UNIVERSITY

EITF35: Introduction to Structured VLSI Design

Part 1.2.1: Finite State Machines

Liang Liu
liang.liu@eit.Ith.se

Two Basic Digital Components (What)

Register

Always:

$$
z<=F(a, b, c) ;
$$

i.e. a function that is always evaluated when an input changes. Can be expressed by a truth table.

Combinational Logic Timing

- Propagation delay: After presenting new inputs Worst case delay before producing correct output

Register timing

Propagation delay (clk_to_Q): Worst case (maximum) delay after $\mathbf{c l k} \uparrow$ before new output data is valid on Q.

Minimum time input must be stable after clk \uparrow

Outline

\square FSM Overview
-FSM Representation

- examples
\square Moore vs. Mealy Machine
- from circuits perspective

FSM Overview

Ilt has at most a finite number of states
\square Models for representing sequential circuits
\square Used mainly as a controller in a large system

How does a controller work in a system?

Controller

Controller

The model can be used in many places

Abstraction of state elements

\square A FSM consists of several states. Inputs into the machine are combined with the current state of the machine to determine the new state or next state of the machine.
\square Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.

Abstraction of state elements

\square A FSM consists of several states. Inputs into the machine are combined with the current state of the machine to determine the new state or next state of the machine.
\square Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.
\square Divide circuit into combinational logic and state

Outline

ロFSMI Overview
-FSM Representation
■Moore vs. Mealy Outputs
■Exercise

FSM Representation

\square Can be represented using a state transition table which shows the current state, input, any outputs, and the next state.

Input	Input $_{\text {o }}$	Input $_{1}$	\ldots Input $_{\text {n }}$
State ${ }_{0}$	Next State / Output	Next State / Output
State ${ }_{1}$
....
State $_{\mathrm{n}}$

FSM Representation

\square It can also be represented using a state diagram which has the same information as the state transition table.

Mealy Output
Outputs = F(Inputs, Current state)
Next state = F(Inputs, Current state)
Mealy Output
Outputs = F(Inputs, Current state)
Next state = F(Inputs, Current state)
Mealy Output
Outputs =F(Inputs, Current state)
Next state = F(Inputs, Current state)
Moore Output
Outputs $=F($ Current state $)$
Next state $=\mathrm{F}$ (Inputs, current state $)$
Input / Mealy Output

Input / Mealy Output

Example 1: A mod-4 synchronous counter

\square Function: Counts from 0 to 3 and then repeats; Reset signal reset the counter to 0 .
\square lt has a clock (CLK) and a RESET input.
\square Outputs appear as a sequence of values of 2 bits (q1 q0)
\square As the outputs are generated, a new state (s1 s0) is generated which takes on values of $00,01,10$, and 11.

State Transition Table of Mod-4 Counter

Present state $\left(S_{t}\right)$	Input	RESET	
$A: 00$	$01 / 01$	$00 / 00$	
$B: 01$	$10 / 10$	$00 / 00$	
$C: 10$	$11 / 11$	$00 / 00$	
$D: 11$	$00 / 00$	$00 / 00$	
Next Output State			

State Transition Diagram for the Mod-4 Counter

Use meaningful names for states

Example 2: Lock

\square Pushing: * $\{$ A; B; B; A \} => Open

- $A \& B$ never push at the same time
- Have to release the button before next pushing

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ...
\square Debounce before next pushing

Finish the state graph for the Lock-FSM (5min)

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ... \square Debounce before next pushing

Consider all the input possiblities at each state

Outline

ㅁFSMI Overview
■FSM Representation
\square Moore vs. Mealy Outputs
■Exercise

Mealy and Moore FSM

GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

Edward F. Moore

INIRODUCTION

This paper is concerned with finite automata ${ }^{1}$ from the experimental point of view. This does not mean that it reports the results of any experimentation on actual physical models, but rather it is concerned with what kinds of conclusions about the internal conditions of a finite machine it is possible to draw from external experiments. To emphasize the conceptual nature of these experiments, the word "gedankenexperiments" has been borrowed from the physicists for the title.

The sequential machines considered have a finite number of states, a finite number of possible input symbols, and a finite number of possible output symbols. The behavior of these machines is strictly deterministic (i.e., no random elements are permitted in the machines) in that the present state of a machine depends only on its previous input and previous state, and the present output depends only on the present state.

The point of view of this paper might also be extended to probabilistic machines (such as the noisy discrete channel of communication theory ${ }^{2}$), but this will not be attempted here.

EXPERIMENTS

There will be two kinds of experiments considered in this paper. The first of these, called a simple experiment, is depicted in Figure 1.

The term "finite" is used to distinguish these automata from Turing machines [considered in Turing's "On Computable Numbers, with an Application to the Entscheidungsproblem", Proc. Lond. Math. Soc., (1936) Vol. 24, pp. 230-2651 which have an infinite tape, permitting them to have more complicated behavior than these automata.
${ }^{2}$ Defined in Shannon's "A Mathematical Theory of Communication", B.S.T.J. Vol. 27, p. 406.

129

Output Timing: Moore

$\square .$. a Moore machine is not able to produce A->1 until the next clock when it enters s1

Output Timing: Mealy

\square When in s0, a Mealy machine may produce A->1 immediately in response to R ->1

Output Timing: Moore and Mealy

$R=\theta / A=0$

Moore vs. Mealy

\square Detecting a pair of 1 s or 0 s

Figure 3State Diagram of Moore Machine

Figure 4State Diagram of Mealy Machine

Moore vs. Mealy (summary)

\square A Moore machine produces glitch free outputs

- Output change at the clock edge only
\square A Moore machine produces outputs depending only on states, and this may allow using a higher-frequency clock
- Less gate delay for the output logic
\square A Mealy machine can be specified using less states
- Because it is capable of producing different outputs in a given state, (nm) possible outputs v.s. (n)
\square A Mealy machine can be faster
- Because an output may be produced immediately instead of at the next clock tick

Suggestion: do NOT mix Mealy and Moore in one design (before getting experienced)

?

