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Abstract—We show a high-speed hardware implementation of
x mod z that can be pipelined in O(n − m) stages, where x is
represented in n bits and z is represented in m bits. It is suitable
for large x. We offer two versions. In the first, the value of z
is fixed by the hardware. For example, using this circuit, we
show a random number generator that produces more than 11
million random numbers per second on the SRC-6 reconfigurable
computer. In the second, z is an independent input. This is
suitable for RNS number system applications, for example. The
second version can be pipelined in O(n) stages.
Keywords: x mod z computation, high-speed modulo reduction,
mod z arithmetic

I. INTRODUCTION

The need for cryptographically-secure systems has inspired
interest in the computation of x mod z, especially when x
and z are large [6]. The xmod z function is also useful
in producing (pseudo) random numbers. Random number
generators based on linear recurrences use, for example,
xn+1 = (P1xn + P2) mod N , where x0 is the seed value
[14]. For example, Lehmer’s algorithm, where the i-th random
number is si = asi−1 mod p, is fast enough for many
simulation applications [10]. The Blum-Blum-Shub algorithm,
where a bit of the random number is chosen from si = s2

i−1

mod pq, such that p and q are prime, is believed to be as
secure as encryption methods based on factorization [5].

Another application is the residue number system (RNS),
where addition, subtraction, and multiplication are done with-
out carries [13]. In this application, the xmod z operation is
used in the binary-to-RNS conversion, the RNS operations,
and the RNS-to-binary conversion. In an RNS application,
one seeks to compute simultaneously xmod z for one value
of x and several values of z. Radix converters have been
proposed that use an LUT cascade [8]. Another application
is in primality testing. For example, the famous polynomial-
time algorithm [1] for determining if z is prime must compute
xmod z. Efficient randomized primality algorithms must also
compute xmod z, e.g. [2]. In this paper, we show high-
speed compact hardware realizations of xmod z suitable for
implementation on an FPGA.

Surprisingly there is little work on xmod z. In one, [9]
uses the sign estimate technique to estimate when the sign
of (x− qz) changes, where x = (qz + x)mod z. They show
an algorithm for computing x mod z, but no experimental
results are shown. [7] discusses a unified method for comput-
ing modular multiplication, but shows no experimental results.
Neither address the issue of whether an independent z can be
accommodated. We consider a circuit that computes x mod z
given x and z, as n- and m-bit numbers, respectively. It can be

pipelined, and each stage consists of adders and multiplexors,
so the delay is small and the throughput is high. When
multiple-pipelines are used, as in the case of RNS applications,
the pipelines can be designed to have the same length, so that
the residues of each number arrive simultaneously. We show
two architectures. In the first, z is fixed by the hardware. In the
second, z can be changed at each clock period. Experimental
results demonstrate the efficiency of our design.

II. BASIC IMPLEMENTATION

Our design benefits from the following viewpoint: We
consider the computation of x mod z as a modulo reduction
process, where, at each stage, the magnitude of x is reduced,
but the residue remains the same. This continues until only
the residue remains.

A. Computing xmod z for fixed z

Fig. 1 shows a circuit that realizes this process for the case
where x has 8 bits and z = 3. First, 192 is subtracted, if
possible. Next, 96 is subtracted, if possible, etc.. This circuit
performs a sequence of subtract operations until only the
residue OUT remains. That is, IN = x = OUT +3Q, where
OUT is a 2-bit remainder upon division of IN by 3 (OUT
= 0, 1, or 2). Representing Q, the quotient, as an 7-bit binary
number q626 + . . . + q121 + q020 yields

0≤IN=x=OUT +3q626+. . .+3q121+3q020<256, (1)

where the limits 0 ≤ and < 256 are imposed by our
specification that IN = x is represented as an 8-bit standard
binary number.
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Fig. 1. Computation of x mod z, where x has 8 bits and z = 3 (z is fixed
by hardware).

The circuit shown in Fig. 1 is combinational. When n
is small, such a circuit is satisfactory. However, when n is
large, the delay will be too large, and it is necessary that it
be pipelined. Table I shows the frequency, number of LUTs,
and the number of register bits used in the Altera Stratix IV
EP4SE530F43C3NES FPGA to realize x mod 3, for x, an n-
bit number, where n = 8, 16, 32, 64, 128, and 256, such
that a pipeline register exists at the output of each stage. The
resulting circuit is compact and fast. For example, for n = 256



TABLE I
RESOURCES ON AN ALTERA STRATIX IV EP4SE530F43C3NES FPGA

NEEDED TO REALIZE x mod z, WHERE x IS AN n-BIT NUMBER AND z = 3
(z IS FIXED).

n Freq. # of r-Input LUTs Est. # of Total # of
(MHz) 6- 5- 4- 3- Packed ALMs Registers

8 573.5 0 14 7 15 29(0%) 50(0%)
16 498.1 5 12 17 124 134(0%) 226(0%)
32 422.0 29 35 71 501 565(0%) 962(0%)
64 276.2 0 0 0 3,513 2,117(0%) 2,738(0%)

128 209.7 0 0 0 13,764 7,269(3%) 8,902(2%)
256 143.8 0 0 0 55,001 27,955(13%) 33,549(7%)

bits, only 13% of the packed ALMs available are used and the
frequency exceeds 100 MHz.

Note that, in this circuit, z is fixed by the architecture.
For random number generation and cryptographic applications,
such a circuit is adequate. In the next section, we show a circuit
where z can be changed.

B. Computing xmod z, where z is an independent variable

In the circuit in Fig. 1, the value of z is determined by the
constant θ applied at each stage. Here, θ = 3 · 2i, where i
is an index to the stage, such that i = 0 corresponds to the
rightmost stage and i = 6 corresponds to the leftmost stage.
In the case of general z, θ = z2i.
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Fig. 2. Computation of x mod z (z is an independent input).

We can modify the circuit to accommodate general z, as
shown in shown in Fig. 2. However, to accommodate various
z, we have to

1) include enough stages to accommodate the worst case
2) allow unneeded stages to ”pass-through”
For example, in the circuit in Fig. 1, which realizes

xmod 3, 7 stages are needed. However, to realize x mod6,
xmod 12, . . ., and xmod 192, we need 6, 5, . . . , and 1 stage,
respectively. Therefore, to accommodate any z, 7 stages are
needed.

The pass-through operation can be implemented by testing
the shifted value at the previous stage, as shown on the left of
Fig. 2. Here, each stage has two inputs/outputs, the reduced
x value (top, single bus), and a shifted version of z (bottom,
double bus). The reduced x value is the same as the single
rail circuit shown in Fig. 1. The shifted version of z is the
replacement of the value θi in each stage in the circuit of
Fig. 1. At the leftmost stage, z is placed on the top half of
the double line showing two n-bit buses. As it passes through
each stage, it is shifted down once. If there is at least one 1 bit
in the upper n bits of the double bus, the NOR gate produces
a 0, which, when applied to the AND gate, yields a 0 at the
MUX input. This causes the MUX to deliver a 0 to the A-B
gate, and the stage is a pass-through stage. Note that the two
left stages are rendered unnecessary by the observation that
z > 1. That is, for any value of z > 1, at least two right shifts

are needed to yield all 0’s in the shifted result. Therefore, we
can eliminate the two leftmost stages and apply the double
bus shifted twice to the next stage. On the left of Fig. 2, z,
which is 3 in this example, is shifted twice right (down). In
this case, the top 8 bit bus has all 0’s and so the leftmost
stage will not be a pass-through. Instead, the value of z will
be tested against 19210 = 1100 00002, and if it is equal to or
larger than this value, 192 is subtracted from x and passed on
to the stage at the right. If x is less than 192, x is passed on
to the stage on the right.

Table II shows the frequency, number of LUTs, and
the number of register bits used in an Altera Stratix IV
EP4SE530F43C3NES FPGA to realize xmod z, where x is
an n-bit number and n = 8, 16, 32, 64, 128, and 256. A
pipeline register exists at the output of each stage. Note that
the frequency is identical or nearly the same as with the circuit
in which z is fixed (Table I). As expected, more resources are
needed when z is an independent input. However, only slightly
more resources are needed. That is, the price of an independent
z is small.

TABLE II
RESOURCES ON AN ALTERA STRATIX IV EP4SE530F43C3NES FPGA
NEEDED TO REALIZE x mod z, WHERE x IS AN n-BIT NUMBER AND z IS

AN INDEPENDENT VARIABLE.
n Freq. # of r-Input LUTs Est. # of Total # of

(MHz) 6- 5- 4- 3- Packed ALMs Registers
8 632.6 0 18 9 16 32(0%) 56(0%)

16 493.3 5 12 17 138 141(0%) 240(0%)
32 422.0 29 35 71 531 580(1%) 992(0%)
64 276.2 0 0 0 3,575 2,148(1%) 2,800(0%)

128 209.7 0 0 0 13,890 7,332(3%) 9,028(2%)
256 143.8 0 0 0 55,255 28,082(13%) 33,803(7%)

III. ADVANCED IMPLEMENTATION

A. Reducing complexity

These circuits have significant redundancy. For example, if
x has 1,024 bits, the pipelined value of x mod z requires 1,024
flip-flops per stage. If z is 3, then the simplest circuit shown in
Fig. 1 requires 1,023 stages or a total of more than 1,000,000
flip-flops. However, not all of these are needed. For example,
consider the rightmost stage in Fig. 1, which produces the
output xmod 3. Only two of the eight outputs need be driven
by flip-flops; all of the others can be driven by constant 0’s or
simply omitted. Similarly, the cell to its left need only produce
three outputs driven by flip-flops. In all, 7 + 6 + 5 + 4 + 3
+ 2 = 27 of the 8 × 7 = 56 stage outputs shown need to be
driven by flip-flops.

Further savings can be obtained by observing that the
constant term has a simple form. At the leftmost stage, this
constant is 1100 00002 = 19210. It is sufficient for the
comparator and subtractor to apply to three bits only.

Fig. 3 shows how these observations reduce the complexity
of the middle stage in the circuit of Fig. 1. While this form
of the circuit is desirable because the next step is to allow
for values of z different from 3, it is useful to observe that
this stage is simply realized by a 3-input 2-output function,
whose truth table is shown in Table III. For example, for the
first three rows, y < 011, and the right two bits of Stage Input



y passes to the output unchanged, as shown in the column
labeled “Internal Stage y mod 3”. For the next three rows, y ≥
011 and y−011 is passed to the output, as shown. The last two
rows show don’t care values in the column labeled “Internal
Stage y mod 3”. This is because the two input values y = 110
and 111 never occur. That is, the previous stage will reduce
these values to less than y = 110. This can also be seen by the
fact that f1f2 in the column labeled “Internal Stage y mod3”
in this table is never 11. However, if all three inputs of the left
stage are driven by inputs, the values y = 110 and 111 occur.
In this case, the output f1f2 should be 00 and 01, respectively.
Because it affects one stage in the LUT cascade, the don’t
care values will be chosen for all stages so that the left stage
produces the correct output. In an FPGA, LUT’s easily realize
this function. Memory-based logic is appropriate as a means
to implement this circuit [16]. Fig. 4 shows the circuit of Fig.
1 as a cascade of LUTs.
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Fig. 3. Reduced complexity stage for the calculation of x mod 3.
TABLE III

TRUTH TABLE OF A SIMPLE IMPLEMENTATION OF x mod z.
Stage Internal Stage Left Stage
Input y mod3 y mod3

y f1 f2 f1 f2

000 0 0 0 0
001 0 1 0 1
010 1 0 1 0
011 0 0 0 0
100 0 1 0 1
101 1 0 1 0
110 - - 0 0
111 - - 0 1
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Fig. 4. Computation of x mod 3 where each stage contains an LUT.

Table IV shows the frequency and resource usage for the
circuit shown in Fig. 4. It is clear that this circuit is much
faster and consumes fewer resources than the two previous
realizations. Like the circuit in Fig. 1, this new more compact
circuit computes xmod z, where z is determined by the
architecture.

B. Reducing latency

C. Tradeoff between complexity and latency

These examples show a tradeoff between the memory used
to store the functions and latency. In the case of a single
lookup table, a latency of one clock can be achieved, but the
memory is 512 bits. One can reduce this to one-fifth, but the

TABLE IV
RESOURCES ON AN ALTERA STRATIX IV EP4SE530F43C3NES FPGA

NEEDED TO REALIZE x mod z, WHERE x IS AN n-BIT NUMBER AND z = 3
(z IS FIXED).

n Freq. # of r-Input LUTs Est. # of Total # of
(MHz) 6- 5- 4- 3- Packed ALMs Registers

8 1520.2 0 0 0 12 14(0%) 27(0%)
16 1520.2 0 0 0 28 60(0%) 119(0%)
32 1520.2 0 0 0 60 248(1%) 495(0%)
64 1520.2 0 0 0 124 1,008(0%) 2,015(0%)

128 1097.9 0 0 0 252 1,134(0%) 2,268(0%)
256 1097.9 0 0 0 508 1,262(0%) 2,524(0%)

latency increases to eight clocks. We can make the following
observation.

Lemma 1. In the realization of xmod z where z is fixed, let n
and m be the number of bits to represent x and z, respectively.
Let S be the number of stages in the pipeline, and let α be
the speed-up compared to the full-latency system, where α =
1 (no speed-up), 2, 3, etc.. Let M be the total memory in bits
needed in this realization. Then,

S =
⌈

n−m

α

⌉
, and M = m2m+α

⌈
n−m

α

⌉
. (2)

Proof: Each stage has m + α inputs and m outputs. Collec-
tively, the stages have S(m + α) inputs, of which (S − 1)m
are driven by outputs from the stages. Thus,

S(m + α)− (S − 1)m ≥ n and S =
⌈

n−m

α

⌉
.

The observation that each unit requires m2m+α bits, yields
(2).

Lemma 1 is similar to Lemma 5.1.5 of [16]. It follows from
(2) that the smallest α (= 1) yields the smallest storage M .
If n −m is even, then α = 2 yields the same M , since the
2m+α term doubles, while the

⌈
n−m

α

⌉
term halves. This can

also be concluded from Theorem 9.8.2 of [16], which applies
to general cascade circuits. However, as α increases beyond
2, the 2m+α dominates, and M increases rapidly. If n−m is
odd, this observation is approximately true. From this, we can
see that there is little penalty to choosing α = 2, and, from
this point on, reducing latency increases memory significantly.

We can obtain a similar lemma for the case where z is a
separate input by observing that z applies to all stages, and
each stage must produce an output that depends on z. This
increases by m the number of inputs, so that each unit stores
m22m+α instead of m2m+α bits. Thus,

Lemma 2. In the realization of xmod z where z is an
independent input, let n and m be the number of bits to
represent x and z, respectively. Let S be the number of stages
in the pipeline, and let α be the speed-up over the full-latency
system, where α = 1 (no speed-up), 2, 3, etc.. Let M be the
total memory in bits needed in this realization. Then,

S =
⌈

n−m

α

⌉
, and M = m22m+α

⌈
n−m

α

⌉
. (3)



IV. EXPERIMENTAL RESULTS

A Verilog program was written for the SRC-6 reconfigurable
computer that computes (pseudo) random numbers using
Lehmer’s algorithm [10]

si+1 = γsi mod z, (4)

where the values γ = 16807 = 75 and z = 231 − 1 are
suggested in [14]. This same expression was also implemented
by rand, the uniform random number generator in MATLAB
Version 4 [11]. (4) is a full-period generating function, where
γsi and z can be represented in 46 and 31 bits, respectively.
In our circuit, x mod z is realized using the architecture
in which z is fixed (Fig. 1). A total of 16 stages (16=46-
31+1) are needed. The delay of each stage is less than 5
ns. Therefore, two stages can be cascaded between pipeline
registers, since the delay of these two stages is less than
one 100 MHz clock period (10 ns). As a result, x mod z is
realized in eight clock periods. The multiplication γsi requires
an additional stage. Thus, nine clock periods are required to
generate each random number. The random number generator
is realized as a producer in a producer-consumer stream. In
all, it takes 36,900 clocks to generate 4,096 random numbers
or 9 clocks per random number plus 36 clocks for overhead.
With a clock running at 100 MHz and 9 clocks per random
number, this random number generator produces more than 11
million random numbers per second.

Fig. 5 shows the first 128 random numbers. Here, a black
box represents 1 and a white box represents 0. The first
number, s0, the seed, is at the left. For illustrative purposes,
we chose s0 = 1 (the single 1 at the least significant bit
position is at the bottom). The next two numbers are the
binary representation of s1 = 168071 and s2 = 168072,
both of which are unchanged by the mod 231 − 1 operation.
The properties of this random number generator have been
extensively studied, and it is denoted as the minimal standard
generator in [14]. Even with the non-random choice of the
seed s0 = 1, Fig. 5 supports the statement in [14] that the
minimal standard generator is ”demonstrably random”.

0 20 40 60 80 100 120
Time

Fig. 5. Sequence of random numbers generated by the Lehmer algorithm.
Table V shows the resources used. Only a fraction of one

FPGA’s resources are needed. The FPGA, in this case, is
the Xilinx Virtex2p XC2VP100 FPGA with Package FF1696
and Speed Grade -5. Our design met the 100 MHz timing
constraint imposed by the SRC-6 Carte toolchain by a slight
margin (100.4 MHz).

V. CONCLUDING REMARKS

We show fast and compact circuits that realize xmod z. In
one version, z is fixed; its value is determined by the hardware.

TABLE V
RESOURCES ON A XILINX VIRTEX2P XC2VP100 FPGA USED TO

IMPLEMENT THE LEHMER RANDOM NUMBER GENERATOR ON THE SRC-6

Number of Used/Available Percentage
Slice Flip-Flops 2,516/88,192 2%
4-Input LUTs 2,794/88,192 3%
Occupied Slices 2,557/44,096 5%

In another, z is an independent input. Our experimental results
show that the complexity of the latter is only slightly larger
than that of the former, while the speeds are nearly the same.

We illustrate the implementation of these circuits in the
generation of random numbers using Lehmer’s algorithm on
the SRC-6 reconfigurable computer. With a clock speed of
100 MHz, we are able to produce random numbers at a rate
of more than 11 million per second.
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