
speed.

Xilinx
Simulation Flow
Tips

Configuration Statement (VHDL)
A VHDL configuration statement allows an entity to be linked to a specific architecture for
synthesis or simulation. In a Xilinx CORE Generator VHDL functional simulation flow, a
configuration statement is used to bind the core simulation model to the design. If the core
simulation model is not bound to a design, simulation will not work properly. For an example of
configuration statement use, see the VDHL code example in Self-Checking Testbenches,
above. Detailed information on the use of configuration statements in Xilinx CORE Generator
designs can be found in the Modelsim VHDL simulation tutorial, available at
http://support.xilinx.com/support/techsup/tutorials/tutorials31i.htm#Modelsim.

Initializing Block RAMs for Simulation
By default, Xilinx Virtex™ block RAMs are initialized to zero in all data locations, starting at time
zero. For a post-NGDBuild, post-MAP, or Post-PAR (timing) simulation, block RAMs initialize to
values specified in the user constraints file (UCF) or through INIT attributes specified in the
input design file to NGDBuild. For a pre-synthesis or post-synthesis (pre-NGDBuild) functional
simulation, a configuration statement must be used to supply initial values to block RAM. The
following is an example a configuration statement used to initialize block RAM.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.vcomponents.all;
configuration cfg_ex_blkram_tb of ex_blkram_tb is
 for tb
 for uut : ex_blkram use entity work.ex_blkram(struct);
 for struct
 for INST_RAMB4_S4 : RAMB4_S4 use entity
 unisim.RAMB4_S4(RAMB4_S4_V)
 generic map (INIT_00 =>
X"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706050403020100
",
INIT_01 =>
X"3F3E3D3C3B3A393837363534333231302F2E2D2C2B2A29282726252423222120
",
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 15

http://www.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/tutorials31i.htm#Modelsim

Writing Efficient Testbenches
R

.

.

.
INIT_0F=>
X"FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0
");
 end for;
 end for;
 end for;
 end for;
end cfg_ex_blkram_tb;

Advanced
Testbench
Techniques

Breaking Up Stimulus Blocks with Tasks and Procedures
When creating larger testbenches, stimuli should be partitioned to aid code clarity and facilitate
modifications. Tasks (Verilog) or procedures (VHDL) can be used to partition signals. In the
following example, the testbench stimulates a SDRAM controller design. The design includes
blocks of repetitive stimulus, so the testbench partitions the stimulus by declaring separate
tasks which are called later in the testbench to exercise separate design functionalities.

Verilog Example:

task addr_wr;
 input [31 : 0] address;
 begin
 data_addr_n = 0;
 we_rn = 1;
 ad = address;
 end
 endtask
task data_wr;
 input [31 : 0] data_in;
 begin
 data_addr_n = 1;
 we_rn = 1;
 ad = data_in;
 end
 endtask

task addr_rd;
 input [31 : 0] address;
 begin
 data_addr_n = 0;
 we_rn = 0;
 ad = address;
 end
 endtask

task data_rd;
 input [31 : 0] data_in;
 begin
 data_addr_n = 1;
 we_rn = 0;
 ad = data_in;
 end
 endtask

16 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

task nop;
 begin
 data_addr_n = 1;
 we_rn = 0;
 ad = hi_z;
 end
 endtask

These tasks specify separate elements of design functionality-address read and write, data
read and write, or nop (no operation). Once specified, these tasks can be called within stimulus
processes as follows:

Initial begin
nop ; // Nop
#(86* `CYCLE +1); addr_wr (32'h20340400); // Precharge, load
Controller MR
#(`CYCLE); data_wr (32'h0704a076); // value for Controller MR
#(`CYCLE); nop ; // Nop
#(5 * `CYCLE); addr_wr (32'h38000000); // Auto Refresh
#(`CYCLE); data_wr (32'h00000000); //
#(`CYCLE); nop ; // Nop
…
…
end

VHDL Example:

Below is a VHDL testbench for the same design, broken up into separate procedures:

Stimulus : process
 procedure addr_wr (address: in std_logic_vector(31 downto 0)) is
 begin
 data_addr_n <= ‘0’;
 we_rn <= ‘1’;
 ad <= address;
 end addr_wr;
 procedure data_wr (data_in: in std_logic_vector(31 downto 0)) is
 begin
 data_addr_n <= ‘1’;
 we_rn <= ‘1’;
 ad <= data_in;
 end data_wr;

 procedure addr_rd (address: in std_logic_vector(31 downto 0)) is
 begin
 data_addr_n <= ‘0’;
 we_rn <= ‘0’;
 ad <= address;
 end addr_rd;

 procedure data_rd (data_in: in std_logic_vector(31 downto 0)) is
 begin
 data_addr_n <= ‘1’;
 we_rn <= ‘0’;
 ad <= data_in;
 end data_rd;

 procedure nop is
 begin
 data_addr_n <= ‘1’;
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 17

http://www.xilinx.com

Writing Efficient Testbenches
R

 we_rn = ‘0’;
 ad = ‘Z’;
 end nop;
begin
 nop ; -- Nop
 wait for 200 ns;
 addr_wr (16#20340400#); -- Precharge, load Controller MR
 wait for 8 ns;
 data_wr (16#0704a076#); -- value for Controller MR
 wait for 8 ns;
 nop ; -- Nop
 wait for 40 ns;
 addr_wr (16#38000000#); -- Auto Refresh
 wait for 8 ns;
 data_wr (16#00000000#);
 wait for 8 ns;
 nop ; -- Nop
..
..

Breaking up stimulus into separate tasks makes stimulus passing easier to implement, and
makes the code more readable.

Controlling Bidirectional Signals in Simulation
Most designs use bidirectional signals, which must be treated differently than unidirectional
signals in a testbench.

VHDL Example:

The following is a VHDL bi-directional signal example:

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity bidir_infer is
port (DATA : inout STD_LOGIC_VECTOR(1 downto 0);
READ_WRITE : in STD_LOGIC);
end bidir_infer;
architecture XILINX of bidir_infer is
signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);
begin
process(READ_WRITE, DATA)
begin
 if (READ_WRITE = ’1’) then
 LATCH_OUT <= DATA;
 end if;
end process;
process(READ_WRITE, LATCH_OUT)
begin
 if (READ_WRITE = ’0’) then
 DATA(0) <= LATCH_OUT(0) and LATCH_OUT(1);
 DATA(1) <= LATCH_OUT(0) or LATCH_OUT(1);
 else
 DATA(0) <= ’Z’;
 DATA(1) <= ’Z’;
 end if;
end process;
end XILINX;
18 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

To access the bidirectional DATA signal in the above example, a testbench can be setup as
follows:

library ieee;
use ieee.std_logic_1164.all;
Entity testbench is
End testbench;
Architecture test_bidir of testbench is
Component bidir_infer
 port (DATA : inout STD_LOGIC_VECTOR(1 downto 0);
 READ_WRITE : in STD_LOGIC);
end component;
signal read_writet: std_logic;
signal datat, data_top : std_logic_vector(1 downto 0);
begin
datat <= data_top when (Read_writet = '1') else (others => 'Z');
data_top <= datat when (Read_writet = '0') else (others => 'Z');
uut : bidir_infer port map (datat, read_writet);
process begin
 read_writet <= '1';
 data_top <= "10";
 wait for 50 ns;
 read_writet <= '0';
 wait;
 end process;
end test_bidir;

The bidirectional bus is controlled from the testbench, and the value of the bidirectional bus is
accessed through the data_top signal.

Verilog Example:

The following is an example of an inferred bidirectional bus in a Verilog design:

module bidir_infer (DATA, READ_WRITE);
input READ_WRITE ;
inout [1:0] DATA ;
reg [1:0] LATCH_OUT ;
always @ (READ_WRITE or DATA)
begin
 if (READ_WRITE == 1)
 LATCH_OUT <= DATA;
end
assign DATA = (READ_WRITE == 1) ? 2'bZ : LATCH_OUT;
endmodule

The Verilog testbench can be set up as follows:

module test_bidir_ver;
reg read_writet;
reg [1:0] data_in;
wire [1:0] datat, data_out;
bidir_infer uut (datat, read_writet);
assign datat = (read_writet == 1) ? data_in : 2'bZ;
assign data_out = (read_writet == 0) ? datat : 2'bZ;
initial begin
 read_writet = 1;
 data_in = 11;
 #50 read_writet = 0;
end
endmodule
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 19

http://www.xilinx.com

Writing Efficient Testbenches
R

In the above testbench, the data_in signal supplies the stimulus to the bi-directional DATA
signal in the design, and the data_out signal reads back the value of the DATA signal.

Initializing Memory for Simulation
Please refer to the Xilinx Simulation Flow Tips, above.

Useful
Language
Constructs

Verilog
Useful Verilog language constructs, such as $monitor, $display, and $time, are discussed in the
Verilog testbench examples, above. This section discusses additional Verilog constructs that
can be used in a testbench.

force/release

The force and release statements can be used to override procedural assignments made to a
register or net. These constructs are commonly used to force specific design behavior. Once a
forced value is released, the signal retains its state until a new value is passed through a
procedural assignment. The following is an example of force and release statement usage:

module testbench;
..
..
initial begin
reset = 1;
force DataOut = 101;
#25 reset = 0;
#25 release DataOut;
..
..
end
endmodule

assign/deassign

The assign and deassign statements are similar to the force and release statements, but assign
and deassign apply only to registers in a design. They are normally used to set input values.
Like a force statement, the assign statement overrides values passed by procedural
statements. The following is an example of assign and deassign statement usage:

module testbench;
..
..
initial begin
reset = 1;
DataOut = 101;
#25 reset = 0;
release DataOut;
..
..
end
initial begin
#20 assign reset = 1;// this assign statement overrides the earlier
statement #25 reset = 0;
#50 release reset;
endmodule
20 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com

Writing Efficient Testbenches
R

timescales

The timescale directive is used to specify the unit time step for the testbench. It also affects
simulator precision. The syntax for this directive is:

`timescale reference_time/precision

Reference_time is the unit time for measurement. Precision determines the precision to which
the delays are rounded-off, and sets the unit time step for simulation. The following is an
example of `timescale usage:

`timescale 1 ns / 1 ps
// this sets the reference time to 1 ns and precision to 1 ps.
module testbench;
..
..
initial begin
#5 reset = 1; // 5 unit time steps correspond to 5 * 1ns = 5ns in
simulation time
#10 reset = 0;
..
end
initial begin
$display (“%d , Reset = %b”, $time, reset); // this display
// statement will get executed
// on every simulator step, ie, 1 ps.
end
endmodule

If the simulation uses timing-delay values, simulation must run at a precision greater than the
smallest delay (in order to incorporate the delay). For example, if a 9 ps delay is used in
simulation libraries, the precision of the simulation must be 1 ps to accommodate the 9 ps
delay.

Reading Memory Initialization Files

Verilog provides the $readmemb and $readmemh commands to read an ASCII file to initialize
memory contents. This command can be used to initialize Xilinx BlockRAM or SelectRAM
components in simulation. The syntax is as follows:

$readmemb (“<design.mif>”, design_instance);

The MIF is the Memory Initialization File created by coregen. The user specifies MIF contents.

VHDL
In addition to the VHDL commands discussed in previous sections (assert, wait, and report),
the following constructs are available to aid VHDL testbench creation:

meminitfile

VHDL provides a meminitfile record that can be used to input the contents of a memory
module. The following is the syntax for this construct:

FILE meminitfile: TEXT IS IN “<design.mif>”;

The MIF is the Memory Initialization File created by coregen. The user specifies MIF contents.
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 21

http://www.xilinx.com

Writing Efficient Testbenches
R

Coding Style
Guidelines

The following coding guidelines help create code that is easier to understand and maintain:

Indentation
Always indent code to make it more readable. An indentation width of three or four spaces is
recommended. A indentation width of five or more spaces often leaves little space at the right
margin, while a indentation width of less than three spaces results in too small an indent.

File Naming
Always maintain the “.v” (Verilog) or “.vhd” (VHDL) filename extension in source filenames. If
these standard extensions are changed, some editors and filters will be unable to recognize the
source files.

Signal Naming
Use the same case—lower case is recommended—for all user signals. Verilog is case-
sensitive, and misplaced capitalization can cause a design to fail synthesis and simulation.
Also, use of a consistent signal name format style makes signal names easier to locate in a
source file. Use short, descriptive signal names. Short names are easier to type, and
descriptive names help document signal functionality.

Commenting
Comment testbench code liberally. Comments are invaluable to others who inherit and reuse
code. Besides, Verilog and VHDL code constructs are cryptic—commented code fills in
important details that greatly increase source code clarity and reusability.

Design Structure
Keep one physical file for each module or entity. Separate files for separate modules and
entities makes the design easier to maintain.

For additional information, consult HDL reference books. Many contain comprehensive coding
guidelines.

Refer to the FPGA Design Reuse Guide, available on the web at:

http://www.xilinx.com/ipcenter/designreuse/xrfg.htm

Conclusion Testbenches provide engineers with a portable, upgradable verification flow. With the
availability of mixed-language simulators, designers are free to use their HDL language of
choice to verify both VHDL and Verilog designs. High-level behavioral languages facilitate the
creation of testbenches that use simple constructs and require a minimum amount of source
code. Designs benefit from self-checking testbenches that automate the verification of correct
design results during simulation.

Xilinx Foundation™ ISE v3.1i is designed to provide a smooth, integrated HDL design flow.
Synplicity’s Synplify, Synopsys FPGA Express, and Xilinx Synthesis Technology (XST), along
with Xilinx Foundation software, work extremely well together to synthesize code. Foundation
ISE can be integrated with Modelsim (XE, PE, or SE) to simulate the design, Xilinx HDL
Bencher to automate testbench creation, and Xilinx StateCad to create state-machine code.
For complete information on Foundation ISE and its suite of integrated components, go to
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp.
22 www.xilinx.com XAPP199 (v1.1) May 17, 2010

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp
http://www.xilinx.com
http://www.xilinx.com/ipcenter/designreuse/xrfg.htm

Writing Efficient Testbenches
R

Revision
History

The following table shows the revision history for this document.

Disclaimer:
NOTICE OF DISCLAIMER: Xilinx is disclosing this Application Note to you “AS-IS” with no
warranty of any kind. This Application Note is one possible implementation of this feature,
application, or standard, and is subject to change without further notice from Xilinx. You are
responsible for obtaining any rights you may require in connection with your use or
implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF
THIS APPLICATION NOTE.

Date Version Revision

06/11/01 1.0 Initial Xilinx release.

05/17/10 1.1 Fixed typo on page 2.
XAPP199 (v1.1) May 17, 2010 www.xilinx.com 23

http://www.xilinx.com

	Summary
	Introduction
	Constructing Testbenches
	Generating Clock Signals
	VHDL:
	Verilog:

	Providing Stimulus
	Displaying Results

	Simple Testbenches
	Verilog Example:
	VHDL Example:

	Automatic Verification
	Self-Checking Testbenches
	Verilog Example
	VHDL Example

	Guidelines for Writing Testbenches
	Xilinx Simulation Flow Tips
	Configuration Statement (VHDL)
	Initializing Block RAMs for Simulation

	Advanced Testbench Techniques
	Breaking Up Stimulus Blocks with Tasks and Procedures
	Verilog Example:
	VHDL Example:

	Controlling Bidirectional Signals in Simulation
	VHDL Example:
	Verilog Example:

	Initializing Memory for Simulation

	Useful Language Constructs
	Verilog
	force/release
	assign/deassign
	timescales
	Reading Memory Initialization Files

	VHDL
	meminitfile

	Coding Style Guidelines
	Indentation
	File Naming
	Signal Naming
	Commenting
	Design Structure

	Conclusion
	Revision History

