Introduction to Structured VLSI Design EITF35

LAB 3 Simple ALU

Mojtaba Mahdavi

Mojtaba.Mahdavi@eit.lth.se

Introduction

- □ Arithmetic Logic Unit (ALU) is the fundamental building block of the CPU in a computer.
 - "Heart" of a processor
 - Each processor needs at least one ALU
- □ ALU is a digital circuit that performs:
 - Arithmetic operations (Add, Sub, . . .)
 - Logical operations (AND, OR, NOT)

Objective of Lab3

Design a simple ALU to perform the following functions for its inputs (i.e. A, B):

- Addition: (A + B)
- Subtraction: (A B)
- Modulo 3: (A mod 3)
- □ It should support:
 - Sign/unsigned operations
 - Overflow detection

Inputs/Outputs of Design

►Inputs:

- 8 bits for input operand
 DIP Switches (SW7..SW0)
- 3 bits for control signals
 Push buttons (BTNL, BTNC, CPU Reset)
- 50 MHz Clock

≻Outputs:

7-segment display

Top Module

- Generate a proper .xdc file based on the I/Os.
- Instantiate the Debouncer block in the top design.

ALU Architecture

6 Lund University / EITF35/ 2017

ALU Controller

FN [3 : 0]	Operation
0000	Input A
0001	Input B
0010	Unsigned (A + B)
0011	Unsigned (A - B)
0100	Unsigned (A) mod 3
1010	Signed (A + B)
1011	Signed (A - B)
1100	Signed (A) mod 3

7 Lund University / EITF35/ 2017

ALU Architecture

Lund University / EITF35/ 2017

8

Lab Preparation

□ Read the lab manual carefully to understand all the details.

□ Read the checklist file and prepare the requirements of Lab 3.

□ Read the *Modulo3.pdf* paper to design the modulo 3 operation.

Design a hardware-friendly architecture for Binary to BCD conversion.

Some Notes

Think about each block and its functionality before coding!

≻ Start early!

Do the simulation as much as possible for your design and sub blocks.

