
EITF35 - Introduction to Structured VLSI Design (Fall 2019)

Course projects

v.1.0.0

1 Introduction
This document describes the course projects provided in EITF35 “Introduction to Struc-
tured VLSI Design” conducted at EIT, LTH. The projects are extensions to the lab as-
signments 2 and 3, where the ALU and PS/2 keyboard controller need to be integrated to
the whole system along with additional components. The basic requirement for projects
is that the result obtained by performing some functions such as addition, multiplication,
and other ALU operations is to be displayed on a computer screen interfaced to the FPGA
using the VGA port.

NOTE: Completion of project 1 gives a grade 4 and completion of both will result
in a grade 5.

Students interested in developing their own project to obtain a grade 5 instead of the
suggested project are welcome to discuss their proposals with the TAs. There are several
sensors on the Nexys 4 board which could be used to perform interesting projects. One
example would be to use the microphone or to use the accelerometers to implement a
simple video game.

2 Objectives
At the end of these projects the student will have learnt

• How to use the IP generator from Xilinx to instantiate IP cores

• How to perform fixed point programming and compare results from an algorithm
in Matlab with the output from the hardware design

3 Assignments
* Project 1 - A calculator with memory:

Instantiate an 8 kB, 8 bit wide RAM in your design using Xilinx IP generator. In-
tegrate the keyboard, ALU, VGA controller and the newly created IP into your
design. The design should be able to input operands from the keyboard, store them
into the RAM and later calculate the result and display the result on the VGA.

* Project 2 - Integrated ALU with memory and CORDIC unit:

1

The design should be able to get operands from the keyboard and store them in the
RAM. Along with performing the already implemented operations, the ALU should
be able to transform Cartesian vector coordinates into Polar coordinates with upto
2 decimal digits in accuracy after the decimal point. The result should be displayed
on the seven segment display as well as the VGA screen.

A typical block diagram for the top level with both project 1 and 2 integrated is
shown in Fig 1.

ALUPS/2 Keyboard
controller

8k Byte RAM

System controller

FPGA

PS/2
Keyboard

Monitor

Graphic drawing
engine

CORDIC

Figure 1: An overview on the course projects

Lab preparation
- Read this manual and try to understand the given tasks. Make sure that you have

understood what is expected from the projects. Consult the lab assistants, if the
functionality or any task is not expressed clear enough.

- Read the VGA section of the digilent Nexys 4 FPGA user manual, and go through
the provided VGA controller reference design. The reference design is available on
the S:/shared/Courses/eit/EITF35/VGA_REF_DESIGN. Understand how a VGA
controller works. Read about generation of IP cores using Xilinx IP generator.

Equipment
- A Digilent Nexys-4 FPGA board.

- A PC monitor with a standard VGA port.

- A PS/2 interfaced keyboard.

2

4 The VGA reference design
To ease the start of the project, a reference design of a VGA controller on the target
FPGA board is provided, where a course welcome message is loaded from FPGA’s block
memories and displayed on the monitor. The student can modify this design to suit the
requirements of whichever project he/she chooses to implement.

In both course projects, a VGA display with pixel resolution of 640×480@60Hz
is used. The VGA port connections, VGA color signals and basic timing specification
can be found in the user guide of the FPGA board provided by Digilent. Therefore,
descriptions for these parts are not repeated in this manual, whereas only the VGA signal
timing diagram is illustrated here as shown in Fig. 2.

Horizontal

blanking

internal

Horizontal

blanking

internalVideo line

Horizontal

Synch.

25.6 us (640 clocks)

26.24 us (656 clocks)

30.08 us (752 clocks)

32 us (800 clocks)

Vertical

blanking

internal

Vertical

blanking

internal
Video

frame

Vertical

Synch.

15.36 ms (480 lines)

15.424 ms (490 lines)

15.744 ms (492 lines)

16.672 ms (521 lines)

Figure 2: Signal timing diagram for a 60Hz, 640×480 VGA display.

To illustrate the use of the given signal timing information, a reference design of
the VGA controller is provided in this course and is briefly described in this manual.
The reference design displays a course welcome message on a VGA display, where the
message is saved as an image file stored in the block memories of the FPGA. An overview
of the provided VGA controller is shown in Fig. 3.

A) Clocking wizard (DCM) : This module divides the input clock frequency by a fac-
tor of 4, as the provided VGA controller is designed based on a system clock of
25MHz. The clocking wizard is a primitive component available in Xilinx’s FP-
GAs, which may be generated from Xilinx Vivado environment with the use of IP
generator. The way of generating and properly configuring the Xilinx Clocking
wizard is shown as a video clip, placed under:

3

Controller

Monitor

rom_addr

rom_dout

VGA controller
(640 x 480@60Hz)

blank
hcount
vcount

rgb

hs
vs

Picture ROM

D
C

M
(2

5M
H

z)100 MHz

Rst

Figure 3: Block diagram of the VGA controller reference design.

“S:/shared/Courses/eit/EITF35/HELP_VIDEOS_AND_IMAGE_CONVERTER”,

NOTE: The video clip uses an older version of the IP generator, but the newer
Vivado tool makes it a lot easier. Several example videos can be found online which
describe the IP generator. One of the lectures also had a demo session with the IP
generators and the corresponding files have been uploaded on the course webpage.

B) Picture ROM: This is the place where the welcome message is stored. The message
is saved as a bitmap image and is stored inside FPGA’s data ROMs. Data ROMs
may be generated with the use of Xilinx IP cores, however, the input data files have
to be loaded in a “.coe” file format during the ROM generation. This can be accom-
plished by using the software provided - “imageConverter”, placed under:

“S:/shared/Courses/eit/EITF35/HELP_VIDEOS_AND_IMAGE_CONVERTER”.

A bitmap image conversion is shown in a video clip “image_converter.wmv”, and
ROM generation is shown in “ise_clock_rom.wmv”

C) VGA controller: This module contains two binary counters, used for tracking on
the horizontal video pixels and vertical video lines, respectively. Horizontal and
vertical synchronization pulses for the VGA display are generated based on the
counters, and an additional blank signal is provided as an output to indicate the
VGA blanking time interval.

D) Controller: The system controller keeps tracking on the current VGA pixel position
by using the horizontal and vertical counter values provided from the VGA con-
troller. This module also controls the address of picture ROM, and reads out the
image data at the desired pixel locations. 3-bit color codes with one bit each for
red, green, and blue are sent to the VGA display, resulting in having 8 different
color tones.

Notice that physical pins mappings of the system I/O signals on an FPGA are accom-
plished with the use of a constraint file, namely the “.xdc” file, which is added in the
project structure.

4

5 Course project 1 (Grade 4) - A calculator with memory
In this project, the ALU implemented in lab assignment 3 and PS/2 keyboard controller
designed in lab assignment 2 will be reused. A new IP will be generated using the Xilinx
IP generator tool.

5.1 Task 1
Start by first understanding how the given VGA controller works. Try assigning your own
rgb colors to the display instead of ROM data. Figure out how the vertical and horizontal
counters can be used in order to emulate the seven segment display on the LCD. An illus-
tration of the LCD display required is shown in a screen capture, placed under:

“S:/shared/.../HELP_VIDEOS_AND_IMAGE_CONVERTER/VGA_CALC.jpg”.

Integrate the VGA controller to the keyboard and the ALU. Use a top level file to in-
stantiate these three IPs as components in order to keep them functionally in separate
files. Reuse as much code as possible from your previous designs.

5.2 Task 2
In this step, you will generate your own memory module. The basic steps of generating
an IP core are listed below.

* Click on the IP Catalog in the Project Manager.

* Search for RAM. In Memories & Storage elements, choose RAMs & ROMs. Then
choose Block memory generator.

* In the new window that opens up, examine the memory block that will be generated.

* Choose a Single port RAM with the Algorithm set to Minimum Area.

* Set Memory write width to 8 bits and write depth to 8 kB.

* Leave all other options unchanged. Generate memory.

Once this is done, a new IP will appear in your design hierarchy window. Examine the
HDL files generated by clicking on + beside the IP and choosing the HDL files. The
component instantiation that needs to be used in your calculator design can be found in
this HDL instantiation file.

5.3 Task 3
Integrate the memory module into your design by instantiating it as a component and
verify that integration has succeeded. Refer to Fig 4 and the following steps for some
suggested (but not compulsory) ways to verify the memory controller. We will perform
read and write operations to the memory using the basic pins and switches available on
the board.

5

RESET

Address UP/Down

Latch Data

Increment Address
Increment Address

Latch Data

RESET

Address UP/Down

Figure 4: FPGA with memory controls

* Assign CPU RESET to reset your system. Check whether the reset is active high
or low and make appropriate changes to your code. If you have a different polarity,
instead of changing the whole code, you can create a local reset signal with the
required polarity in your top level and use this as the reset for the rest of your
system.

* Even though the mem_data bus generated from the IP will be 8 bits, for testing we
will now use only 4 bits. Assign the mem_data[3 downto 0] bits to your keyboard
out data. Assign the upper 4 bits to zero.

* Design a counter and connect the mem_address to this counter. When BTNL is
pressed and if SWITCH[12] is set to 0, the address should increment. The address
should decrement if BTNL is pressed when SWITCH[12] is set to 1. Remember to
use debouncing logic on the BTN, if not the memory address might increment by
more than one at each press of BTNL. It would be a good idea to also connect the
mem_write_enable to this button.

* Try and use the LED0-7 present on the board for debugging. Check whether after

6

adding debouncing logic the address increments by the required steps.

* Assign BTNC to enable data latching. The keyboard data should be registered to
the memory input only when BTNC is pressed.

* Connect the memory_out data to the seven segment display, either on the FPGA or
on the LCD screen for debugging.

It is always a good idea to look at the warnings tab when synthesizing the design.
Understand the warnings shown and see if they are OK for your design. It may happen
that the memory block is not connected properly and your system does not work.

5.4 Task 4
The next step is to write code to enable data storage in the memory along with the oper-
ators. Use the same BTNC-BTNL logic described above to store a string of data into the
memory along with the operands. The input data range is from 0 to 255 and the inputs are
considered to be unsigned. At the end of entering data values along with operands, the
ALU should be started. This can be done by pressing the <Enter> key on your keyboard.

A) At the press of every <Enter> key the memory controller should be able to pop the
top three memory locations (the two data operands and the operator), compute the
result and display it on the VGA screen.

B) On the next <Enter> key the next two data operands and the operator have to popped
out from the memory and result should be displayed on the VGA screen. Do not
forget to take into account that for the mod 3 operator we need to enter only one
data and the operand. Remember also that the result could be either a positive or a
negative number. Therefore it is required to display the sign of the result before the
result as shown in the example in Fig. 5.

C) Since the data RAM created will be 8 bits wide and we need to store some operands
along with data, some of the bit patterns can be assigned for these operators(e.g.
“+”, “-”, “=” “mod”,“*”). Choose the range of 130 to 135 for operators. This also
means that input data in the range of 130 to 135 shall not be considered as operands.

D) The values should be stored into the RAM only when proper operands and operators
have been entered. There should be an option to use the back space key to input
a different set of operators and operands. For example, if a mistake is done while
entering the operands, one could use the backspace key to delete the already entered
numbers and start over. A detailed description of operators and operands is as
follows:

E) Both data operands must be displayed in at least 3 digits (hundreds, tens, units) on
the VGA screen and the computation results must also be represented in three digits
(hundreds, tens, units) along with the sign. The operands, computation result along
with the operator must be shown on the emulated 7-segments on a VGA monitor.
For example if one has to compute the sum of 98 and 99 the VGA display should
look like the ouput in Fig. 5. The inputs will be entered in the 3 digits format,

7

meaning if one wants to use 9 as an operand, the input from the keyboard shall
be 009. If the data entered is above the limit, then the number shall be stored as
255. For example if the user enters 1234 as the first input operator, the calculator
shall store this number as 255 when the data latch button is pressed. Note that the
backspace key should be operational to fix the data before the data latch button is
pressed.

F) If you plan on performing project 2, consider that the maximum width of the result
displayed on the monitor should be 5 digits, which corresponds to the hypotenuse
of 255.00. Also you need to display the angle in degress in this case which can be
down underneath the hypotenuse or shifting both values such that they are vertically
centered with the equal sign.

Figure 5: Example VGA Output

Remember that the result is signed and the operands are unsigned. This will enable
one to design a simple state machine to accept the right amount of inputs before
storing them in the memory.

G) The design must be able to perform the following different computation operations:
addition, subtraction, multiplication and modulo 3. An indication of overflow/un-
derflow should also be displayed when it happens.

H) The emulated 7-segments have to be shown in a visible size. It is allowed to load
digits and operators from data ROMs, however, you have to consider the available
memory capacity in the FPGA. It is recommended to design a display engine for
one 7-segment, and use it to generate digits at all locations during system run-time.
Using either logic or data memories is always a design trade off, where a common
practice is to use a mixed design approach to find a balanced point between them.
You may, for instance, store all data operators (e.g. “+”, “-”, “=”,“*”) in ROMs,
and generate all digits by using one 7-segment display engine.

An example output of the memory operation is shown in Fig 6. Refer to the presenta-
tions uploaded along with this manual for details on how to fill in the memory and reading
the memory. To begin with, the write address is “0". When data and operands are entered,
the memory will fill up in a way similar to a stack. Once the user decides to compute the
results, the <Enter> key will be pressed. This should result in popping data from the top
of the stack and displaying results on the VGA screen. Further <Enter> keys should pop
data correctly in order to display the corresponding result. The calculator should also be
able to accept data inputs in the middle of displays. For example in Fig. 6 after the third
<Enter> key has been pressed resulting in a display of +049 on the VGA monitor, the
user should be able to input more operands and operators. This should result in the mem-
ory being filled up again until the user decides to evaluate the results using the <Enter>

8

key. Contact the teaching assistant if you have any questions on the operation of the
memory.

10

98

3

6

30

7

7

0

+

54

10

*

-

*

*

On first enter key

013%003 = +001

On second enter key

100*000 = +000

On third enter key

007*007 = +049

On fourth enter key

006-030 = -024

On fifth enter key

003*054 = +162

On sixth enter key

098+010 = +108

%

13

Initial position

D
ir

ec
ti

o
n
 o

f
m

em
o
ry

 f
il

l

(s
im

il
ar

 t
o
 a

 s
ta

ck
) D

ir
ec

ti
o
n
 o

f
P

O
P

Figure 6: Example output

9

6 Course project 2 (Grade 5) - ALU with CORDIC and
Memory

In this project a CORDIC (COordinate Rotation DIgital Computer) core will be added to
the design. The input will be the Cartesian X and Y coordinates of a vector as unsigned
number. Using the CORDIC core, the vector coordinates will be transformed into polar
coordinates with a hypotenuse and the respective angle. The computed result should be
displayed on the emulated seven segment display on the VGA monitor with upto two
decimal digits in accuracy. The detailed requirements are as follows

A) Interface the keyboard, ALU and the VGA as explained in the previous sections.
Emulate a seven segment display on the VGA screen.

B) The CORDIC core is to be designed and integrated in the ALU. The used algorithm
is shown in Algorithm 1. For the internal calculation use a signed fixed point format
with a wordlength of 24 and a fractional length of 12 whereas the result will always
be unsigned. Use 10 iterations to transform the coordinates. The hypotenuse and
angle shall be displayed with an accuracy of 2 decimals. The design should be
capable of accepting data from keyboard, compute results for different operands like
addition, multiplication and CORDIC, then display the result on the VGA screen.
You can assign the key of your choice to perform the CORDIC, such as the ‘c’
button from the keyboard. Hypotenuse values of larger than 255 should generate an
overflow.

C) The final implementation of the CORDIC unit should not include any multi-
pliers except for the scaling of the hypotenuse after all iterations.

D) The final result obtained will contain an integer part and a fractional part (you may
want to convert the result to another format than 12.12 signed fixed point before
displaying). The integer part and the fractional part needs to be displayed as a BCD
number. Design a small function to do this.

E) Integrate the CORDIC unit into the ALU with memory designed in Project 1. The
final result should be displayed on the CRT monitor using the VGA controller and
the input should come from the keyboard instead of the SWITCH keys.

F) Remember to do things step by step. Create modules based on functionality and
integrate in the top level. For example, you should have a separate module which
accepts a seven segment coded number and displays on the VGA, one separate
module to perform CORDIC, one to do all the other ALU operations etc.

G) An easy understandable tutorial for how CORDIC works in more detail can be
found on the webpage also including a Matlab script showing the implementation
for floating and fixed point.

The CORDIC algorithm used is detailed in Algorithm 1. 10 iterations are used to
transform the Cartesian coordinates into Polar coordinates. The transforming process is
performed by rotating the vector to the x-axis, such that y is as close to zero as possi-
ble. Depending on if y is positive or negative the vector is rotated clockwise or counter-
clockwise, respectively. To avoid any multiplications during the iterative process, all

10

Algorithm 1 CORDIC Hypotenuse and Angle Calculation
1: for i = 1 to 10 do
2: if y >= 0 then
3: xnew← x+(y/2i−))
4: ynew← y− (x/2i−1)
5: SumAngle← SumAngle+LookupTable(i)
6: end if
7: if y < 0 then
8: xnew← x− (y/2i−))
9: ynew← y+(x/2i−1)

10: SumAngle← SumAngle−LookupTable(i)
11: end if
12: x← xnew
13: y← ynew
14: end for
15: Hypotenuse← x×0.6072

arithmetic is either additions or bit shifts. The lookup table holds the values for atan(2−x)
and has to be pre-calculated and stored. Due to the fact, that the tan is used for rotation,
and not sin and cos, the hypotenuse gets scaled and a multiplication with a constant factor
of 0.6073 (10 iterations) is required before displaying the result.

11

