
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part 5.2.1: MultiProcessor

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

2

Lund University / EITF20/ Liang Liu

Reduce hit time 2: Address translation

3

 Processor uses virtual addresses (VA) while caches and

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel

Lund University / EITF20/ Liang Liu

Address translation and TLB

4

Lund University / EITF20/ Liang Liu

Address translation cache and VM

5

Page size = L1 Cache size = 1KB

Directly mapped 256 entries

64B/block

4MB L2 Cache

Lund University / EITF20/ Liang Liu

Page replacement

6

Most important: minimize number of page faults

 Replacement in cache handled by HW

 Replacement in VM handled by SW

Page replacement strategies:

 FIFO – First-In-First-Out

 LRU – Least Recently Used

• Approximation

• Each page has a reference bit that is set on a reference

• The OS periodically resets the reference bits

• When a page needs to be replaced, a page with a reference bit that

is not set is chosen

Lund University / EITF20/ Liang Liu

Write strategy

7

Write back or Write through?

Write back! + dirty bit

Write through is impossible to use:

• Too long access time to disk

• The write buffer would need to be very large

• The I/O system would need an extremely high bandwidth

Lund University / EITF20/ Liang Liu

Page size

8

Larger page size?

 Advantages

• Size of page table =

• More memory can be mapped → reducing TLB misses (# of entries

in TLB is limited)

• More efficient to transfer large pages

 Disadvantages

• More wasted storage, internal fragmentation

• High bandwidth requirement

• Long process start-up times (if the process size is much smaller

than the page size)

Lund University / EITF20/ Liang Liu

Cache vs VM

9

Cache-MM MM-disk

Access time ratio ("speed gap") 1:5 - 1:15 1:10000 - 1:1000000

Hit time 1-2 cycles 40-100 cycles

Hit ratio 0.90-0.99 0.99999-0.9999999

Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001

Miss penalty 10-100 cycles 1M-6M cycles

CPU during block transfer blocking/non-blocking task switching

Block (page) size 16-128 bytes 4Kbytes - 64Kbytes

Implemented in hardware hardware + software

Mapping Direct or set-associative Page table ("fully associative")

Replacement algorithm Not crucial Very important (LRU)

Write policy Many choices Write back

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

10

Lund University / EITF20/ Liang Liu

Memory system overview

11

Lund University / EITF20/ Liang Liu

The memory hierarchy of AMD Opteron

12

 Separate Instr & Data TLB

and Caches

 2-level TLBs
• L1 TLBs fully associative

• L2 TLBs 4 way set associative

 Write buffer (and Victim

cache)

 Way prediction

 Line prediction: prefetch

 hit under 10 misses

 1 MB L2 cache, shared, 16

way set associative, write

back

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

13

Lund University / EITF20/ Liang Liu

Performance of Microprocessor

14

ASIP

Multi-core

Lund University / EITF20/ Liang Liu

Why Parallel Computing

16

 Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

Main Goal

• Improve performance (Execution time or task throughput)

• Execution time of a program governed by Amdahl’s Law

 Other Goals

• Improve dependability: Redundant execution in space

• Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

True and Why?

Lund University / EITF20/ Liang Liu

Power Dissipation

17

Lund University / EITF20/ Liang Liu

Types of Parallelism and How to Exploit Them

18

 Instruction Level Parallelism

• Different instructions within a stream can be executed in parallel

• Pipelining, out-of-order execution, speculative execution, VLIW

 Data Parallelism

• Different pieces of data can be operated on in parallel

• SIMD: Vector processing, array processing (TPU)

 Task Level Parallelism

• Different “tasks/threads” can be executed in parallel

• Multithreading

• Multiprocessing (multi-core)

Lund University / EITF20/ Liang Liu

Flynn’s Taxonomy

19

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector)

Multiple Instruction Single
Data (MISD)

(Streaming processing???)

Multiple Instruction Multiple
Data MIMD

(Clusters, multi-core)

Lund University / EITF20/ Liang Liu

Basics

20

Definition: “A parallel computer is a collection of processing

elements that cooperate and communicate to solve large

problems fast.”

Parallel Architecture =

Computer Architecture + Communication Architecture

 Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

 Physically Distributed-Memory multiprocessor

• Larger number chips and cores

• BW demands  Memory distributed among processors

Lund University / EITF20/ Liang Liu

Multiprocessor Types

21

 Tightly coupled multiprocessors

• Shared global memory address space (via loads and stores)

• Traditional multiprocessing: symmetric multiprocessing (SMP)

• Programming model like uniprocessors (i.e., multitasking

uniprocessor) except

❑Operations on shared data require synchronization

P1

$

interconnection network

$

Pn

Mem Mem

Lund University / EITF20/ Liang Liu

Synchronization problem

22

P1 P2

Initial: V1=0;

. . .

V1=1;

if (V2==0)

V1=0;

else

V1=1;

Initial: V2=0;

. . .

V2=1;

if (V1==0)

V2=0;

else

V2=1;

What are the values for V1 and V2 after execution?

Lund University / EITF20/ Liang Liu

Intel

23

Lund University / EITF20/ Liang Liu

Multiprocessor Types

24

 Loosely coupled multiprocessors

• No shared global memory address space

• Usually programmed via message passing

❑ Explicit calls (send, receive) for communication

• Pro: Cost-effective way to scale Memory bandwidth

❑ If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more complex

• Con: Must change software to take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem

Lund University / EITF20/ Liang Liu

Epiphany-V

25

Lund University / EITF20/ Liang Liu

Interconnection/Network on Chip

26

0 1 2 3

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

BUS P2P

Crossbar

Mesh
Tree

Ring

…

…

…

Lund University / EITF20/ Liang Liu

Speed Up (example)

28

a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation is 1 cycle, no communication cost,

each op can be executed in a different processor

 How fast is this with a single processor?

• Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

Lund University / EITF20/ Liang Liu

Speed Up (example)

29

Single Processor (11 clk)

a4x4 + a3x3 + a2x2 + a1x + a0

Lund University / EITF20/ Liang Liu

Speed Up (example)

30

3 Processors (5 clk, with 2.2x speed up)

a4x4 + a3x3 + a2x2 + a1x + a0

Imbalanced workload

prevents from achiving

3X speed up

Lund University / EITF20/ Liang Liu

Speed Up (example)

31

Optimize for uniprocessor

R= a4x4 + a3x3 + a2x2 + a1x + a0

R= (((a4x + a3)x + a2)x + a1)x + a0

• 8 clk for uniprocessor

• Speed up 8/5=1.6

• What if communication is not free

Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

32

Another challenge is % of program inherently

sequential

Suppose 80X speedup from 100 processors. What

fraction of original program can be sequential?

a. 10%

b. 5%

c. 1%

d. <1%

Lund University / EITF20/ Liang Liu

Amdahl’s Law Answers

33

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1

1
 Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

enhanced

enhanced
enhanced

overall

==

−=

=+−

+−

=

+−

=

Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

34

 The third challenge is long latency to remote memory

 Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all local

accesses hit memory hierarchy and base CPI is 0.5. (Remote

access = 200/0.5 = 400 clock cycles.)

 What is performance impact if 0.2% instructions involve remote

access (comparing to no communication cost)?

a. 1.5X

b. 2.0X

c. 2.5X

Lund University / EITF20/ Liang Liu

CPI Equation

35

CPI = Base CPI +

Remote request rate x Remote request cost

CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication cost is 1.3/0.5 or 2.6 faster than

0.2% instructions involving local access

Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

36

 Synchronization: Operations manipulating shared data

cannot be parallelized

• Communication: Tasks may need values from each other

 Load Imbalance: Parallel tasks may have different lengths

• Due to imperfect parallelization or micro-architectural effects

• Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware

resources, delaying each other

• Replicating all resources (e.g., memory) expensive

Lund University / EITF20/ Liang Liu

Challenges of Parallel Processing

37

 Application parallelism  primarily via new algorithms that

have better parallel performance

 Long remote latency impact  both by architect and by the

programmer

• For example, reduce frequency of remote accesses either by

• Caching shared data (HW)

• Restructuring the data layout to make more accesses local (SW)

 Today’s lecture on HW to help latency via caches

Lund University / EITF20/ Liang Liu

Symmetric Shared-Memory Architectures

38

 Caches both

• Private data are used by a single processor (migration)

• Shared data are used by multiple processors (replication)

 Caching shared data

 reduces latency to shared data, memory bandwidth for

shared data, and interconnect bandwidth

 reduce contention (read by multiple processors

simultaneously)

 cache coherence problem

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

MultiProcessor

 Cache Coherence

 Summary

39

Lund University / EITF20/ Liang Liu

Cache Coherence Problem (example)

40

 Processors see different values for u after event 3

 With write back caches, value written back to memory depends on

cache miss rate or when to writes back value

 Write through caches get up-to-date copy from memory

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Lund University / EITF20/ Liang Liu

2 Classes of Cache Coherence Protocols

41

 Tracking the state of any sharing of a data block

 Directory based — Sharing status of a block of physical

memory is kept in just one location, the directory

 Snooping — Every cache with a copy of data also has a

copy of sharing status of block, but no centralized state is

kept

• All caches are accessible via some broadcast medium (a bus)

• All cache controllers monitor on the medium to determine the action

needed

Lund University / EITF20/ Liang Liu

Snoopy Cache-Coherence Protocols

42

 Cache Controller “snoops” all transactions on the shared

medium (bus)

• relevant transaction if for a block it contains

• take action to ensure coherence

• invalidate, shared, or exclusive/modified

 Depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or

update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Lund University / EITF20/ Liang Liu

Example: Write-thru Invalidate

43

 Must invalidate before step 3

 Write update uses more broadcast medium BW

 all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

Lund University / EITF20/ Liang Liu

Example Write Back Snoopy Protocol

45

 Invalidation protocol, write-back cache

• Snoops every address on bus

• If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access

 Each memory block is in one state:

• Clean in all caches and up-to-date in memory (Shared)

• OR Dirty in exactly one cache (Modified)

• OR Not in any caches

 Each cache block is in one state (track these):

• Shared : block can be read

• OR Modified : cache has only copy, its writeable, and dirty

• OR Invalid : block contains no data/ or data is not up-to-date

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

46

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

47

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

No A No A No A
A

S

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

48

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

A

Rd A

Rd A

S

No A No A
A

S

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

49

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

Wr A

A
MI I

Rd A

Wr A

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

50

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

A
MI I

Rd A

Wr A

Rd A

Rd A

S

S

Wr Back

Lund University / EITF20/ Liang Liu

Conclusion

51

 “End” of uniprocessors speedup => Multiprocessors

 Parallelism challenges: % parallalizable, long latency to

remote memory

 Centralized vs. distributed memory

• Message Passing vs. Shared Address

 Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write

 Sharing cached data  Coherence (values returned by a

read), Consistency (when a written value will be returned by

a read)

Lund University / EITF20/ Liang Liu

Invited lectures & Exercise

52

2019-12-12

➢ Application-specific instruction-set architecture

➢ Steffen Malkowsky, postdoc, LTH

2019-12-17

➢ Excercise, memory system

➢ Mohammad Attari

2019-12-19

➢ Sven Karlsson, Ericsson Research, Lund

➢ AI/Machine Learning Processors & Accelerators

Lund University / EITF20/ Liang Liu

Exam

53

Written exam

• 16th Jan. 8-13,MA 10A/10B, Sölvegatan 20

• No book

• No mobile phones

• Pocket calculator

• Basic concept

• Analysis

• Case study

• Calculation

