
Lund University / EITF35/ Liang Liu 2016

EITF35: Introduction to Structured

VLSI Design

Part 3.1.1: FSMD

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF35/ Liang Liu 2016

Digital VLSI

2

Control

FSM
R

egALU ALU

Reg Reg

Lecture 1.2.1

• Current state -> next

state

• Output logic

Lecture 2.1.1

• Order-irrelevent logic

• Complexity

• Propogation delay

Lecture 2.2.1

• Data storage

• Setup & hold timing

• No Latch

Lund University / EITF35/ Liang Liu 2016

Outline

FSMD Overview

Algorithmic state machine with data-path (ASMD)

FSMD design of a repetitive-addition multiplier

Timing analysis of FSMD

3

Lund University / EITF35/ Liang Liu 2016

Why FSMD? Start with algorithm

Task: sums four elements of an array, divides the sum by 8 and

rounds the result to the closest integer

Two characteristics of an algorithm:

• Use of variables

e.g., sum, or q = q + 1

• Sequential execution

e.g., sum must be finished before division

Algorithm: a sequence

steps of actions

4

Lund University / EITF35/ Liang Liu 2016

 “Dataflow” implementation in VHDL

• Convert the algorithm in to combinational circuit

Converting algorithm to hardware

5

The ”sequential”

operations are

represented by the data

flow from left to right

Lund University / EITF35/ Liang Liu 2016

Problems with dataflow implementation:

• Can only be applied to simple trivial algorithm

• Not flexible

 What if size=10, 100, 1000 …

 or size = n, i.e., size is determined by an external input

 or changing operation depending on instructions

Dataflow Implementation: Drawbacks

6

Lund University / EITF35/ Liang Liu 2016

Alternatively?

Hardware resembles the variable and sequential execution

model

• Use register to store intermediate data and imitate variable

e.g. sum=sum+a => sum_reg+a_reg->sum_reg

• Basic format of RT operation

rdest  f (rsrc1, …, rsrcn)
• Sequence of data manipulation and transfer among registers (RTL)

7

Lund University / EITF35/ Liang Liu 2016

RT Operation: Timing

Timing:

• Hardware! major difference between a variable and a register is that a

explicit clock is embedded in an RT operation

• Rising edge of clk: outputs of source reg rsrc1 rsrc2 etc. are available

• The output are passed to a combinational circuit that performs f()

• At the NEXT rising edge of the clock, the result is stored into rdest

8

R1

D Q
COMB

f()
In

Clk
tClk1

R2

D Q

tClk2

Lund University / EITF35/ Liang Liu 2016

RT Operation: Timing

9

Lund University / EITF35/ Liang Liu 2016

Hardware Mapping of RT: Example 1

E.g. r1 r1+r2

• C1: r1_next<=r1_reg+r2_reg

• C2: r1_reg<=r1_next

10

Lund University / EITF35/ Liang Liu 2016

Hardware Mapping of RT: Example 1

E.g. r1 r1+r2

• C1: r1_next<=r1_reg+r2_reg

• C2: r1_reg<=r1_next

11

Lund University / EITF35/ Liang Liu 2016

Multiple RT operations
How can we organize multiple

operations on one register (in

a time-multiplexing way)?

Hardware Mapping of RT: Example 2

Control signals are needed!

12

Lund University / EITF35/ Liang Liu 2016

MIPS pipeline

13

Lund University / EITF35/ Liang Liu 2016

FSM as Control Path

FSMD: FSM with data path

• Use a data path to realize all the

required RT operations

• Use a control path (FSM) to

specify the order of RT operation

14

Lund University / EITF35/ Liang Liu 2016

FSMD (FSM with Date Path)

15

Lund University / EITF35/ Liang Liu 2016

FSMD (FSM with Date Path)

Control Path: FSM

•Command: the external command signal to the FSMD

•Internal status: signal from the data path.

•Control signal: output, used to control data path operation.

•External status: output, used to indicate the status of the FSMD

16

Lund University / EITF35/ Liang Liu 2016

FSMD (FSM with Date Path)

Data Path: perform all the required RT operations

•Data registers: store the intermediate results.

•Functional units: perform RT operations

•Routing circuit: connection, selection (multiplexers)

17

Lund University / EITF35/ Liang Liu 2016

Outline

Overview of FSMD

Algorithmic state machine with data-path (ASMD)

FSMD design of a repetitive-addition multiplier

Timing analysis of FSMD

18

Lund University / EITF35/ Liang Liu 2016

ASM (algorithmic state machine) chart

•Flowchart-like diagram, provide the same information as an FSM

•More descriptive, better for complex algorithm

•Can easily be transformed to VHDL code

ASM (algorithmic state machine)

An ASM chart is a network

of ASM blocks

One state box: FSM state

Decision boxes: with T or

F exit path: next state logic

Conditional output boxes:

for Mealy output

19

Lund University / EITF35/ Liang Liu 2016

State Diagram and ASM Chart: Example 1

Moore FSM

20

Lund University / EITF35/ Liang Liu 2016

Moore and Mealy

State Diagram and ASM Chart: Example 2

21

Lund University / EITF35/ Liang Liu 2016

ASMD

22

ASMD:

Extend ASM chart to incorporate RT operations

RT operations are treated as another type of activity and be

placed where the output signals are used

S0:

r1r1+1

if a>b

r2r2+a

else

r2r2+b

+

Lund University / EITF35/ Liang Liu 2016

Suggestion: use meaningful names for your

signals (direction_function_type)

ASMD: Timing Value is available at the

register input before the

NEXT clock tick

23

reg

reg

reg

comb

comb

Lund University / EITF35/ Liang Liu 2016

Outline

Overview of FSMD

Algorithmic state machine with data-path (ASMD)

FSMD design of a repetitive-addition multiplier

Timing analysis of FSMD

24

Lund University / EITF35/ Liang Liu 2016

Map Algorithm to FSMD

Example: Repetitive addition multiplier

Basic algorithm: 7*5 = 7+7+7+7+7

Pseudo code ASMD-friendly code

25

Lund University / EITF35/ Liang Liu 2016

Input:

•a_in, b_in: 8-bit unsigned

•clk, reset

•start: command

Output:

•r: 16-bit unsigned

•ready: ready for new input

ASMD chart

•3 registers (n,a,r)

•4 states

•Data-path: RT operations

•FSM: state transition

ASMD Chart

26

Translate ASMD to Hardware

Lund University / EITF35/ Liang Liu 2016

Construction of the data path

• List all possible RT operations

• Group RT operation according to the destination register

• Add combinational circuit/mux

Construction of FSMD

27

a

b

ab0

Grouping RT

Operations

a

a

a

a

a

Lund University / EITF35/ Liang Liu 2016

Circuit associated with r register

ab0

a

Construction of the Date Path

28

Lund University / EITF35/ Liang Liu 2016

Continue with

n-register

a-register

Add status circuits

29

Construction of the Date Path

Lund University / EITF35/ Liang Liu 2016

Input of FSM

•External: start, clock, reset

•Internal: decision box in ASMD

Output of FSM

Construction of the Control Path

30

Decision Box

Lund University / EITF35/ Liang Liu 2016

Entity

VHDL Follow the Block Diagram

31

Lund University / EITF35/ Liang Liu 2016

FSM (state registers)

32

Lund University / EITF35/ Liang Liu 2016

FSM (next-state/output logic)

33

Lund University / EITF35/ Liang Liu 2016

Data Path (Data Registers)

34

Lund University / EITF35/ Liang Liu 2016

Data Path (Function Unit)

35

Lund University / EITF35/ Liang Liu 2016

Data Path (Multiplexer Routing)

36

Lund University / EITF35/ Liang Liu 2016

Design Flow

37

task/algorithm

RT

opt.

state

trans.

data path control

reg function mux
state

reg
comb.

VHDL

ASMD

Circuit

Lund University / EITF35/ Liang Liu 2016

Outline

Overview of FSMD

Algorithmic state machine with data-path (ASMD)

FSMD design of a repetitive-addition multiplier

Timing analysis of FSMD

38

Lund University / EITF35/ Liang Liu 2016

Timing and Performance of FSMD

Maximal clock rate

•More difficult to analyze because of two interactive loops, depend on the

specified design

•The boundary of the clock rate can be found, best/worse-case

39

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Best-Case

Best-case scenario:

•Control signals needed at late stage

•Status signal available at early stage

40

Input to the

next_state

logic

Input to the

next_data

logic

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Best-Case

Best-case scenario

•Output logic overlaps with the data path, no extra delay

•Next-state logic of the control path and the data path are in parallel

•Clock rate dominates by the data-path (most of the case)

41

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Best-Case

Best-case scenario

•Output logic overlaps with the data path, no extra delay

•Next-state logic of the control path and the data path are in parallel

•Clock rate dominates by the data-path (most of the case)

42

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Worst-Case

Worst-case scenario:

•Control signals needed at early stage

•Status signal available at late stage

43

?

Lund University / EITF35/ Liang Liu 2016

Thanks!

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Worst-Case

Worst-case scenario

•The data path must wait for the FSM to generate the output signals

•The control path must wait for status signals to generate the next-state

•Clock period includes the delays of all combinational components

45

Lund University / EITF35/ Liang Liu 2016

Clock-Rate Boundary: Worst-Case

Worst-case scenario

•The data path must wait for the FSM to generate the output signals

•The control path must wait for status signals to generate the next-state

•Clock period includes the delays of all combinational components

46

