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Reduce hit time 2: Address translation

] Processor uses virtual addresses (VA) while caches and
main memory use physical addresses (PA)

VA PA

hit

data

[J Use the virtual address to index the cache in parallel

data
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Address translation and TLB

Virtual Address done in hardware
restart instruction h 1 done in OS software
> TLB Lookup done in software

logic

machine-independent

machine-dependent hit or hardware

miss

Page Table Walk
Check Permissions
age present else )
pagep denie ok

— TLB Reload  Page Fault Exception Page Fault Exception Physical Address

“Page Not Present” “Protection Fault”

l

Load Page Terminate Process
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Address translation cache and VM

[ Virtual address <64> I

[ Virtual page number <51> | Page offset <13> |
l Page size = L1 Cache size = 1KB
|TLB tag compare address <43> I TLB index <8> I [ L1 cache index <7> |Block offset <6>
64B/block

4, To CPU

Directly mapped 256 entries

L1 data <512>

TLB tag <43> TLB data <28> L1 cache tag <43>

L1 tag compare address <28>

I Physical address <41> |

| L2 tag compare address <19> | L2 cache index <16> | Block offset <6> | 4MB L2 Cache

To CPU

L2 cache tag <19> L2 data <512>

To L1 cache or CPU

£ 2007 Elsavier, Inc. Al rights resarved.
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Page replacement

[J Most important: minimize number of page faults

] Replacement in cache handled by HW
] Replacement in VM handled by SW

Page replacement strategies:
] FIFO - First-In-First-Out

[J LRU - Least Recently Used

Approximation
Each page has a reference bit that is set on a reference
The OS periodically resets the reference bits

When a page needs to be replaced, a page with a reference bit that
IS not set is chosen
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Write strategy

Write back or Write through?

] Write back! + dirty bit

] Write through is impossible to use:
Too long access time to disk
The write buffer would need to be very large
The 1/0O system would need an extremely high bandwidth
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Page size

Larger page size?

[J Advantages .
_ 2addrbffs 1
Size of page table = K * opagebits ' page size
More memory can be mapped — reducing TLB misses (# of entries
in TLB is limited)
More efficient to transfer large pages

] Disadvantages
More wasted storage, internal fragmentation
High bandwidth requirement

Long process start-up times (if the process size is much smaller
than the page size)

Partition 1

Program 8 Unusable

| Space
Program € (Internal
Partition 3 } Fragmentation)

Partition 2

Memory

Partition 4 Free Partition
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Cache vs VM

CPU during block transfer
Block (page) size
Implemented in
Mapping
Replacement algorithm
Write policy

blocking/non-blocking
16-128 bytes
hardware
Direct or set-associative
Not crucial
Many choices

Cache-MM MM-disk
Access time ratio ("speed gap") 1:5-1:15 1:10000 - 1:1000000
Hit time 1-2 cycles 40-100 cycles
Hit ratio 0.90-0.99 0.99999-0.9999999
Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001
Miss penalty 10-100 cycles 1M-6M cycles

task switching
4Kbytes - 64Kbytes
hardware + software
Page table ("fully associative")
Very important (LRU)
Write back
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Memory system overview

Barcelona

EEER
Cache

Memory Hyper .
Controllers Transport 3.0 — :
L L J \ J L A J v ——— : ﬁ
2x8B @ 667MHz 8x2B @ 2GT/s = PLL o Thermal
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The memory hierarchy of AMD Opteron
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Performance of Microprocessor

Intel Core i7 4 cores 4.2 GHz (Boost

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2

Inted Core i7 4 cores 4.0 GHz {Boost 10 4.2 GHz,

Intel Xeon 4 cores 3,7 GHz (Boost to 4.1 GHz)

1 00’000 Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0 GHz)

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
inted Core 2 Extreme 2 cores, 2.9 GHz
—_— 1 0'000 -------------------------------------------------------------- ;\MD thion, 2.6 GH
o
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Why Parallel Computing

O Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks
] Main Goal

Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’s Law
] Other Goals

Improve dependability: Redundant execution in space
Reduce power consumption

0 (4N units at freq F/4) consume less power than (N units at freq F)
O True and Why?
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Power Dissipation

CMOS Power = static power + dynamic power

* Static Power: V*I_,
* source-to-drain sub-threshold leakage current
* depend on voltage, temperature, transistor state ...

* Dynamic Power: switching power + internal power
* switching power = %*(C, +C,,4) *V2*f
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Types of Parallelism and How to Exploit Them

] Instruction Level Parallelism
Different instructions within a stream can be executed in parallel
Pipelining, out-of-order execution, speculative execution, VLIW

] Data Parallelism
Different pieces of data can be operated on in parallel
SIMD: Vector processing, array processing (TPU)

] Task Level Parallelism

Different “tasks/threads” can be executed in parallel
Multithreading
Multiprocessing (multi-core)

Lund University / EITF20/ Liang Liu
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Flynn’s Taxonomy

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector)

Multiple Instruction Single
Data (MISD)

(Streaming processing???)

Multiple Instruction Multiple
Data MIMD

(Clusters, multi-core)
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Basics

Definition: “A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.”

Parallel Architecture =
Computer Architecture + Communication Architecture

] Centralized Memory Multiprocessor
< few dozen processor chips (and < 100 cores) in 2006
Small enough to share single, centralized memory

[J Physically Distributed-Memory multiprocessor

Larger number chips and cores
BW demands = Memory distributed among processors
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Multiprocessor Types

] Tightly coupled multiprocessors
Shared global memory address space (via loads and stores)
Traditional multiprocessing: symmetric multiprocessing (SMP)

Programming model like uniprocessors (i.e., multitasking
uniprocessor) except

O Operations on shared data require synchronization

$ ¢ o ¢ $

I I

interconnection network
[ I

Mem Mem
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Synchronization problem

Initial: V1=0; Initial: V2=0;
Vi=1: V2=1;
if (V2==0) if (V1==0)
V1=0; V2=0;
else else
V1=1; V2=1;

What are the values for V1 and V2 after execution?
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Multiprocessor Types

] Loosely coupled multiprocessors
No shared global memory address space

Usually programmed via message passing
) Explicit calls (send, receive) for communication

Pro: Cost-effective way to scale Memory bandwidth
) If most accesses are to local memory

Pro: Reduces latency of local memory accesses
Con: Communicating data between processors more complex
Con: Must change software to take advantage of increased memory BW

O 9

$ ¢ ¢ ¢

Mem Mem

Interconnection network
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Epiphany-V

North 10

South 10

RISC RISC

cPu NS cPu NS

MEMORY MEMORY

RISC RISC
cPu cpy | NES

MEMORY MEMORY

1024 64-bit RISC cores
64MB on-chip SRAM
1024 programmable 10s
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Interconnection/Network on Chip

S

Crossbar

Lo
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Speed Up (example)
adx* + a3x3 + a2x? + alx + a0

[0 Assume each operation is 1 cycle, no communication cost,
each op can be executed in a different processor

[J How fast is this with a single processor?
Assume no pipelining or concurrent execution of instructions

[J How fast is this with 3 processors?
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Speed Up (example)

Single Processor (11 clk)

adx4 + a3x3 + a2x? + alx + a0
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Speed Up (example)

3 Processors (5 clk, with 2.2x speed up)

Imbalanced workload
prevents from achiving
3X speed up

1 adx*+adx® +a2x*+alx +ao
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Speed Up (example)

Optimize for uniprocessor

CR= adx?* + a3x3 + a2x2 + alx + a0

O R=(((a4x + a3)x + a2)x + al)x + a0
8 clk for uniprocessor
Speed up 8/5=1.6
What if communication is not free
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Challenges of Parallel Processing

[J Another challenge is % of program inherently
sequential

[J Suppose 80X speedup from 100 processors. What
fraction of original program can be sequential?

a. 10%
b. 5%
c. 1%
d. <1%
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Amdahl’s Law Answers

Speedupoverall — 1

Fraction,, .. ..
Speedupenhanced

1

(1 Fraction,, .. )+

80 =

Fraction
100

parallel ) _ 1

parallel

(1— Fractionpara”el)+

Fraction

100
saratiet — 0-8% Fraction

=79/79.2=99.75%

80 x ((1 Fraction para,,e,)

79 =80 x Fraction
Fraction

parallel

parallel
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Challenges of Parallel Processing

[0 The third challenge is long latency to remote memory

[0 Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all local
accesses hit memory hierarchy and base CPl is 0.5. (Remote
access = 200/0.5 =400 clock cycles.)

0 What is performance impact if 0.2% instructions involve remote
access (comparing to no communication cost)?

a. 1.5X
b. 2.0X
c. 2.9X
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CPIl Equation

] CPl =Base CPI +
Remote request rate x Remote request cost

COCPI=05+0.2% x 400=0.5+0.8=1.3

LINo communication cost is 1.3/0.5 or 2.6 faster than
0.2% instructions involving local access
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Challenges of Parallel Processing

] Synchronization: Operations manipulating shared data
cannot be parallelized

Communication: Tasks may need values from each other

0 Load Imbalance: Parallel tasks may have different lengths
Due to imperfect parallelization or micro-architectural effects
Reduces speedup in parallel portion

] Resource Contention: Parallel tasks can share hardware
resources, delaying each other

Replicating all resources (e.g., memory) expensive
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Challenges of Parallel Processing

] Application parallelism = primarily via new algorithms that
have better parallel performance

] Long remote latency impact = both by architect and by the
programmer

For example, reduce frequency of remote accesses either by
Caching shared data (HW)
Restructuring the data layout to make more accesses local (SW)

] Today’s lecture on HW to help latency via caches
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Symmetric Shared-Memory Architectures

] Caches both

Private data are used by a single processor (migration)
Shared data are used by multiple processors (replication)

[J Caching shared data
= reduces latency to shared data, memory bandwidth for
shared data, and interconnect bandwidth
= reduce contention (read by multiple processors
simultaneously)

= cache coherence problem

38 Lund University / EITF20/ Liang Liu



Outline
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O

] Cache Coherence
O
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Cache Coherence Problem (example)

@ @ I/O devices
N U5

Memory

] Processors see different values for u after event 3
0 With write back caches, value written back to memory depends on
cache miss rate or when to writes back value

0 Write through caches get up-to-date copy from memory
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2 Classes of Cache Coherence Protocols

0 Tracking the state of any sharing of a data block

] Directory based — Sharing status of a block of physical
memory is kept in just one location, the directory

[J Snooping — Every cache with a copy of data also has a
copy of sharing status of block, but no centralized state is
kept

All caches are accessible via some broadcast medium (a bus)

All cache controllers monitor on the medium to determine the action
needed

41 Lund University / EITF20/ Liang Liu



Snoopy Cache-Coherence Protocols

State o Bus snoop

r#édd:.e‘ss
Data $ \ ® e ¢ $ .
)

/ Cache-memory
{ /O devices transaction

[0 Cache Controller “snoops” all transactions on the shared
medium (bus)

relevant transaction if for a block it contains
take action to ensure coherence
invalidate, shared, or exclusive/modified

] Depends on state of the block and the protocol

Either get exclusive access before write via write invalidate or
update all copies on write
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Example: Write-thru Invalidate

I/0 devices

IN O

Memory

[J Must invalidate before step 3

] Write update uses more broadcast medium BW
= all recent MPUs use write invalidate

43 Lund University / EITF20/ Liang Liu




Example Write Back Snoopy Protocol

] Invalidation protocol, write-back cache
Snoops every address on bus

If it has a dirty copy of requested block, provides that block in
response to the read request and aborts the memory access

[0 Each memory block is in one state:
Clean in all caches and up-to-date in memory (Shared)
OR Dirty in exactly one cache (Modified)
OR Not in any caches
[0 Each cache block is in one state (track these):
Shared : block can be read
OR Modified : cache has only copy, its writeable, and dirty
OR Invalid : block contains no data/ or data is not up-to-date
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Example Protocol: snooping

$ $ $

I/0O devices

Memory
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Example Protocol: snooping

Rd A
S
3 A $ $

: No A No A No A
RAA ] |

] |

A I/0O devices

Memory
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Example Protocol: snooping

Rd A Rd A
S S
8 A $ $ $ A
\ No A No A
RAdA | | Rd A
I A I/O devices

Memory

48 Lund University / EITF20/ Liang Liu



49

Example Protocol: snooping

Memory

Rd A Wr A Rd A
S M S—|
8 A $ $ A $ A
I
L wra
I/O devices
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Example Protocol: snooping

Rd A Wr A Rd A
Rd A
@ @ \?/dr ::\ P3 P4
S| M—S S—|
g A | $ 3 A $ A
] S ]
RAdA | _ |
I Wr Back |
v A I/O devices
Memory
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Conclusion

] “End” of uniprocessors speedup => Multiprocessors

] Parallelism challenges: % parallalizable, long latency to
remote memory
[J Centralized vs. distributed memory
Message Passing vs. Shared Address

[J Snooping cache over shared medium for smaller MP by
invalidating other cached copies on write

[0 Sharing cached data = Coherence (values returned by a
read), Consistency (when a written value will be returned by
aread)
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Invited lectures & Exercise

[02019-12-12

» Application-specific instruction-set architecture
» Steffen Malkowsky, postdoc, LTH

02019-12-17

» Excercise, memory system
» Mohammad Attari

02019-12-19

» Sven Karlsson, Ericsson Research, Lund
» Al/Machine Learning Processors & Accelerators
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Exam

] Written exam
. 16" Jan. 8-13,MA 10A/10B, Solvegatan 20

No book

No mobile phones

. Pocket calculator
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