
EITF35 - Introduction to the Structured VLSI Design
(Fall 2016)

Interfacing Keyboard with FPGA Board

(FPGA Interfacing)

Teacher: Dr. Liang Liu

v.1.0.0

1

Masoud Nouripayam

Masoud Nouripayam
Fall 2019

Abstract

This document describes the basic behavior of a PC keyboard and how to inter-

face it with the FPGA as lab work, which is part of course EITF35 “Introduction to

Structured VLSI” at EIT, LTH. The lab will result in a FPGA implementation of a

keyboard controller. The designs are to be realized using VHDL. The simulation can

be done using ModelSim, whereas the synthesis for FPGA’s implementation can be

done using Xilinx ISE.

Contents

1 KEYBOARD 3

1.1 Introduction . 3
1.2 Reading Keyboard Scan Codes Through the PS/2 Interface on the Board . 3

1.3 Scan codes and commands . 3
1.3.1 Keyboard layouts with codes . 3

1.4 Port Definitions . 4
1.5 Procedure Definitions . 4
1.6 Tips and Tricks . 5

1.7 Interface . 5

2 Assignment 5

2.1 Tasks/Requirements . 5

2.1.1 Lab Preparations . 5
2.1.2 Lab Requirements . 6

3 APPENDIX 6

3.1 Description of a PC Keyboard . 6

3.1.1 make code . 7
3.1.2 break code . 7
3.1.3 key code . 7

3.1.4 scan code . 7
3.1.5 Keyboard serial data . 8

3.2 Scan code tables . 8
3.3 Synchronizer . 10
3.4 7-Segment Driver . 10

3.5 Files and Description . 11
3.6 Further reading . 12

3.6.1 Web references . 12

2

1 KEYBOARD

1.1 Introduction

In this lab you will create a keyboard decoder, and interface it with an FPGA platform.
This will help in becoming more familiar with the VHDL code implementation of a small

design and the use of FPGA to implement and test it. This lab therefore requires a FPGA
board (provided in lab), FPGA programming tool (Vivado) and any hardware simulators
like ModelSim or Vivado inbuilt simulator. You will use a typical HDL flow, wherein,

first you write the HDL code, the run a functional HDL simulation, and latter synthesis
the design and test it in the FPGA board.

1.2 Reading Keyboard Scan Codes Through the PS/2 Interface on

the Board

The keyboards provided in the lab has a USB interface, however, don’t worry, we won’t
ask you to implement a USB host, which is a very complex design. In our case fortunately
the FPGA board has a USB host (PIC microcontroller) implemented already. This USB

host converts the keyboard interface to old PS/2 format interface, and we will design the
controller for this interface.

The old PS/2 PC keyboard transmits data in a clocked serial format consisting of a
start bit, 8 data bits with least significant bit (LSB) first, an odd parity bit and a stop bit.
The clock signal is only active during data transmission. The generated clock frequency

is usually in the range of 10 - 30 kHz. Each bit should be read on the falling edge of the
clock.

0 1 2 3 4 5 6 7 P Stop

Keyboard
Clock

Data

Idle

Idle

Start

LSB MSB

Figure 1: Key Board interface waveform

In figure 1, the waveform represents a one byte transmission from Keyboard. The
keyboard may not generally change its data line on the rising edge of the clock as shown

in the diagram i.e., there can be some skew in the data generation and clock edge. The
data line only has to be valid on the falling edge of the clock. The LSB is always sent
first.

1.3 Scan codes and commands

1.3.1 Keyboard layouts with codes

When a key is pressed, the keyboard transmits a ‘make’ code consisting of an 8-bit ‘scan’
code denoting the key pressed, when the key is released, a ‘break’ code is sent. The

3

Table 1: Port Interface Description

Name Type Range Description

kb_data in std_logic The scan code bits enter through this input.

kb_clk in std_logic The keyboard clock signal enters through this input.

sys_clk in std_logic The system clock used to clock the system.

sc out std_logic_vector(7 downto 0) Drive the bargraph (pins LD0-LD7) on the Board.

num out std_logic_vector(6 downto 0) Drive the seven segment display on the Board.

seg_en out std_logic_vector(3 downto 0) Enable signal for Seven Segments (An0-An3) on the Board.

‘break’ code consists of the same 8-bit scan code preceded by a special code - ‘F0’H.
More information can be found in Appendix A, “PC AT keyboard ref”.

1.4 Port Definitions

The inputs and outputs of the circuit is defined in Table.1, the keyboard produces keyboard

clock and keyboard data. The FPGA uses a global clock generated by the oscillator on the
board. The outputs from the FPGA are scan code, seven segment data and seven segments
enable signals.

1.5 Procedure Definitions

Within the main body of the architecture section, following processes need to be imple-

mented. For consistency purposes use the same names for the processes:

sync_keyboard Synchronize the external inputs to the system clock. Create an in-
ternal copy of the keyboard signals that only changes values on the positive edge of the
system clock.

detect_falling_kb_clk Create a single bit output which is high during one system
clock cycle when a falling edge of the synchronized kb_clk signal has been detected. This
can be done by comparing the current value of the synchronized kb_clk signal with the old

value (stored in the previous clock period) of the synchronized kb_clk signal. Remember
that the output signal from this process should not be used as a clock, as this would create
a design with multiple clock domains.

convert_scancode When edge_found is ‘high’ this process shifts the data bit on the

kb_data input into a shift register and user right shift to reverse the order of arriving data.
After 11 shifts (bits from kb_data), the lower 8 bits of the register will contain the scan

code, the upper 2 bits will store the stop and parity bits, and the start bit will have been
shifted through the entire register and discarded.

4

valid_scancode In order to extract the data from the shift register a counter (-mod
11) needs to be implemented. A valid_scancode signal needs to be generated (counter

overflow) to indicate that the data has been extracted and can be used by other modules in
the design.

The value in the shift register can directly be applied to the seven segment LED. Since

the bargraph segments are active-high, a segment will light for every ‘1’ bit in the shift
register. If the scan code in the shift register matches the codes for the digits 0-9, then
the correct LED seven segments will be activated to display the corresponding digit. If

the scan code does not match one of these codes, the letter ‘E’ is displayed. There are
four seven segments on the board and they are active low. To enable the seven segments

you have to assign a low signal to one of the four control signals in order to operate a
particular seven segment.

1.6 Tips and Tricks

To avoid a lot of trouble in the design phase a few hints are needed,
• Do not use multiple clock definitions, i.e., use only one statement with ’EVENT

defining a clock.

• The use of ’EVENT and ’LAST_VALUE are not useful in the context of synthesis
except for defining the rising or falling edge of clock.

• Try to avoid software style of coding (variable, for loops etc), and make sure you
understand what hardware will be created for every block of code written.

1.7 Interface

The Xilinx synthesis tool needs to know how the FPGA is connected to the external
world. A .xdc file is generated for this purpose. The file consists of the mapping of IO

pins described in VHDL with physical pins in board. This will be provided along with
the manual.

2 Assignment

Create a VHDL based design that accepts scan codes from a keyboard attached to the PS/2
interface of the Board. The binary pattern of the scan code is displayed on the bar-graph

LEDs. You have to fulfill the following functionalities :
• If scan code for one of the ‘0’-‘9’ keys arrives, the numerals should be displayed on

the correct Seven Segment display of the Board.

• The next scan codes pressed should be displayed to right of the first one and so-on.
• A ’E’ (-Error) needs to be displayed if other keys are pressed.

2.1 Tasks/Requirements

2.1.1 Lab Preparations

Here are the tasks for lab preparation (also look at the lecture for more details and deadline
dates)

• Go through the manual, keyboard interface, and some basics of FPGA flow.

5

• Understand and map the block diagram with the top level VHDL code provided. 1

• Draw the circuits for Edge detector, and understand the syncrhonizer circuit pro-

vided in manual.
• Write the VHDL code for both edge detector and syncrhonizer on paper. And the

student should be able to explain the code/hardware.

• Understand the requirements and figure out the keyboard controller.
A testbench will be provided that can be used by students to check if the keyboard

decoder works during simulation.

2.1.2 Lab Requirements

Here are the requirements to pass the laboratory

•Implement the design using the provided VHDL files, and verify using the testbench
in modelsim simulator or vivado simulator.

•Synthesize the design and demonstrate the required functionality on the FPGA board.

• Make sure to verify the design on FPGA for different scenarios before approval.
Hints :

- Check the reset condition, all display should be switched off at reset.

- Pressing "123456" one by one, the display should look the following:

1

1

1

2

2 3

1 2 3 4

2 3 4 5

3 4 5 6

press (sw0) reset

press 1

press 2

press 3

press 4

press 5

press 6

DISPLAY OFF

Seven Segement Display

3 APPENDIX

3.1 Description of a PC Keyboard

The original keyboard design had a single chip microprocessor, but now a customised

controller chip is used. This keyboard controller chip takes care of all keyboard matrix
scanning, key de-bouncing and communications with the computer, and has an internal
buffer if the keystroke data cannot be sent immediately. The PC motherboard decodes the

data received from the keyboard via the PS/2 port using interrupt IRQ1. The one thing

1The VHDL file along with testbench has been provided to ease the work load for many first time
VHDL/FPGA users. The students should basically fill-up the architecture for each module.

6

that these keyboards do not generate is ASCII values. With a typical AT keyboard having
more than 101 keys, a single byte could not store codes for all the individual keys, plus

these keys along with shift, control, or alt, etc. Also for some functions there is no ASCII
equivalent, for example ‘page up’, ‘page down’, ‘insert’, ‘home’, etc.

Once the keyboard controller finds that a key has been pressed or released, it will send

this keystroke information, known as scan codes, to the PIC micro-controller. There are
two different types of scan codes - make codes and break codes. The communications
protocol is bi-directional, but here we only discuss the keyboard to host part.

3.1.1 make code

A make code is sent whenever a key is pressed or held down. Each key, including ‘shift’,

‘control’ and ‘alt’, sends a specific code when pressed. Cursor control keys, ‘delete’,
‘page up’, ‘page down’, ‘ins’, ‘home’ and ‘end’, send extended make codes. The make
code is preceded by ‘E0’h to indicate an extended code. The only exception is the ‘pause’

key that starts with a unique ‘El’h byte.

3.1.2 break code

A break code is sent when a key is released. The break code is the make code preceded

by ‘F0’h byte. For extended keys the break code has an ‘E0’h preceding the ‘F0’h and
make code value. The only exception is the ‘pause’ key as it does not have a break code

and does not auto-repeat when held down.

3.1.3 key code

Every key is assigned its own unique code so that the host computer processing the infor-

mation from the keyboard can determine exactly what happened to which key simply by
looking at the scan codes received. There is no direct relationship between the scan code
generated by a particular key and the character printed on the key top.

The set of make and break codes for each key comprises a scan code set. There are
three standard scan code sets -numbered 1, 2, and 3 - stored within the keyboard controller.

Scan code set 1 is retained for compatibility for older IBM XT computers. Scan set 3 is
very similar to the set 2 but the extended codes are different. Scan code set 2 is the default
for all AT keyboards and all scan codes discussed here are from this set.

3.1.4 scan code

If, for example, you press ‘shift’ and ‘A’ then both keys will generate their own scan
codes, the ‘A’ scan code value is not changed if a shift or control key is also pressed.

Pressing the letter ‘A’ generates ‘lC’h make code and when released the break code is
‘F0’h, ‘lC’h. Pressing ‘shift’ and ‘A’ keys will generate the following scan codes:

•The make code for the ‘shift’ key is sent ‘12’h.
•The make code for the ‘A’ key is sent ‘lC’h.
•The break code for the ‘A’ key is sent ‘F0’h, ‘lC’h.

•The break code for the ‘shift’ key is sent ‘F0’h,‘12’h.
If the right shift was pressed then the make code is ‘59’h and break code is ‘F0’h,

‘59’h. By analyzing these scan codes the PC software can determine which key was

7

pressed. By looking at the shift keystroke the software can distinguish between upper and
lower case.

3.1.5 Keyboard serial data

The AT keyboard transmission protocol is a serial format, with one line providing the
data and the other line providing the clock. The data length is 11 bits with one start bit

(logic 0), 8 data bits (lsb first), odd parity bit and a stop bit (logic 1). The clock rate is
approximately 10 to 30 kHz and varies from keyboard to keyboard.

3.2 Scan code tables

The scan codes generated, when a keyboard key is pressed and when its released is given
by table 2.

8

Table 2: Keyboard alpha numeric scan codes:

key make break

A ‘lC’h ‘F0’h ‘1C’h

B ‘32’h ‘F0’h ‘32’h

C ‘21’h ‘F0’h ‘21’h

D ‘23’h ‘F0’h ‘23’h

E ‘24’h ‘F0’h ‘24’h

F ‘2B’h ‘F0’h ‘2B’h

G ‘34’h ‘F0’h ‘34’h

H ‘33’h ‘F0’h ‘33’h

I ‘43’h ‘F0’h ‘43’h

J ‘3B’h ‘F0’h ‘3B’h

K ‘42’h ‘F0’h ‘42’h

L ‘4B’h ‘F0’h ‘4b’h

M ‘3A’h ‘F0’h ‘3A’h

N ‘31’h ‘F0’h ‘31’h

0 ‘44’h ‘F0’h ‘44’h

P ‘4D’h ‘F0’h ‘4D’h

Q ‘15’h ‘F0’h ‘15’h

R ‘2D’h ‘F0’h ‘20’h

S ‘IB’h ‘F0’h ‘1B’h

T ‘2C’h ‘F0’h ‘2C’h

U ‘3C’h ‘F0’h ‘3C’h

V ‘2A’h ‘F0’h ‘2A’h

W ‘ID’h ‘F0’h ‘1D’h

X ‘22’h ‘F0’h ‘22’h

Y ‘35’h ‘F0’h ‘35’h

Z ‘lA’h ‘F0’h ‘1A’h

1 ‘16’h ‘F0’h ‘16’h

2 ‘lE’h ‘F0’h ‘1E’h

3 ‘26’h ‘F0’h ‘26’h

4 ‘25’h ‘F0’h ‘25’h

5 ‘2E’h ‘F0’h ‘2E’h

6 ‘36’h ‘F0’h ‘36’h

7 ‘3D’h ‘F0’h ‘3D’h

8 ‘3E’h ‘F0’h ‘3E’h

9 ‘46’h ‘F0’h ‘46’h

0 ‘45’h ‘F0’h ‘45’h

9

3.3 Synchronizer

A synchronizer circuit is required when two devices/modules are running with different

clocks. In this assignment the keyboard needs to be syncrhonized with the FPGA system
clock. Luckily the keyboard clock is quite slow (in KHz) compared to FPGA system

clock (in MHz). Hence, a simple back-to-back flip-flop based synchronizer is sufficient,
as shown in Figure 2.

keyboard
clock

system clock

FF FF

D Q D Q

Figure 2: Synchronizer Circuit

3.4 7-Segment Driver

The FPGA board in the lab provides four common-anode type 7-segment displays (AN3-
An0). The segments of each display are called a, b, up to g as shown in Figure 3. In order
to reduce the number of connections on the board cathode pins of different displays are

connected together to form seven common terminals between displays for every segment
a, b up to g. To illuminate a segment of a particular display, e.g. segment e of the fourth

display, one needs to apply a “0” to Anode3 (in order to select the third display) and a “0”
to cathode node e (to light segment e).

a
b

c

d

e

f g

Anode3
Anode2
Anode1
Anode0

clk

7-Seg6 7-Seg5 7Seg0 Decimal Point
(0)(1)(6)(7)

Figure 3: 7-segment display

Due to a shared bus between the segments, 7-segment modules are not lit continuously.
They are rather sequentially enabled and disabled with a frequency such that the human

10

Masoud Nouripayam

Masoud Nouripayam

Masoud Nouripayam

Masoud Nouripayam

Masoud Nouripayam

Masoud Nouripayam

eye will have the illusion that the display is continuous. Thus, if two or more digits are to
be displayed, time multiplexing with a reasonable cycling interval between the digits of

the 7-segment display must be employed.

3.5 Files and Description

For the Lab2 assignment the block diagram and architecture details are provided to the

students. Most of the VHDL files provided are self explanatory and has in-line comments
to guide students. The block diagram for the keyboard interface is shown in 4. Students
are free to modify and instantiate new modules if required. The reset in the provided sw0

button and is active high.

seg_en sc num

Sync_keyboard

Edge Detector

Convert Scancode Keyboard Controller

clk rst (sw0 button in board)

kb_clk

kb_data kb_sync

edge_found

kb_data_sync
valid_scan_code

scan_code

Convert to
binary

Seven Segement
driver

Figure 4: Key Board Block Diagram

Each of the sub-module has to be implemented in the corresponding VHDL file. The
top level integration is done in keyboard top.vhd file.

The module Sync_keyboard basically should synchronize the keyboard clock and data
(slower rate in few KHz) with the FPGA system clock (in MHz). A simple synchronizer
would be to use 2-flip flops and sample the slower clock using faster clock.

After synchronization a falling edge_detection needs to be performed. This can be
implemented by delaying the input kb_clk_sync by 1 system clock cycle (using a Flip-

Flop) and then compare with current value.
NOTE: MAKE SURE ’EVENT IS USED ONLY FOR SYSTEM CLK !!
The module convert scancode is simple shift register which converts the serial data

into parallel. Probably requires a counter to indicate when the shifted value is valid.
Keyboard controller for Lab2 requires a state-machine which will handle the different

sequences of scancode.
Converting the scan_code to binary and the seven segment driver can be implemented

as a combinational logic with a LUT (Look-Up-Table).

11

File Name Function

keyboard_top.vhd Top level integration file

sync_keyboard.vhd Synchronize keyboard data

edge_detector.vhd Edge detection circuit

convert_scancode.vhd Convert serial data to parallel

keybaord_ctrl.vhd Keyboard controller

convert_to_binary.vhd Convert scan code to binary

binary_to_sg.vhd Seven segment driver

keyboard_top.xdc Pin mapping to FPGA board.

tb_pkg.vhd Required for some functions in testbench

tb_keyboard.vhd test bench to drive stimulus

input.txt Keys to be sent to design via testbench.

3.6 Further reading

3.6.1 Web references

Some external links for MOdelsim and Vivado tutorials apart from class lecture. Older

version links but not much change in the flow.
http://www.xilinx.com/training/vivado/

https://www.youtube.com/watch?v=NCyENtIxqQ8

Interfacing the AT keyboard
http://www.beyondlogic.org/keyboard/keybrd.htm

12

