
Chapter 2

What is an FPGA?

Overview
An FPGA is a type of integrated circuit (IC) that can be programmed for different algorithms
after fabrication. Modern FPGA devices consist of up to two million logic cells that can be
configured to implement a variety of software algorithms. Although the traditional FPGA
design flow is more similar to a regular IC than a processor, an FPGA provides significant
cost advantages in comparison to an IC development effort and offers the same level of
performance in most cases. Another advantage of the FPGA when compared to the IC is its
ability to be dynamically reconfigured. This process, which is the same as loading a program
in a processor, can affect part or all of the resources available in the FPGA fabric.

When using the Vivado® HLS compiler, it is important to have a basic understanding of the
available resources in the FPGA fabric and how they interact to execute a target application.
This chapter presents fundamental information about FPGAs, which is required to guide
HLS to the best computational architecture for any algorithm.

FPGA Architecture
The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT): This element performs logic operations.

• Flip-Flop (FF): This register element stores the result of the LUT.

• Wires: These elements connect elements to one another.

• Input/Output (I/O) pads: These physically available ports get data in and out of the
FPGA.
Introduction to FPGA Design with Vivado HLS www.xilinx.com 11
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Architecture
The combination of these elements results in the basic FPGA architecture shown in
Figure 2-1. Although this structure is sufficient for the implementation of any algorithm,
the eff iciency of the resulting implementation is limited in terms of computational
throughput, required resources, and achievable clock frequency.

X-Ref Target - Figure 2-1

Figure 2-1: Basic FPGA Architecture
Introduction to FPGA Design with Vivado HLS www.xilinx.com 12
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Architecture
Contemporary FPGA architectures incorporate the basic elements along with additional
computational and data storage blocks that increase the computational density and
eff iciency of the device. These additional elements, which are discussed in the following
sections, are:

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

The combination of these elements provides the FPGA with the flexibility to implement any
software algorithm running on a processor and results in the contemporary FPGA
architecture shown in Figure 2-2.

X-Ref Target - Figure 2-2

Figure 2-2: Contemporary FPGA Architecture
Introduction to FPGA Design with Vivado HLS www.xilinx.com 13
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Architecture
LUT
The LUT is the basic building block of an FPGA and is capable of implementing any logic
function of N Boolean variables. Essentially, this element is a truth table in which different
combinations of the inputs implement different functions to yield output values. The limit
on the size of the truth table is N, where N represents the number of inputs to the LUT. For
the general N-input LUT, the number of memory locations accessed by the table is:

Equation 2-1

which allows the table to implement the following number of functions:

Equation 2-2

Note: A typical value for N in Xilinx FPGA devices is 6.

The hardware implementation of a LUT can be thought of as a collection of memory cells
connected to a set of multiplexers. The inputs to the LUT act as selector bits on the
multiplexer to select the result at a given point in time. It is important to keep this
representation in mind, because a LUT can be used as both a function compute engine and
a data storage element. Figure 2-3 shows this functional representation of the LUT.

X-Ref Target - Figure 2-3

Figure 2-3: Functional Representation of a LUT as Collection of Memory Cells

2N

2NN
Introduction to FPGA Design with Vivado HLS www.xilinx.com 14
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Architecture
Flip-Flop
The flip-flop is the basic storage unit within the FPGA fabric. This element is always paired
with a LUT to assist in logic pipelining and data storage. The basic structure of a flip-flop
includes a data input, clock input, clock enable, reset, and data output. During normal
operation, any value at the data input port is latched and passed to the output on every
pulse of the clock. The purpose of the clock enable pin is to allow the flip-flop to hold a
specific value for more than one clock pulse. New data inputs are only latched and passed
to the data output port when both clock and clock enable are equal to one. Figure 2-4
shows the structure of a flip-flop.

X-Ref Target - Figure 2-4

Figure 2-4: Structure of a Flip-Flop
Introduction to FPGA Design with Vivado HLS www.xilinx.com 15
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Architecture
DSP48 Block
The most complex computational block available in a Xilinx FPGA is the DSP48 block, which
is shown in Figure 2-5. The DSP48 block is an arithmetic logic unit (ALU) embedded into the
fabric of the FPGA, which is composed of a chain of three different blocks. The
computational chain in the DSP48 is composed of an add/subtract unit connected to a
multiplier connected to a final add/subtract/accumulate engine. This chain allows a single
DSP48 unit to implement functions of the form:

Equation 2-3

or

Equation 2-4

BRAM and Other Memories
The FPGA fabric includes embedded memory elements that can be used as random-access
memory (RAM), read-only memory (ROM), or shift registers. These elements are block
RAMs (BRAMs), LUTs, and shift registers.

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide on-chip
storage for a relatively large set of data. The two types of BRAM memories available in a
device can hold either 18 k or 36 k bits. The number of these memories available is device
specific. The dual-port nature of these memories allows for parallel, same-clock-cycle
access to different locations.

In terms of how arrays are represented in C/C++ code, BRAMs can implement either a RAM
or a ROM. The only difference is when the data is written to the storage element. In a RAM

X-Ref Target - Figure 2-5

Figure 2-5: Structure of a DSP48 Block

p a b d+()× c+=

p a b d+()×=+
Introduction to FPGA Design with Vivado HLS www.xilinx.com 16
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
configuration, the data can be read and written at any time during the runtime of the
circuit. In contrast, in a ROM configuration, data can only be read during the runtime of the
circuit. The data of the ROM is written as part of the FPGA configuration and cannot be
modif ied in any way.

As previously discussed, the LUT is a small memory in which the contents of a truth table are
written during device configuration. Due to the flexibility of the LUT structure in Xilinx
FPGAs, these blocks can be used as 64-bit memories and are commonly referred to as
distributed memories. This is the fastest kind of memory available on the FPGA device,
because it can be instantiated in any part of the fabric that improves the performance of the
implemented circuit.

The shift register is a chain of registers connected to each other. The purpose of this
structure is to provide data reuse along a computational path, such as with a filter. For
example, a basic f ilter is composed of a chain of multipliers that multiply a data sample
against a set of coeff icients. By using a shift register to store the input data, a built-in data
transport structure moves the data sample to the next multiplier in the chain on every clock
cycle. Figure 2-6 shows an example shift register.

FPGA Parallelism Versus Processor Architectures
When compared with processor architectures, the structures that comprise the FPGA fabric
enable a high degree of parallelism in application execution. The custom processing
architecture generated by the HLS compiler for a software program presents a different
execution paradigm, which must be taken into account when deciding to port an
application from a processor to an FPGA. To examine the benefits of the FPGA execution
paradigm, this section provides a brief review of processor program execution.

Program Execution on a Processor
A processor, regardless of its type, executes a program as a sequence of instructions that
translate into useful computations for the software application. This sequence of
instructions is generated by processor compiler tools, such as the GNU Compiler Collection
(GCC), which transform an algorithm expressed in C/C++ into assembly language

X-Ref Target - Figure 2-6

Figure 2-6: Structure of an Addressable Shift Register
Introduction to FPGA Design with Vivado HLS www.xilinx.com 17
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
constructs that are native to the processor. The job of a processor compiler is to take a C
function of the form:

Equation 2-5

and transform it into assembly code as follows:

The assembly code in Figure 2-7 defines the addition operation to compute the value of z
in terms of the internal registers of a processor. The code states that the input values for the
computation are stored in registers R1 and R2, and the result of the computation is stored
in register R3. This code is simple, and it does not express all the instructions needed to
compute the value of z. This code only handles the computation after the data has arrived
at the processor. Therefore, the compiler must create additional assembly language
instructions to load the registers of the processor with data from a central memory and to
write back the result to memory. The complete assembly program to compute the value of
z is as follows:

The code in Figure 2-8 shows that even a simple operation, such as the addition of two
values, results in multiple assembly instructions. The computational latency of each
instruction is not equal across instruction types. For example, depending on the location of
a and b, the LD operations take a different number of clock cycles to complete. If the values
are in the processor cache, these load operations complete within a few tens of clock cycles.
If the values are in the main, double data rate (DDR) memory, the operations take between
hundreds and thousands of clock cycles to complete. If the values are in a hard drive, the
load operations take even longer to complete. This is why software engineers with cache hit
traces spend so much time restructuring their algorithms to increase the spatial locality of
data in memory to increase the cache hit rate and decrease the processor time spent per
instruction.

IMPORTANT: The level of effort required by the software engineer in restructuring algorithms to better
fit the available processor cache is not required when the same operation is implemented in an FPGA.

X-Ref Target - Figure 2-7

Figure 2-7: Computation Expressed Assembly Code

X-Ref Target - Figure 2-8

Figure 2-8: Complete Assembly Program to Compute Z

z a b;+=
Introduction to FPGA Design with Vivado HLS www.xilinx.com 18
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
Program Execution on an FPGA
The FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor. The main difference is that the HLS
compiler, which is used to transform software descriptions into RTL, is not hindered by the
restrictions of a cache and a unif ied memory space.

The computation of z is compiled by HLS into several LUTs required to achieve the size of
the output operand. For example, assume that in the original software program the variable
a, b, and z are defined with the short data type. This type, which defines a 16-bit data
container, gets implemented as 16 LUTs by HLS.

Note: As a general rule, 1 LUT is equivalent to 1 bit of computation.

The LUTs used for the computation of z are exclusive to this operation only. Unlike a
processor, where all computations share the same ALU, an FPGA implementation
instantiates independent sets of LUTs for each computation in the software algorithm.

In addition to assigning unique LUT resources per computation, the FPGA differs from a
processor in both memory architecture and the cost of memory accesses. In an FPGA
implementation, the HLS compiler arranges memories into multiple storage banks as close
as possible to the point of use in the operation. This results in an instantaneous memory
bandwidth, which far exceeds the capabilities of a processor. For example, the Xilinx
Kintex®-7 410T device has a total of 1,590 18 k-bit BRAMs available. In terms of memory
bandwidth, the memory layout of this device provides the software engineer with the
capacity of 0.5M-bits per second at the register level and 23T-bits per second at the BRAM
level.

With regard to computational throughput and memory bandwidth, the HLS compiler
exercises the capabilities of the FPGA fabric through the processes of scheduling,
pipelining, and dataflow. Although transparent to the user, these processes are integral
stages of the software compilation process that extract the best possible circuit-level
implementation of the software application.

Scheduling

Scheduling is the process of identifying the data and control dependencies between
different operations to determine when each will execute. In traditional FPGA design, this is
a manual process also referred to as parallelizing the software algorithm for a hardware
implementation.

HLS analyzes dependencies between adjacent operations as well as across time. This allows
the compiler to group operations to execute in the same clock cycle and to set up the
hardware to allow the overlap of function calls. The overlap of function call executions
removes the processor restriction that requires the current function call to fully complete
before the next function call to the same set of operations can begin. This process is called
pipelining and is covered in detail in the following section and remaining chapters.
Introduction to FPGA Design with Vivado HLS www.xilinx.com 19
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
Pipelining

Pipelining is a digital design technique that allows the designer to avoid data dependencies
and increase the level of parallelism in an algorithm hardware implementation. The data
dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All
stages in the chain run in parallel on the same clock cycle. The only difference is the source
of data for each stage. Each stage in the computation receives its data values from the result
computed by the preceding stage during the previous clock cycle. For example, to compute
the following function the HLS compiler instantiates one multiplier and two adder blocks:

Equation 2-6

Figure 2-9 shows this compute structure and the effects of pipelining. It shows two
implementations of the example function. The top implementation is the datapath required
to compute the result y without pipelining. This implementation behaves similarly to the
corresponding C/C++ function in that all input values must be known at the start of the
computation, and only one result y can be computed at a time. The bottom implementation
shows the pipelined version of the same circuit.

The boxes in the datapath in Figure 2-9 represent registers that are implemented by
flip-flop blocks in the FPGA fabric. Each box can be counted as a single clock cycle.
Therefore, in the pipelined version, the computation of each result y takes three clock

X-Ref Target - Figure 2-9

Figure 2-9: FPGA Implementation of a Compute Function

y a x×() b c+ +=
Introduction to FPGA Design with Vivado HLS www.xilinx.com 20
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
cycles. By adding the register, each block is isolated into separate compute sections in time.
This means that the section with the multiplier and the section with the two adders can run
in parallel and reduce the overall computational latency of the function. By running both
sections of the datapath in parallel, the block is essentially computing the values y and y’ in
parallel, where y’ is the result of the next execution of Equation 2-6. The initial computation
of y, which is also referred to as the pipeline fill time, takes three clock cycles. After this
initial computation, a new value of y is available at the output on every clock cycle, because
the computation pipeline contains overlapped data sets for the current and subsequent y
computations.

Figure 2-10 shows a pipelined architecture in which raw data (dark gray), semi-computed
data (white), and f inal data (light gray) exist simultaneously, and each stage result is
captured in its own set of registers. Thus, although the latency for such computation is in
multiple cycles, with every cycle a new result can be produced.

Dataflow

Dataflow is another digital design technique, which is similar in concept to pipelining. The
goal of dataflow is to express parallelism at a coarse-grain level. In terms of software
execution, this transformation applies to parallel execution of functions within a single
program.

HLS extracts this level of parallelism by evaluating the interactions between different
functions of a program based on their inputs and outputs. The simplest case of parallelism
is when functions work on different data sets and do not communicate with each other. In
this case, HLS allocates FPGA logic resources for each function and then runs the blocks in
independently. The more complex case, which is typical in software programs, is when one

X-Ref Target - Figure 2-10

Figure 2-10: Pipelined Architecture
Introduction to FPGA Design with Vivado HLS www.xilinx.com 21
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

FPGA Parallelism Versus Processor Architectures
function provides results for another function. This case is referred to as the
consumer-producer scenario.

HLS supports two use models for the consumer-producer scenario. In the f irst use model,
the producer creates a complete data set before the consumer can start its operation.
Parallelism is achieved by instantiating a pair of BRAM memories arranged as memory
banks ping and pong. Each function can access only one memory bank, ping or pong, for
the duration of a function call. When a new function call begins, the HLS-generated circuit
switches the memory connections for both the producer and the consumer. This approach
guarantees functional correctness but limits the level of achievable parallelism to across
function calls.

In the second use model, the consumer can start working with partial results from the
producer, and the achievable level of parallelism is extended to include execution within a
function call. The HLS-generated modules for both functions are connected through the use
of a f irst in, f irst out (FIFO) memory circuit. This memory circuit, which acts as a queue in
software programming, provides data-level synchronization between the modules. At any
point during a function call, both hardware modules are executing their programming. The
only exception is that the consumer module waits for some data to be available from the
producer before beginning computation. In HLS terminology, the wait time of the consumer
module is referred to as the interval or initiation interval (II).
Introduction to FPGA Design with Vivado HLS www.xilinx.com 22
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Chapter 3

Basic Concepts of Hardware Design

Overview
One of the key differences between a processor and an FPGA is whether the processing
architecture is f ixed. This difference directly affects how a compiler for each target works.
With a processor, the computation architecture is f ixed, and the job of the compiler is to
determine how to best f it the software application in the available processing structures.
Performance is a function of how well the application maps to the capabilities of the
processor and the number of processor instructions needed for correct execution.

In contrast, an FPGA is similar to a blank slate with a box of building blocks. The job of the
Vivado® HLS compiler is to create a processing architecture from the box of building blocks
that best f its the software program. The process of guiding the HLS compiler to create the
best processing architecture requires fundamental knowledge about hardware design
concepts.

This chapter covers general design concepts that apply to both FPGA and processor-based
designs and explains how these concepts are related. This chapter does not cover detailed
aspects of FPGA design. As with processor compilers, the HLS compiler handles the
low-level details of the algorithm implementation into the FPGA logic fabric.

Clock Frequency
The processor clock frequency is one of the first items to consider when determining the
execution platform of a specif ic algorithm. A commonly used guideline is that a high clock
frequency translates into a higher performance execution rate of an algorithm. Although
this might be a good first order rule for choosing between processors, it is actually
misleading and can lead the designer to make the wrong choice when selecting between a
processor and an FPGA.
Introduction to FPGA Design with Vivado HLS www.xilinx.com 23
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Clock Frequency
The reason this general guideline is misleading is related to the nominal difference in clock
frequency between a processor and an FPGA. For example, when comparing the clock
frequencies of processors and FPGAs, it is not uncommon to face the comparison shown in
Table 3-1.

A simple analysis of the values in Table 3-1 can mislead a designer to assume the processor
has four times the performance of the FPGA. This simple analysis incorrectly assumes that
the only difference between the platforms is clock frequency. However, the platforms have
additional differences.

The first major difference between a processor and an FPGA is how a software program is
executed. A processor is able to execute any program on a common hardware platform. This
common platform comprises the core of the processor and defines a f ixed architecture onto
which all software must be fitted. The compiler, which has a built-in understanding of the
processor architecture, compiles the user software into a set of instructions. The resulting
set of instructions is always executed in the same fundamental order, as shown in
Figure 3-1.

Regardless of the type of processor, standard versus specialized, the execution of an
instruction is always the same. Each instruction of the user application must go through the
following stages:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Execute (EXE)

4. Memory operations (MEM)

5. Write back (WB)

Table 3-1: Maximum Clock Frequency Examples

Processor FPGA

2 GHz 500 MHz

X-Ref Target - Figure 3-1

Figure 3-1: Processor Instruction Execution Stages
Introduction to FPGA Design with Vivado HLS www.xilinx.com 24
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Clock Frequency
The purpose of each stage is summarized in Table 3-2.

Most modern processors include multiple copies of the instruction execution path and are
capable of running instructions with some degree of overlap. Because instructions in a
processor usually depend on each other, the overlap between copies of the instruction
execution hardware is not perfect. In the best of cases, only the overhead stages introduced
by using a processor can be overlapped. The EXE stages, which are responsible for
application computation, execute sequentially. The reasons for this sequential execution are
related to limited resources in the EXE stage and dependence between instructions.

Figure 3-2 shows a processor with multiple instructions executing in a semi-parallel order.
This is the best case for a processor in which all instructions are executing as quickly as
possible. Even in this best case, the processor is limited to only one EXE stage per clock
cycle. This means that the user application moves forward by one operation per clock cycle.
Even if the compiler determined that all f ive EXE stages could execute in parallel, the
structure of the process would prevent it.

Table 3-2: Instruction Processing Stages

Stage Description

IF Get the instruction from program memory.

ID Decode the instruction to determine the operation and the operators.

EXE Execute the instruction on the available hardware. In a standard processor, this means the
arithmetic logic unit (ALU) or floating point unit (FPU). A specialized processor adds on
f ixed function accelerators to the capabilities of the standard processor at this stage of
instruction processing.

MEM Fetch data for the next instruction using memory operations.

WB Write the results of the instruction either to local registers or global memory.

X-Ref Target - Figure 3-2

Figure 3-2: Processor with Multiple Instruction Execution Units
Introduction to FPGA Design with Vivado HLS www.xilinx.com 25
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Clock Frequency
An FPGA does not execute all software on a common computation platform. It executes a
single program at a time on a custom circuit for that program. Therefore, changing the user
application changes the circuit in the FPGA. Unlike Figure 3-1, the EXE stage appears as
shown in Figure 3-3 when processing in an FPGA. The presence of the MEM stage is
application dependent.

Given this flexibility, the HLS compiler does not need to account for overhead stages in the
platform and can f ind ways of maximizing instruction parallelism. Working with the same
assumptions as in Figure 3-2, the execution profile of the same software in an FPGA is
shown in Figure 3-4.

Based on the comparison of Figure 3-2 and Figure 3-4, the FPGA has a nominal
performance advantage of 9x compared to the processor. Actual numbers are always
application specific, but FPGAs generally demonstrate at least 10x the performance of a
processor for computationally intensive applications.

Another issue hidden by only focusing on the clock frequency is the power consumption of
a software program. The approximation to power consumption is given by:

Equation 3-1

As shown in Equation 3-1, the relationship between power consumption and clock
frequency is supported by empirical data, which shows higher power usage in a processor
than an FPGA for the same computational workload. By creating a custom circuit per
software program, an FPGA is able to run at a lower clock frequency with maximum
parallelism between operations and without the instruction interpretation overhead found
in a processor.

X-Ref Target - Figure 3-3

Figure 3-3: FPGA Instruction Execution Stages

X-Ref Target - Figure 3-4

Figure 3-4: FPGA with Multiple Instruction Execution Units

P 1
2
--cFV2

=

Introduction to FPGA Design with Vivado HLS www.xilinx.com 26
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Latency and Pipelining
RECOMMENDED: When selecting between a processor and an FPGA, it is recommended that
application requirements and computational workload are analyzed based on throughput and latency
instead of a maximum clock frequency.

Latency and Pipelining
Latency is the number of clock cycles it takes to complete an instruction or set of
instructions to generate an application result value. Using the basic processor architecture
shown in Figure 3-1, the latency of an instruction is f ive clock cycles. If the application has
a total of f ive instructions, the overall latency for this simple model is 25 clock cycles. That
is, the result of the application is not available until 25 clock cycles expire.

Application latency is a key performance metric in both FPGAs and processors. In both
cases, the problem of latency is resolved through the use of pipelining. In a processor,
pipelining means that the next instruction can be launched into execution before the
current instruction is complete. This allows the overlap of overhead stages required in
instruction set processing. The best case result of pipelining for a processor is shown in
Figure 3-2. By overlapping the execution of instructions, the processor achieves a latency of
nine clock cycles for the five instruction application.

In an FPGA, the overhead cycles associated with instruction processing are not present. The
latency is measured by how many clock cycles it takes to run the EXE stage of the original
processor instruction. For the case in Figure 3-3, the latency is one clock cycle. Parallelism
also plays an important role in latency. For the full f ive instruction application, the FPGA
latency is also one clock cycle, as shown in Figure 3-4. With the one clock cycle latency of
the FPGA, it might not be clear why pipelining is advantageous. However, the reason for
pipelining in an FPGA is the same as in a processor, that is, to improve application
performance.

As previously explained, the FPGA is a blank slate with building blocks that must be
connected to implement an application. The HLS compiler can connect the blocks directly
or through registers. Figure 3-5 shows an implementation of the EXE stage in Figure 3-3
that is implemented using f ive building blocks.

X-Ref Target - Figure 3-5

Figure 3-5: FPGA Implementation without Pipelining
Introduction to FPGA Design with Vivado HLS www.xilinx.com 27
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Throughput
Operation timing in an FPGA is the length of time it takes a signal to travel from a source
register to a sink register. Assuming each building block in Figure 3-5 requires 2 ns to
execute, the current design requires 10 ns to implement the functionality. The latency is still
one clock cycle, but the clock frequency is limited to 100 MHz. The 100 MHz frequency limit
is derived from the definition of clock frequency in an FPGA. For the case of an FPGA circuit,
the clock frequency is defined as the longest signal travel time between source and sink
registers.

Pipelining in an FPGA is the process of inserting more registers to break up large
computation blocks into smaller segments. This partitioning of the computation increases
the latency in absolute number of clock cycles but increases performance by allowing the
custom circuit to run at a higher clock frequency.

Figure 3-6 shows the implementation of the processing architecture in Figure 3-5 after
complete pipelining. Complete pipelining means that a register is inserted between each
building block in the FPGA circuit. The addition of registers reduces the timing requirement
of the circuit from 10 ns to 2 ns, which results in a maximum clock frequency of 500 MHz. In
addition, by separating the computation into separate register-bounded regions, each
block is allowed to always be busy, which positively impacts the application throughput.

One issue with pipelining is the latency of the circuit. The original circuit of Figure 3-5 has
a latency of one clock cycle at the expense of a low clock frequency. In contrast, the circuit
of Figure 3-6 has a latency of f ive clock cycles at a higher clock frequency.

IMPORTANT: The latency caused by pipelining is one of the trade-offs to consider during FPGA design.

Throughput
Throughput is another metric used to determine overall performance of an implementation.
It is the number of clock cycles it takes for the processing logic to accept the next input data
sample. With this value, it is important to remember that the clock frequency of the circuit
changes the meaning of the throughput number.

X-Ref Target - Figure 3-6

Figure 3-6: FPGA Implementation with Pipelining
Introduction to FPGA Design with Vivado HLS www.xilinx.com 28
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Memory Architecture and Layout
For example, both Figure 3-5 and Figure 3-6 show implementations that require one clock
cycle between input data samples. The key difference is that the implementation in
Figure 3-5 requires 10 ns between input samples, whereas the circuit in Figure 3-6 only
requires 2 ns between input data samples. After the time base is known, it is clear that the
second implementation has higher performance, because it can accept a higher input data
rate.

Note: The definition of throughput described in this section can also be used when analyzing
applications executing on a processor.

Memory Architecture and Layout
The memory architecture of the selected implementation platform is one of the physical
elements that can affect the performance of a software application. Memory architecture
determines the upper bound on achievable performance. At some performance point, all
applications on either a processor or an FPGA become memory bound regardless of the
type and number of available computational resources. One strategy in FPGA design is
understanding where the memory bound is and how it can be affected by data layout and
memory organization.

In a processor-based system, the software engineer must f it the application on essentially
the same memory architecture regardless of the specific type of processor. This
commonality simplif ies the process of application migration at the expense of performance.
Common memory architecture familiar to software engineers consists of memories that are
slow, medium, or fast based on the number of clock cycles it takes to get the data to the
processor. These memory classif ications are defined in Table 3-3.

The memory architecture shown in this table assumes that the user is presented with a
single large memory space. Within this memory space, the user allocates and deallocates
regions to store program data. The physical location of data and how it moves between the
different levels in the hierarchy is handled by the computation platform and is transparent
to the user. In this kind of system, the only way to boost performance is to reuse data in the
cache as much as possible.

Table 3-3: Memory Type Definitions

Memory Type Definition

Slow Mass storage devices, such as hard drives

Medium DDR memories

Fast On-chip cache memories of different sizes depending on the specific processor
Introduction to FPGA Design with Vivado HLS www.xilinx.com 29
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Memory Architecture and Layout
To achieve this goal, the software engineer must spend large amounts of time looking at
cache traces, restructuring the software algorithm to increase data locality, and managing
memory allocation to minimize the instantaneous memory footprint of the program.
Although all of these techniques are portable across processors, the results are not. A
software program must be tuned for each processor it runs on to maximize performance.

With experience in working with processor-based memory, the first difference a software
engineer encounters when working with memory in an FPGA is the lack of f ixed on-chip
memory architecture. FPGA-based systems can be attached to slow and medium memories
but exhibit the greatest degree of differentiation in terms of available fast memories. That
is, instead of restructuring the software to best use an existing cache, the HLS compiler
builds a fast memory architecture to best f it the data layout in the algorithm. The resulting
FPGA implementation can have one or more internal banks of different sizes that can be
accessed independently from one another.

The code examples in Figure 3-7 show best practice recommendations for addressing the
memory requirements of a program.

The FPGA code might surprise a seasoned software engineer with its lack of dynamic
memory allocation. The use of dynamic memory allocation has long been part of the best
practice guidelines for processor-based systems due to the underlying fixed memory
architecture.

In contrast to this approach, the HLS compiler builds a memory architecture that is tailored
to the application. This tailored memory architecture is shaped both by the size of the
memory blocks in the program as well as by how the data is used throughout program
execution. Current state-of-the-art compilers for FPGAs, such as HLS, require that the
memory requirements of an application are fully analyzable at compile time.

The benefit of static memory allocation is that HLS can implement the memory for array A
in different ways. Depending on the computation in the algorithm, the HLS compiler can
implement the memory for A as registers, shift registers, FIFOs, or BRAMs.

Note: Despite the restriction on dynamic memory allocation, pointers are fully supported by the
HLS compiler. For details on pointer support, see Pointers in Chapter 4.

X-Ref Target - Figure 3-7

Figure 3-7: Processor and FPGA Code Examples
Introduction to FPGA Design with Vivado HLS www.xilinx.com 30
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

Memory Architecture and Layout
Registers
A register implementation of a memory is the fastest possible memory structure. In this
implementation style, each entry of A becomes an independent entity. Each independent
entity is embedded into the computation where it is used without the need to address logic
or additional delays.

Shift Register
In processor programming terms, a shift register can be thought of as a special case of a
queue. In this implementation, each element of A is used multiple times in different parts of
the computation. The key characteristic of a shift register is that every element of A can be
accessed on every clock cycle. In addition, moving all data items to the next adjacent
storage container requires only one clock cycle.

FIFO
A FIFO can be thought of as a queue with a single point of entry and a single point of exit.
This kind of structure is typically used to transmit data between program loops or functions.
There is no addressing logic involved, and the implementation details are completely
handled by the HLS compiler.

BRAM
A BRAM is a random-access memory that is embedded into the FPGA fabric. A Xilinx FPGA
device includes many of these embedded memories. The exact number of memories is
device specif ic. In processor programming terms, this kind of memory can be thought of as
a cache with the following limitations:

• Does not implement cache coherency, collision, and cache miss tracking logic typically
found in a processor cache.

• Holds its values only as long as the device is powered on.

• Supports parallel same cycle access to two different memory locations.
Introduction to FPGA Design with Vivado HLS www.xilinx.com 31
UG998 (v1.0) July 2, 2013

http://www.xilinx.com

	Introduction to FPGA Design with Vivado High-Level Synthesis
	Revision History
	Table of Contents
	Introduction
	Overview
	Programming Model
	Guide Organization
	What is an FPGA?
	Basic Concepts of Hardware Design
	Vivado High-Level Synthesis
	Computation-Centric Algorithms
	Control-Centric Algorithms
	Software Verification and Vivado HLS
	Integration of Multiple Programs
	Verification of a Complete Application

	What is an FPGA?
	Overview
	FPGA Architecture
	LUT
	Flip-Flop
	DSP48 Block
	BRAM and Other Memories

	FPGA Parallelism Versus Processor Architectures
	Program Execution on a Processor
	Program Execution on an FPGA
	Scheduling
	Pipelining
	Dataflow

	Basic Concepts of Hardware Design
	Overview
	Clock Frequency
	Latency and Pipelining
	Throughput
	Memory Architecture and Layout
	Registers
	Shift Register
	FIFO
	BRAM

	Vivado High-Level Synthesis
	Overview
	Operations
	Conditional Statements
	Loops
	Functions
	Dynamic Memory Allocation
	Pointers

	Computation-Centric Algorithms
	Overview
	Data Rate Optimization

	Control-Centric Algorithms
	Overview
	Expressing Control in C/C++
	Loops
	Conditional Statements
	Case Statements
	Control System Classification

	UDP Packet Processing

	Software Verification and Vivado HLS
	Overview
	Software Test Bench
	Code Coverage
	Uninitialized Variables
	Out-of-Bounds Memory Access
	Co-Simulation
	When C/C++ Verification Is Not Possible

	Integration of Multiple Programs
	Overview
	AXI
	Memory Mapped Slave
	Memory Mapped Master
	Direct Point-to-Point Stream

	Design Example: Application Running on a Zynq-7000 AP SoC
	Analyzing and Partitioning the Processor Code
	Compiling the Program in Vivado HLS
	Composing the System in Vivado IP Integrator
	Connecting Processor Code and FPGA Fabric Functions

	Verification of a Complete Application
	Overview
	Standalone Compute Systems
	Module Verification
	Connectivity Verification
	Application Verification
	Device Validation

	Processor-Based Systems
	Hardware in the Loop Verification
	Virtual Platform Verification
	Device Validation

	Additional Resources
	Xilinx Resources
	Solution Centers
	References

