&_{ - /_x\«

LUND

UNIVERSITY

Introduction to Structured VLSI Design
Synthesizable VHDL Coding Styles

MOHAMMAD ATTARI

Two Coding Styles

* There are 2 styles of writing synthesizable VHDL code
1) One-process
2) Two-process
* Which one is better?
 Let's consider two simple examples
— Aflipflop
— A counter
« Let's do it using both styles
— For simplicity libraries and reset signal are omitted

Example 1, Flipflop — One-process Method

entity flipflop is
port(clk : in std logic;
D : in std logic;
Q : out std logic);
end flipflop;

architecture behavior of flipflop is

begin
process (clk)
begin
if clk'event and clk = "'
Q <= D;
end if;

end process;

end behavior;

LUND

UNIVERSITY

Example 1, Flipflop — Two-process Method

entity flipflop is
port(clk : in std logic;
D : in std logic;
Q : out std logic);
end flipflop;

architecture behavior of flipflop is D > Q_ﬂGXt) Q
signal Q next : std logic;
begin
process (clk) /A\
begin
if clk'event and clk = '!' then clk
Q <= Q next;
end if;

end process;

process (D)
begin

Q next <= D;
end process;

end behavior;

LUND

UNIVERSITY

Example 1 Assessment

* Previous codes both synthesize into a flipflop
« But which one is preferred?
« To answer that let’s design an up-counter

Example 2, Counter — One-process Method

entity up counter is
port(clk : in std logic;

count out : out std logic vector (
end up counter;
architecture behavior of up counter is
signal count : std logic vector (/ downto
begin
process (clk)
begin
if clk'event and clk = ''' then
count <= count + 1;
end if;

end process;

count out <= count;

end behavior;

downto

) ;

count

count_out

>

LUND

UNIVERSITY

Example 2, Counter — One-process Method

entity up counter is
port(clk : in std logic;

count out : out std logic vector (
end up counter;
architecture behavior of up counter is
signal count : std logic vector (/ downto
begin
process (clk)
begin
if clk'event and clk = ''' then
count <= count + 1;
end if;

end process;

count out <= count;

end behavior;

downto

) ;

count.

count_out

>

LUND

UNIVERSITY

Example 2, Counter — Two-process Method

entity up counter is
port(clk : in std logic;
count out : out std logic vector (/ downto 0));

end up counter;

count_next count count_out
architecture behavior of up counter is —_— *-—> >
signal count next, count : std logic vector(/ downto 0);
begin
process (clk) /\
begin ‘
if clk'event and clk = '!' then clk
count <= count next;
end if; /‘ '\
end process; &

process (count) \\\7K’//

begin

(147
count next <= count + 1; 1

end process;

count out <= count;

end behavior;

LUND

UNIVERSITY

Example 2, Counter — Two-process Method

entity up counter is
port(clk : in std logic;
count out : out std logic vector (/ downto 0));
end up counter;

count_next count count_out
architecture behavior of up counter is —_— *”——> >
signal count next, count : std logic vector(/ downto 0);
begin
process (clk) /A\
begin
if clk'event and clk = '!' then clk
count <= count next;
end if;
end process;

4)

process (count)

begin

count next <= count + 1;

end process;

\. J

count out <= count; ‘::::___;

end behavior;

Combinational

LUND

UNIVERSITY

Example 2, Counter — Two-process Method

entity up counter is
port(clk : in std logic;

count out : out std logic vector (/ downto 0));
end up counter; (” *\\
count_next count count_out
architecture behavior of up counter is > *”——> >
signal count next, count : std logic vector (/ downto 0);
begin
fprocess (clk) \ /\
begin ‘
if clk'event and clk = '!' then K;, clk AA/
count <= count next;
end if; /‘ '\
kend process;) \\\ &

process (count)

Sequential
begin

(147
count next <= count + 1; 1

end process;

count out <= count;

end behavior;

LUND

UNIVERSITY

Assessment

* One-process style
— Fewer lines of code
— Less descriptive
« Two-process style
— More verbose
— Less susceptible to errors
— Better modularity

L

UNIVERSITY

Assessment

* One-process style
— Fewer lines of code
— Less descriptive

« Two-process style
— More verbose “3 = . You must use this
— Less susceptible to errors @ one in the course

— Better modularity @@

L

UNIVERSITY

