UNIVERSITY

EITF20: Computer Architecture

Part 5.2.1: MultiProcessor

Liang Liu
liang.liu@eit.lth.se

1 Lund University / EITF20/ Liang Liu

Outline

] Reiteration

] MultiProcessor

[0 Cache Coherence
0 Summary

2 Lund University / EITF20/ Liang Liu

Reduce hit time 2: Address translation

] Processor uses virtual addresses (VA) while caches and
main memory use physical addresses (PA)

VA PA

hit

data

[J Use the virtual address to index the cache in parallel

data

3 Lund University / EITF20/ Liang Liu

4

Address translation and TLB

Virtual Address done in hardware
restart instruction h 1 done in OS software
> TLB Lookup done in software

logic

machine-independent

machine-dependent hit or hardware

miss

Page Table Walk
Check Permissions
age present else)
pagep denie ok

— TLB Reload Page Fault Exception Page Fault Exception Physical Address

“Page Not Present” “Protection Fault”

l

Load Page Terminate Process

Lund University / EITF20/ Liang Liu

Address translation cache and VM

[Virtual address <64> I

[Virtual page number <51> | Page offset <13> |
l Page size = L1 Cache size = 1KB
|TLB tag compare address <43> I TLB index <8> I [L1 cache index <7> |Block offset <6>
64B/block

4, To CPU

Directly mapped 256 entries

L1 data <512>

TLB tag <43> TLB data <28> L1 cache tag <43>

L1 tag compare address <28>

I Physical address <41> |

| L2 tag compare address <19> | L2 cache index <16> | Block offset <6> | 4MB L2 Cache

To CPU

L2 cache tag <19> L2 data <512>

To L1 cache or CPU

£ 2007 Elsavier, Inc. Al rights resarved.

5 Lund University / EITF20/ Liang Liu

Page replacement

[J Most important: minimize number of page faults

] Replacement in cache handled by HW
] Replacement in VM handled by SW

Page replacement strategies:
] FIFO - First-In-First-Out

[J LRU - Least Recently Used

Approximation
Each page has a reference bit that is set on a reference
The OS periodically resets the reference bits

When a page needs to be replaced, a page with a reference bit that
IS not set is chosen

6 Lund University / EITF20/ Liang Liu

Write strategy

Write back or Write through?

] Write back! + dirty bit

] Write through is impossible to use:
Too long access time to disk
The write buffer would need to be very large
The 1/0O system would need an extremely high bandwidth

4 Lund University / EITF20/ Liang Liu

Page size

Larger page size?

[J Advantages .
_ 2addrbffs 1
Size of page table = K * opagebits ' page size
More memory can be mapped — reducing TLB misses (# of entries
in TLB is limited)
More efficient to transfer large pages

] Disadvantages
More wasted storage, internal fragmentation
High bandwidth requirement

Long process start-up times (if the process size is much smaller
than the page size)

Partition 1

Program 8 Unusable

| Space
Program € (Internal
Partition 3 } Fragmentation)

Partition 2

Memory

Partition 4 Free Partition

8 Lund University / EITF20/ Liang Liu

Cache vs VM

CPU during block transfer
Block (page) size
Implemented in
Mapping
Replacement algorithm
Write policy

blocking/non-blocking
16-128 bytes
hardware
Direct or set-associative
Not crucial
Many choices

Cache-MM MM-disk
Access time ratio ("speed gap") 1:5-1:15 1:10000 - 1:1000000
Hit time 1-2 cycles 40-100 cycles
Hit ratio 0.90-0.99 0.99999-0.9999999
Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001
Miss penalty 10-100 cycles 1M-6M cycles

task switching
4Kbytes - 64Kbytes
hardware + software
Page table ("fully associative")
Very important (LRU)
Write back

9 Lund University / EITF20/ Liang Liu

Outline

O
O
] Case study AMD Opteron
O

10 Lund University / EITF20/ Liang Liu

Memory system overview

Barcelona

EEER
Cache

Memory Hyper .
Controllers Transport 3.0 — :
L L J \ J L A J v ——— : ﬁ
2x8B @ 667MHz 8x2B @ 2GT/s = PLL o Thermal

11 Lund University / EITF20/ Liang Liu

The memory hierarchy of AMD Opteron

,}{}',L‘:,‘:,',"f’g; on:eatgf1 2> CPU Store queue/ Di‘f&','li"i'é’s"’f ¢ on::gg 2>
PC [I T h lnil;\;glon da<‘634(:u' I] 1 l Data in <64>
o —— — [0 Separate Instr & Data TLB
| s ;’:z:l <\‘I) <‘l§:; Physic;(ai:aa:idmss i | ;:;1 <\‘/> Physic‘flg;dress: an d Cac h es
T] T Ba ‘
s (O ol "'ff[‘ | [l "'ffl] 2-level TLBs
(40 PTEs) 40:1 mux) (40 PTEs)) 40:1 mux . i
e s s i L1 TLBs fully associative
i Protl Vg Physical address & Proi V. ey Physis address L2 TLBs 4 way set associative
hid < j i ..
= — B - 0 Write buffer (and Victim
= - B eggug?, L‘? ?;‘;“:Zim _ cache)
L E— [0 Way prediction
. 0 [0 Line prediction: prefetch
’(\2 512 2
: : ;] hit under 10 misses
E E
=06 SiEm) 00 1 MB L2 cache, shared, 16
way set associative, write
L2 @
Bretoiches ; [Address <38> | Dala <512 { b aC k
Eﬁ m;\ []]
<40>4 !
<24> <10> c‘l’: <?> <T;49> <?jt2a> [<15> 4 ®<64;4®
L2 I WTag [lrrldexrl -] :4 ré\ 3 7
E g2 j— ::Ii N § df;"""c”g“";,
¢ - — [o1ma] ¥
(16 groups of 1024 biocks)\") @

£ 2007 Elsavier, Inc. All rights resarved.

12

Lund University / EITF20/ Liang Liu

Outline

O
1 MultiProcessor
O
O

13 Lund University / EITF20/ Liang Liu

Performance of Microprocessor

Intel Core i7 4 cores 4.2 GHz (Boost

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2

Inted Core i7 4 cores 4.0 GHz {Boost 10 4.2 GHz,

Intel Xeon 4 cores 3,7 GHz (Boost to 4.1 GHz)

1 00’000 Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0 GHz)

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
inted Core 2 Extreme 2 cores, 2.9 GHz
—_— 1 0'000 -- ;\MD thion, 2.6 GH
o
o) Intel DBS0EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)
e 1BM Powerd, 1.3 GHz
:: Intel VC820 motherboard, 1.0 GHz Pentium Il p
' Professional Workstation XP1000, 667 MHz 21264A

X 1000 frrememeenneennnennaeeneeneo.. Dol AhaServr 8400 8575, 575 Mz 21264
>

%)

>
S

8

= L T

g

O

)

(0]

o

10 e ey
AX-11/780, 5 MHz
1 ¥

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

14 Lund University / EITF20/ Liang Liu

2016 2018 R
Y " - ;

V. O’(
o/ QI» <
Q[s ¢

4

< ¥ e
S iy
z

0 ‘

16

Why Parallel Computing

O Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks
] Main Goal

Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’s Law
] Other Goals

Improve dependability: Redundant execution in space
Reduce power consumption

0 (4N units at freq F/4) consume less power than (N units at freq F)
O True and Why?

Lund University / EITF20/ Liang Liu

Power Dissipation

CMOS Power = static power + dynamic power

* Static Power: V*I_,
* source-to-drain sub-threshold leakage current
* depend on voltage, temperature, transistor state ...

* Dynamic Power: switching power + internal power
* switching power = %*(C, +C,,4) *V2*f

17 Lund University / EITF20/ Liang Liu

18

Types of Parallelism and How to Exploit Them

] Instruction Level Parallelism
Different instructions within a stream can be executed in parallel
Pipelining, out-of-order execution, speculative execution, VLIW

] Data Parallelism
Different pieces of data can be operated on in parallel
SIMD: Vector processing, array processing (TPU)

] Task Level Parallelism

Different “tasks/threads” can be executed in parallel
Multithreading
Multiprocessing (multi-core)

Lund University / EITF20/ Liang Liu

19

Flynn’s Taxonomy

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector)

Multiple Instruction Single
Data (MISD)

(Streaming processing???)

Multiple Instruction Multiple
Data MIMD

(Clusters, multi-core)

Lund University / EITF20/ Liang Liu

Basics

Definition: “A parallel computer is a collection of processing
elements that cooperate and communicate to solve large
problems fast.”

Parallel Architecture =
Computer Architecture + Communication Architecture

] Centralized Memory Multiprocessor
< few dozen processor chips (and < 100 cores) in 2006
Small enough to share single, centralized memory

[J Physically Distributed-Memory multiprocessor

Larger number chips and cores
BW demands = Memory distributed among processors

20 Lund University / EITF20/ Liang Liu

Multiprocessor Types

] Tightly coupled multiprocessors
Shared global memory address space (via loads and stores)
Traditional multiprocessing: symmetric multiprocessing (SMP)

Programming model like uniprocessors (i.e., multitasking
uniprocessor) except

O Operations on shared data require synchronization

$ ¢ o ¢ $

I I

interconnection network
[I

Mem Mem

21 Lund University / EITF20/ Liang Liu

Synchronization problem

Initial: V1=0; Initial: V2=0;
Vi=1: V2=1;
if (V2==0) if (V1==0)
V1=0; V2=0;
else else
V1=1; V2=1;

What are the values for V1 and V2 after execution?

22 Lund University / EITF20/ Liang Liu

Intel

i “‘ Queue Uncore
& I/0 =

pEdSnaY

Shared

= L3 Cache -

- e

ONERCLOCK3D

23 Lund University / EITF20/ Liang Liu

Multiprocessor Types

] Loosely coupled multiprocessors
No shared global memory address space

Usually programmed via message passing
) Explicit calls (send, receive) for communication

Pro: Cost-effective way to scale Memory bandwidth
) If most accesses are to local memory

Pro: Reduces latency of local memory accesses
Con: Communicating data between processors more complex
Con: Must change software to take advantage of increased memory BW

O 9

$ ¢ ¢ ¢

Mem Mem

Interconnection network

24 Lund University / EITF20/ Liang Liu

25

Epiphany-V

North 10

South 10

RISC RISC

cPu NS cPu NS

MEMORY MEMORY

RISC RISC
cPu cpy | NES

MEMORY MEMORY

1024 64-bit RISC cores
64MB on-chip SRAM
1024 programmable 10s

Lund University / EITF20/ Liang Liu

Interconnection/Network on Chip

S

Crossbar

Lo

ity / EITF20/ Liang Liu

26 Lund Univers

Speed Up (example)
adx* + a3x3 + a2x? + alx + a0

[0 Assume each operation is 1 cycle, no communication cost,
each op can be executed in a different processor

[J How fast is this with a single processor?
Assume no pipelining or concurrent execution of instructions

[J How fast is this with 3 processors?

28 Lund University / EITF20/ Liang Liu

Speed Up (example)

Single Processor (11 clk)

adx4 + a3x3 + a2x? + alx + a0

29 Lund University / EITF20/ Liang Liu

Speed Up (example)

3 Processors (5 clk, with 2.2x speed up)

Imbalanced workload
prevents from achiving
3X speed up

1 adx*+adx® +a2x*+alx +ao

30 Lund University / EITF20/ Liang Liu

Speed Up (example)

Optimize for uniprocessor

CR= adx?* + a3x3 + a2x2 + alx + a0

O R=(((a4x + a3)x + a2)x + al)x + a0
8 clk for uniprocessor
Speed up 8/5=1.6
What if communication is not free

31 Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

[J Another challenge is % of program inherently
sequential

[J Suppose 80X speedup from 100 processors. What
fraction of original program can be sequential?

a. 10%
b. 5%
c. 1%
d. <1%

32 Lund University / EITF20/ Liang Liu

Amdahl’s Law Answers

Speedupoverall — 1

Fraction,,
Speedupenhanced

1

(1 Fraction,, ..)+

80 =

Fraction
100

parallel) _ 1

parallel

(1— Fractionpara”el)+

Fraction

100
saratiet — 0-8% Fraction

=79/79.2=99.75%

80 x ((1 Fraction para,,e,)

79 =80 x Fraction
Fraction

parallel

parallel

33 Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

[0 The third challenge is long latency to remote memory

[0 Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all local
accesses hit memory hierarchy and base CPl is 0.5. (Remote
access = 200/0.5 =400 clock cycles.)

0 What is performance impact if 0.2% instructions involve remote
access (comparing to no communication cost)?

a. 1.5X
b. 2.0X
c. 2.9X

34 Lund University / EITF20/ Liang Liu

CPIl Equation

] CPl =Base CPI +
Remote request rate x Remote request cost

COCPI=05+0.2% x 400=0.5+0.8=1.3

LINo communication cost is 1.3/0.5 or 2.6 faster than
0.2% instructions involving local access

35 Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

] Synchronization: Operations manipulating shared data
cannot be parallelized

Communication: Tasks may need values from each other

0 Load Imbalance: Parallel tasks may have different lengths
Due to imperfect parallelization or micro-architectural effects
Reduces speedup in parallel portion

] Resource Contention: Parallel tasks can share hardware
resources, delaying each other

Replicating all resources (e.g., memory) expensive

36 Lund University / EITF20/ Liang Liu

37

Challenges of Parallel Processing

] Application parallelism = primarily via new algorithms that
have better parallel performance

] Long remote latency impact = both by architect and by the
programmer

For example, reduce frequency of remote accesses either by
Caching shared data (HW)
Restructuring the data layout to make more accesses local (SW)

] Today’s lecture on HW to help latency via caches

Lund University / EITF20/ Liang Liu

Symmetric Shared-Memory Architectures

] Caches both

Private data are used by a single processor (migration)
Shared data are used by multiple processors (replication)

[J Caching shared data
= reduces latency to shared data, memory bandwidth for
shared data, and interconnect bandwidth
= reduce contention (read by multiple processors
simultaneously)

= cache coherence problem

38 Lund University / EITF20/ Liang Liu

Outline

O
O

] Cache Coherence
O

39 Lund University / EITF20/ Liang Liu

Cache Coherence Problem (example)

@ @ I/O devices
N U5

Memory

] Processors see different values for u after event 3
0 With write back caches, value written back to memory depends on
cache miss rate or when to writes back value

0 Write through caches get up-to-date copy from memory

40 Lund University / EITF20/ Liang Liu

2 Classes of Cache Coherence Protocols

0 Tracking the state of any sharing of a data block

] Directory based — Sharing status of a block of physical
memory is kept in just one location, the directory

[J Snooping — Every cache with a copy of data also has a
copy of sharing status of block, but no centralized state is
kept

All caches are accessible via some broadcast medium (a bus)

All cache controllers monitor on the medium to determine the action
needed

41 Lund University / EITF20/ Liang Liu

Snoopy Cache-Coherence Protocols

State o Bus snoop

r#édd:.e‘ss
Data $ \ ® e ¢ $.
)

/ Cache-memory
{ /O devices transaction

[0 Cache Controller “snoops” all transactions on the shared
medium (bus)

relevant transaction if for a block it contains
take action to ensure coherence
invalidate, shared, or exclusive/modified

] Depends on state of the block and the protocol

Either get exclusive access before write via write invalidate or
update all copies on write

42 Lund University / EITF20/ Liang Liu

Example: Write-thru Invalidate

I/0 devices

IN O

Memory

[J Must invalidate before step 3

] Write update uses more broadcast medium BW
= all recent MPUs use write invalidate

43 Lund University / EITF20/ Liang Liu

Example Write Back Snoopy Protocol

] Invalidation protocol, write-back cache
Snoops every address on bus

If it has a dirty copy of requested block, provides that block in
response to the read request and aborts the memory access

[0 Each memory block is in one state:
Clean in all caches and up-to-date in memory (Shared)
OR Dirty in exactly one cache (Modified)
OR Not in any caches
[0 Each cache block is in one state (track these):
Shared : block can be read
OR Modified : cache has only copy, its writeable, and dirty
OR Invalid : block contains no data/ or data is not up-to-date

45 Lund University / EITF20/ Liang Liu

Example Protocol: snooping

$ $ $

I/0O devices

Memory

46 Lund University / EITF20/ Liang Liu

Example Protocol: snooping

Rd A
S
3 A $ $

: No A No A No A
RAA] |

] |

A I/0O devices

Memory

47 Lund University / EITF20/ Liang Liu

Example Protocol: snooping

Rd A Rd A
S S
8 A $ $ $ A
\ No A No A
RAdA | | Rd A
I A I/O devices

Memory

48 Lund University / EITF20/ Liang Liu

49

Example Protocol: snooping

Memory

Rd A Wr A Rd A
S M S—|
8 A $ $ A $ A
I
L wra
I/O devices

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

Rd A Wr A Rd A
Rd A
@ @ \?/dr ::\ P3 P4
S| M—S S—|
g A | $ 3 A $ A
] S]
RAdA | _ |
I Wr Back |
v A I/O devices
Memory

50 Lund University / EITF20/ Liang Liu

51

Conclusion

] “End” of uniprocessors speedup => Multiprocessors

] Parallelism challenges: % parallalizable, long latency to
remote memory
[J Centralized vs. distributed memory
Message Passing vs. Shared Address

[J Snooping cache over shared medium for smaller MP by
invalidating other cached copies on write

[0 Sharing cached data = Coherence (values returned by a
read), Consistency (when a written value will be returned by
aread)

Lund University / EITF20/ Liang Liu

Invited lectures & Exercise

[02019-12-12

» Application-specific instruction-set architecture
» Steffen Malkowsky, postdoc, LTH

02019-12-17

» Excercise, memory system
» Mohammad Attari

02019-12-19

» Sven Karlsson, Ericsson Research, Lund
» Al/Machine Learning Processors & Accelerators

52 Lund University / EITF20/ Liang Liu

Exam

] Written exam
. 16" Jan. 8-13,MA 10A/10B, Solvegatan 20

No book

No mobile phones

. Pocket calculator

[’

|
B

- Basic concept i R VESLW 55 TR Al
£ = - 4lsjoang
A ¥ : / Planetariet,i Lund % ; Sty

- Analysis & L A=y /

Y
S
@

Calculation

]]
,!Insmutlonen for
datavetens p

j

|}
i

-EkonS"
vid Lunds U

Maskintekniksektionen
inom TLIH
-

53 Lund University / EITF20/ Liang Liu

