
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part 5.2.1: MultiProcessor

Liang Liu 

liang.liu@eit.lth.se

1



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

2



Lund University / EITF20/ Liang Liu

Reduce hit time 2: Address translation

3

 Processor uses virtual addresses (VA) while caches and 

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel



Lund University / EITF20/ Liang Liu

Address translation and TLB

4



Lund University / EITF20/ Liang Liu

Address translation cache and VM

5

Page size = L1 Cache size = 1KB

Directly mapped 256 entries

64B/block

4MB L2 Cache



Lund University / EITF20/ Liang Liu

Page replacement

6

Most important: minimize number of page faults

 Replacement in cache handled by HW

 Replacement in VM handled by SW

Page replacement strategies:

 FIFO – First-In-First-Out

 LRU – Least Recently Used

• Approximation

• Each page has a reference bit that is set on a reference

• The OS periodically resets the reference bits

• When a page needs to be replaced, a page with a reference bit that 

is not set is chosen



Lund University / EITF20/ Liang Liu

Write strategy

7

Write back or Write through?

Write back! + dirty bit

Write through is impossible to use:

• Too long access time to disk

• The write buffer would need to be very large

• The I/O system would need an extremely high bandwidth



Lund University / EITF20/ Liang Liu

Page size

8

Larger page size?

 Advantages

• Size of page table = 

• More memory can be mapped → reducing TLB misses (# of entries 

in TLB is limited)

• More efficient to transfer large pages

 Disadvantages

• More wasted storage, internal fragmentation

• High bandwidth requirement

• Long process start-up times (if the process size is much smaller 

than the page size)



Lund University / EITF20/ Liang Liu

Cache vs VM

9

Cache-MM MM-disk

Access time ratio ("speed gap") 1:5 - 1:15 1:10000 - 1:1000000

Hit time 1-2 cycles 40-100 cycles

Hit ratio 0.90-0.99 0.99999-0.9999999

Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001

Miss penalty 10-100 cycles 1M-6M cycles

CPU during block transfer blocking/non-blocking task switching

Block (page) size 16-128 bytes 4Kbytes - 64Kbytes

Implemented in hardware hardware + software

Mapping Direct or set-associative Page table ("fully associative")

Replacement algorithm Not crucial Very important (LRU)

Write policy Many choices Write back



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

10



Lund University / EITF20/ Liang Liu

Memory system overview

11



Lund University / EITF20/ Liang Liu

The memory hierarchy of AMD Opteron

12

 Separate Instr & Data TLB 

and Caches

 2-level TLBs
• L1 TLBs fully associative

• L2 TLBs 4 way set associative

 Write buffer (and Victim 

cache)

 Way prediction

 Line prediction: prefetch

 hit under 10 misses

 1 MB L2 cache, shared, 16 

way set associative, write 

back



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

13



Lund University / EITF20/ Liang Liu

Performance of Microprocessor

14

ASIP

Multi-core



Lund University / EITF20/ Liang Liu

Why Parallel Computing

16

 Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

Main Goal

• Improve performance (Execution time or task throughput)

• Execution time of a program governed by Amdahl’s Law

 Other Goals

• Improve dependability: Redundant execution in space

• Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

True and Why? 



Lund University / EITF20/ Liang Liu

Power Dissipation

17



Lund University / EITF20/ Liang Liu

Types of Parallelism and How to Exploit Them

18

 Instruction Level Parallelism

• Different instructions within a stream can be executed in parallel

• Pipelining, out-of-order execution, speculative execution, VLIW

 Data Parallelism

• Different pieces of data can be operated on in parallel

• SIMD: Vector processing, array processing (TPU)

 Task Level Parallelism

• Different “tasks/threads” can be executed in parallel

• Multithreading

• Multiprocessing (multi-core)



Lund University / EITF20/ Liang Liu

Flynn’s Taxonomy

19

Single Instruction Single 
Data (SISD)

(Uniprocessor)

Single Instruction Multiple 
Data SIMD

(single PC: Vector)

Multiple Instruction Single 
Data (MISD)

(Streaming processing???)

Multiple Instruction Multiple 
Data MIMD

(Clusters, multi-core)



Lund University / EITF20/ Liang Liu

Basics

20

Definition: “A parallel computer is a collection of processing 

elements that cooperate and communicate to solve large 

problems fast.”

Parallel Architecture = 

Computer Architecture + Communication Architecture

 Centralized Memory Multiprocessor 

• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

 Physically Distributed-Memory multiprocessor

• Larger number chips and cores

• BW demands  Memory distributed among processors



Lund University / EITF20/ Liang Liu

Multiprocessor Types

21

 Tightly coupled multiprocessors

• Shared global memory address space (via loads and stores)

• Traditional multiprocessing: symmetric multiprocessing (SMP)

• Programming model like uniprocessors (i.e., multitasking 

uniprocessor) except

❑Operations on shared data require synchronization

P1

$

interconnection network

$

Pn

Mem Mem



Lund University / EITF20/ Liang Liu

Synchronization problem

22

P1 P2

Initial: V1=0;

. . . 

V1=1;

if (V2==0)

V1=0;

else

V1=1;

Initial: V2=0;

. . . 

V2=1;

if (V1==0)

V2=0;

else

V2=1;

What are the values for V1 and V2 after execution?



Lund University / EITF20/ Liang Liu

Intel

23



Lund University / EITF20/ Liang Liu

Multiprocessor Types

24

 Loosely coupled multiprocessors

• No shared global memory address space

• Usually programmed via message passing

❑ Explicit calls (send, receive) for communication

• Pro: Cost-effective way to scale Memory bandwidth 

❑ If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more complex

• Con: Must change software to take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem



Lund University / EITF20/ Liang Liu

Epiphany-V

25



Lund University / EITF20/ Liang Liu

Interconnection/Network on Chip

26

0 1 2 3

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

BUS P2P

Crossbar

Mesh
Tree

Ring

…

…

…



Lund University / EITF20/ Liang Liu

Speed Up (example)

28

a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation is 1 cycle, no communication cost, 

each op can be executed in a different processor

 How fast is this with a single processor?

• Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors? 



Lund University / EITF20/ Liang Liu

Speed Up (example)

29

Single Processor (11 clk)

a4x4 + a3x3 + a2x2 + a1x + a0



Lund University / EITF20/ Liang Liu

Speed Up (example)

30

3 Processors (5 clk, with 2.2x speed up)

a4x4 + a3x3 + a2x2 + a1x + a0

Imbalanced workload 

prevents from achiving 

3X speed up



Lund University / EITF20/ Liang Liu

Speed Up (example)

31

Optimize for uniprocessor

R= a4x4 + a3x3 + a2x2 + a1x + a0

R= (((a4x + a3)x + a2)x + a1)x + a0

• 8 clk for uniprocessor

• Speed up 8/5=1.6

• What if communication is not free



Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

32

Another challenge is % of program inherently 

sequential

Suppose 80X speedup from 100 processors. What 

fraction of original program can be sequential?

a. 10%

b. 5%

c. 1%

d. <1%



Lund University / EITF20/ Liang Liu

Amdahl’s Law Answers

33

( )

( )

( )

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
  Fraction 1(80

100

Fraction
  Fraction 1

1
  08

Speedup

Fraction
  Fraction 1

1
  Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

enhanced

enhanced
enhanced

overall

==

−=

=+−

+−

=

+−

=



Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

34

 The third challenge is long latency to remote memory

 Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all local 

accesses hit memory hierarchy and base CPI is 0.5. (Remote 

access = 200/0.5 = 400 clock cycles.) 

 What is performance impact if 0.2% instructions involve remote 

access (comparing to no communication cost)?

a. 1.5X

b. 2.0X

c. 2.5X



Lund University / EITF20/ Liang Liu

CPI Equation

35

CPI = Base CPI + 

Remote request rate x Remote request cost

CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication cost is 1.3/0.5 or 2.6 faster than 

0.2% instructions involving local access



Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

36

 Synchronization: Operations manipulating shared data 

cannot be parallelized

• Communication: Tasks may need values from each other

 Load Imbalance: Parallel tasks may have different lengths

• Due to imperfect parallelization or micro-architectural effects

• Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware 

resources, delaying each other

• Replicating all resources (e.g., memory) expensive



Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

37

 Application parallelism  primarily via new algorithms that 

have better parallel performance

 Long remote latency impact  both by architect and by the 

programmer 

• For example, reduce frequency of remote accesses either by 

• Caching shared data (HW) 

• Restructuring the data layout to make more accesses local (SW)

 Today’s lecture on HW to help latency via caches



Lund University / EITF20/ Liang Liu

Symmetric Shared-Memory Architectures

38

 Caches both

• Private data are used by a single processor (migration)

• Shared data are used by multiple processors (replication)

 Caching shared data 

 reduces latency to shared data, memory bandwidth for 

shared data, and interconnect bandwidth

 reduce contention (read by multiple processors 

simultaneously)

 cache coherence problem



Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

39



Lund University / EITF20/ Liang Liu

Cache Coherence Problem (example)

40

 Processors see different values for u after event 3

 With write back caches, value written back to memory depends on 

cache miss rate or when to writes back value

 Write through caches get up-to-date copy from memory 

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7



Lund University / EITF20/ Liang Liu

2 Classes of Cache Coherence Protocols

41

 Tracking the state of any sharing of a data block

 Directory based — Sharing status of a block of physical 

memory is kept in just one location, the directory 

 Snooping — Every cache with a copy of data also has a 

copy of sharing status of block, but no centralized state is 

kept

• All caches are accessible via some broadcast medium (a bus) 

• All cache controllers monitor on the medium to determine the action 

needed



Lund University / EITF20/ Liang Liu

Snoopy Cache-Coherence Protocols

42

 Cache Controller “snoops” all transactions on the shared 

medium (bus)

• relevant transaction if for a block it contains

• take action to ensure coherence

• invalidate, shared, or exclusive/modified

 Depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or 

update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction



Lund University / EITF20/ Liang Liu

Example: Write-thru Invalidate

43

 Must invalidate before step 3

 Write update uses more broadcast medium BW

 all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7



Lund University / EITF20/ Liang Liu

Example Write Back Snoopy Protocol

45

 Invalidation protocol, write-back cache

• Snoops every address on bus

• If it has a dirty copy of requested block, provides that block in 

response to the read request and aborts the memory access

 Each memory block is in one state:

• Clean in all caches and up-to-date in memory (Shared)

• OR Dirty in exactly one cache (Modified)

• OR Not in any caches

 Each cache block is in one state (track these):

• Shared : block can be read

• OR Modified : cache has only copy, its writeable, and dirty

• OR Invalid : block contains no data/ or data is not up-to-date



Lund University / EITF20/ Liang Liu

Example Protocol: snooping

46

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4



Lund University / EITF20/ Liang Liu

Example Protocol: snooping

47

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

No A No A No A
A

S



Lund University / EITF20/ Liang Liu

Example Protocol: snooping

48

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

A

Rd A

Rd A

S

No A No A
A

S



Lund University / EITF20/ Liang Liu

Example Protocol: snooping

49

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

Wr A

A
MI I

Rd A

Wr A



Lund University / EITF20/ Liang Liu

Example Protocol: snooping

50

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

A
MI I

Rd A

Wr A

Rd A

Rd A

S

S

Wr Back



Lund University / EITF20/ Liang Liu

Conclusion

51

 “End” of uniprocessors speedup => Multiprocessors

 Parallelism challenges: % parallalizable, long latency to 

remote memory

 Centralized vs. distributed memory

• Message Passing vs. Shared Address

 Snooping cache over shared medium for smaller MP by 

invalidating other cached copies on write

 Sharing cached data  Coherence (values returned by a 

read), Consistency (when a written value will be returned by 

a read)



Lund University / EITF20/ Liang Liu

Invited lectures & Exercise

52

2019-12-12

➢ Application-specific instruction-set architecture

➢ Steffen Malkowsky, postdoc, LTH 

2019-12-17

➢ Excercise, memory system

➢ Mohammad Attari

2019-12-19 

➢ Sven Karlsson, Ericsson Research, Lund

➢ AI/Machine Learning Processors & Accelerators



Lund University / EITF20/ Liang Liu

Exam

53

Written exam

• 16th Jan. 8-13,MA 10A/10B, Sölvegatan 20

• No book

• No mobile phones

• Pocket calculator

• Basic concept

• Analysis

• Case study

• Calculation  


