
Introduction to Structured VLSI Design
Synthesizable VHDL Coding Styles

MOHAMMAD ATTARI



Two Coding Styles

• There are 2 styles of writing synthesizable VHDL code

1) One-process

2) Two-process

• Which one is better?

• Let’s consider two simple examples

– A flipflop

– A counter

• Let’s do it using both styles

– For simplicity libraries and reset signal are omitted



Example 1, Flipflop – One-process Method
entity flipflop is

port(clk : in std_logic;

D : in std_logic;

Q : out std_logic);

end flipflop;

architecture behavior of flipflop is

begin

process(clk)

begin

if clk'event and clk = '1' then

Q <= D;

end if;

end process;

end behavior;

D Q

clk



Example 1, Flipflop – Two-process Method
entity flipflop is

port(clk : in std_logic;

D : in std_logic;

Q : out std_logic);

end flipflop;

architecture behavior of flipflop is

signal Q_next : std_logic;

begin

process(clk)

begin

if clk'event and clk = '1' then

Q <= Q_next;

end if;

end process;

process(D)

begin

Q_next <= D;

end process;

end behavior;

Q

clk

D Q_next



Example 1 Assessment

• Previous codes both synthesize into a flipflop

• But which one is preferred?

• To answer that let’s design an up-counter



Example 2, Counter – One-process Method
entity up_counter is

port(clk : in std_logic;

count_out : out std_logic_vector(7 downto 0));

end up_counter;

architecture behavior of up_counter is

signal count : std_logic_vector(7 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

count <= count + 1;

end if;

end process;

count_out <= count;

end behavior;

count_out

clk

‘1’

count



Example 2, Counter – One-process Method
entity up_counter is

port(clk : in std_logic;

count_out : out std_logic_vector(7 downto 0));

end up_counter;

architecture behavior of up_counter is

signal count : std_logic_vector(7 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

count <= count + 1;

end if;

end process;

count_out <= count;

end behavior;

count_out

clk

‘1’

count

Combinational & sequential
are mixed



Example 2, Counter – Two-process Method
entity up_counter is

port(clk : in std_logic;

count_out : out std_logic_vector(7 downto 0));

end up_counter;

architecture behavior of up_counter is

signal count_next, count : std_logic_vector(7 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

count <= count_next;

end if;

end process;

process(count)

begin

count_next <= count + 1;

end process;

count_out <= count;

end behavior;

count_out

clk

‘1’

countcount_next



Example 2, Counter – Two-process Method
entity up_counter is

port(clk : in std_logic;

count_out : out std_logic_vector(7 downto 0));

end up_counter;

architecture behavior of up_counter is

signal count_next, count : std_logic_vector(7 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

count <= count_next;

end if;

end process;

process(count)

begin

count_next <= count + 1;

end process;

count_out <= count;

end behavior;

count_out

clk

‘1’

countcount_next

Combinational



Example 2, Counter – Two-process Method
entity up_counter is

port(clk : in std_logic;

count_out : out std_logic_vector(7 downto 0));

end up_counter;

architecture behavior of up_counter is

signal count_next, count : std_logic_vector(7 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

count <= count_next;

end if;

end process;

process(count)

begin

count_next <= count + 1;

end process;

count_out <= count;

end behavior;

count_out

clk

‘1’

countcount_next

Sequential



Assessment

• One-process style

– Fewer lines of code

– Less descriptive

• Two-process style

– More verbose

– Less susceptible to errors

– Better modularity



Assessment

• One-process style

– Fewer lines of code

– Less descriptive

• Two-process style

– More verbose

– Less susceptible to errors

– Better modularity

You must use this 
one in the course


