
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part4.1.1: Cache - 1

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

Lectures Next Week

 2018-11-27: Exercise I

 2018-11-29: No Lecture

2

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

3

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

4

Lund University / EITF20/ Liang Liu

CPU performance equation

5

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

7

Lund University / EITF20/ Liang Liu

Intel core i7 chip

8

Lund University / EITF20/ Liang Liu

Memory in early days

9

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM

IBM Card Capacitor ROS (360)
IBM Balanced
Capacitor ROS (1968)

Punched paper tape, instruction
stream in Harvard Mk 1 (1950s)

it can print lists or statements at 1,100 lines a

minute, it can read paper tape at 1,000

characters a second

Lund University / EITF20/ Liang Liu12

Lund University / EITF20/ Liang Liu

Core Memory

13

 Core memory was first large scale reliable main memory

 Invented by Forrester in late 40s/early 50s at MIT for

Whirlwind project

 Bits stored as magnetization polarity on small ferrite cores

threaded onto two-dimensional grid of wires

 Robust, non-volatile storage

 Used on space shuttle computers

 Core access time ~ 1ms

http://royal.pingdom.com/2008/04/08/the-history-of-

computer-data-storage-in-pictures/

Lund University / EITF20/ Liang Liu

Semiconductor Memory: Register, SRAM,

DRAM

14

Register (DFF) Cell (16T)

DRAM Cell (1T)SRAM Cell (6T)

Lund University / EITF20/ Liang Liu

Memory Classification

Picture from Embedded Systems Design: A Unified Hardware/Software Introduction

15

Lund University / EITF20/ Liang Liu

Semiconductor memory

16

First 32nm NAND Flash memory, 2009, Toshiba

First 32nm CPU released, 2010, Intel Core i3

Lund University / EITF20/ Liang Liu

Semiconductor memory

17

First 22-nm SRAMs using Tri-Gate transistors, in Sept.2009

First 22-nm Tri-Gate microprocessor (Ivy Bridge), released in 2013

Lund University / EITF20/ Liang Liu

Themal imaging

18

ASUS motherboard with

an i7 quad core processor

and triple channel

memory.

The stock Intel cooler for

quad core i7 processor

Lund University / EITF20/ Liang Liu

Embedded DRAM

19

Lund University / EITF20/ Liang Liu

Embedded DRAM

20

Lund University / EITF20/ Liang Liu

Meomory design

21

Lund University / EITF20/ Liang Liu

Memory, big fast, cheap

22

Use two “magic” tricks (from architecture)

Make a small memory seem bigger (Without making it

much slower) => virtual memory

Make a slow memory seem faster (Without making it

smaller) => cache memory

Lund University / EITF20/ Liang Liu

Levels of memory hierarchy

24

Lund University / EITF20/ Liang Liu

Similar Concept by Airlines

27

Lund University / EITF20/ Liang Liu

Hierarchy, Heterogeneous

28

Lund University / EITF20/ Liang Liu

Hierarchy, Heterogeneous

29

Lund University / EITF20/ Liang Liu

The motivation

30

 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die

Lund University / EITF20/ Liang Liu

Bandwidth example

31

Assume an “ideal” CPU with no stalls, running at 3 GHz and

capable of issuing 3 instructions (32 bit) per cycle.

Lund University / EITF20/ Liang Liu

Bandwidth example

32

Lund University / EITF20/ Liang Liu

Memory hierarchy functionality

33

 CPU tries to access memory at address A. If A is in the cache,

deliver it directly to the CPU

 If not – transfer a block of memory words, containing A, from the

memory to the cache. Access A in the cache

 If A not present in the memory – transfer a page of memory

blocks, containing A, from disk to the memory, then transfer the

block containing A from memory to cache. Access A in the cache

Lund University / EITF20/ Liang Liu

The principle of locality

34

 A program access a relatively small portion of the

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items

whose addresses are close, tend to be referenced soon

Lund University / EITF20/ Liang Liu

The principle of locality

35

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM
Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Lund University / EITF20/ Liang Liu

The principle of locality

36

Lund University / EITF20/ Liang Liu

Example

37

Lund University / EITF20/ Liang Liu

Cache hierarchy terminology

38

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

39

Lund University / EITF20/ Liang Liu

Cache measures

40

 hit rate = (# of accesses that hit)/(# of accesses)

• Ideal: close to 1

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine

hit/miss

miss penalty: time to replace a block

• measured in ns or # of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty

Lund University / EITF20/ Liang Liu

Four memory hierarchy questions

41

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu

Block placement

42

cache

memory

Lund University / EITF20/ Liang Liu

Block placement

43

 Direct Mapped Cache

• Each memory location can only be mapped to 1 cache location

• No need to make any decision => Current item replaces previous item

in that cache location

 N-way Set Associative Cache

• Each memory location have a choice of N cache locations

 Fully Associative Cache

• Each memory location can be placed in ANY cache location

 Cache miss in a N-way Set Associative or Fully

Associative Cache

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Need to decide which block to throw out!

Lund University / EITF20/ Liang Liu

Which block should be replaced on a Cache miss?

44

 Direct mapped caches don’t need a block replacement

policy

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)

Lund University / EITF20/ Liang Liu

Block identification

45

tag index

Lund University / EITF20/ Liang Liu

Example: 1KB, Direct-Mapped, 32B Blocks

46

 For a 1024 (210) byte cache with 32-byte blocks

• The uppermost 22 = (32 - 10) address bits are the tag

• The lowest 5 address bits are the Byte Select (Block Size = 25)

• The next 5 address bits (bit5 - bit9) are the Cache Index

0431 9

Cache Index

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part

of the cache “state”

Valid Bit

:

0

1

2

3

:

Cache Data

Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

Byte Select

Byte 32

Lund University / EITF20/ Liang Liu

Cache read

47

Reads dominate processor cache accesses and are more

critical to processor performance but write is more

complicated

Lund University / EITF20/ Liang Liu

Cache write (hit)

48

Write through:

• The information is written to both

the block in the cache and to the

block in the lower-level memory

• Is always combined with write

buffers so that the CPU doesn’t

have to wait for the lower level

memory

Write back:

• The information is written only to

the block in the cache

• Copy a modified cache block to

main memory only when replaced

• Is the block clean or modified?

(dirty bit, several write to the same

block)

Write Buffer

Lund University / EITF20/ Liang Liu

On a write miss

49

 Do we allocate a cache block on a write miss?

• Write allocate (allocate a block in the cache)

• No-write allocate (no cache block is allocated. Write is only to main

memory, or next level of hierarchy)

 General (not neccesarily) combination

• A write-back cache uses write allocate, hoping for subsequent writes

(or even reads) to the same location, which is now cached.

• A write-through cache uses no-write allocate. Here, subsequent

writes have no advantage, since they still need to be written directly to

the backing store.

Lund University / EITF20/ Liang Liu

Cache micro-ops sequencing (AMD Opteron)

50

64K bytes in 64-byte blocks

2-way set associative

Address division

Set/block selection

Tag read/Valid bit checking

Hit: Data out

Miss: Signal cache miss;

initiate replacement

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

51

Lund University / EITF20/ Liang Liu

Cache performance

52

Lund University / EITF20/ Liang Liu

Interlude – CPU performance equation

53

Lund University / EITF20/ Liang Liu

Cache performance

54

 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)

Lund University / EITF20/ Liang Liu

Cache performance, example

55

Lund University / EITF20/ Liang Liu

Sources of Cache miss

56

 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache

block with a direct or set-associative address mapping

Lund University / EITF20/ Liang Liu

Miss rate components – 3 C’s

57

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

T
y
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

Lund University / EITF20/ Liang Liu

Miss rate components – 3 C’s

61

 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small

set-associative caches

Miss may move from one to another!

Lund University / EITF20/ Liang Liu

Block size tradeoff

62

 In general, larger block size

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks:
especially for
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

63

Lund University / EITF20/ Liang Liu

Summary

65

 The performance gap

between CPU and memory

is widening

Memory Hierarchy

• Cache level 1

• Cache level ...

• Main memory

• Virtual memory

 Four design issues:

• Block placement

• Block identification

• Block replacement

• Write strategy

Lund University / EITF20/ Liang Liu

Summary

66

 Cache misses increases the CPI for instructions that

access memory

 Three types of misses:

• Compulsory

• Capacity

• Conflict

Main memory performance:

• Latency

• Bandwidth

