
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part4.1.1: Cache - 1

Liang Liu 

liang.liu@eit.lth.se

1



Lund University / EITF20/ Liang Liu

Lectures Next Week

 2018-11-27: Exercise I

 2018-11-29: No Lecture
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 Summary
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Summary pipeline - implementation
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CPU performance equation
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Intel core i7 chip
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Memory in early days
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Punched cards, From early 
1700s through Jaquard Loom, 
Babbage, and then IBM

IBM Card Capacitor ROS (360)
IBM Balanced 
Capacitor ROS (1968)

Punched paper tape, instruction 
stream in Harvard Mk 1 (1950s)

it can print lists or statements at 1,100 lines a 

minute, it can read paper tape at 1,000 

characters a second
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Core Memory
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 Core memory was first large scale reliable main memory

 Invented by Forrester in late 40s/early 50s at MIT for 

Whirlwind project 

 Bits stored as magnetization polarity on small ferrite cores 

threaded onto two-dimensional grid of wires 

 Robust, non-volatile storage

 Used on space shuttle computers 

 Core access time ~ 1ms 

http://royal.pingdom.com/2008/04/08/the-history-of-

computer-data-storage-in-pictures/
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Semiconductor Memory: Register, SRAM, 

DRAM
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Register (DFF) Cell (16T)

DRAM Cell (1T)SRAM Cell (6T)
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Memory Classification

Picture from Embedded Systems Design: A Unified Hardware/Software Introduction
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Semiconductor memory
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First 32nm NAND Flash memory, 2009, Toshiba

First 32nm CPU released, 2010, Intel Core i3
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Semiconductor memory
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First 22-nm SRAMs using Tri-Gate transistors, in Sept.2009

First 22-nm Tri-Gate microprocessor (Ivy Bridge), released in 2013
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Themal imaging
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ASUS motherboard with 

an i7 quad core processor 

and triple channel 

memory.

The stock Intel cooler for 

quad core i7 processor
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Embedded DRAM
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Embedded DRAM
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Meomory design
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Memory, big fast, cheap
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Use two “magic” tricks (from architecture)

Make a small memory seem bigger (Without making it 

much slower) => virtual memory

Make a slow memory seem faster (Without making it 

smaller) => cache memory 
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Levels of memory hierarchy
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Similar Concept by Airlines
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Hierarchy, Heterogeneous
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Hierarchy, Heterogeneous
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The motivation
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 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die
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Bandwidth example
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Assume an “ideal” CPU with no stalls, running at 3 GHz and 

capable of issuing 3 instructions (32 bit) per cycle.
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Bandwidth example
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Memory hierarchy functionality
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 CPU tries to access memory at address A. If A is in the cache, 

deliver it directly to the CPU

 If not – transfer a block of memory words, containing A, from the 

memory to the cache. Access A in the cache

 If A not present in the memory – transfer a page of memory 

blocks, containing A, from disk to the memory, then transfer the 

block containing A from memory to cache. Access A in the cache
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The principle of locality
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 A program access a relatively small portion of the 

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend 

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items 

whose addresses are close, tend to be referenced soon
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The principle of locality
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Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM 
Systems Journal 10(3): 168-192 (1971)
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The principle of locality
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Example
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Cache hierarchy terminology
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Cache measures
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 hit rate = (# of accesses that hit)/(# of accesses)

• Ideal: close to 1

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine 

hit/miss

miss penalty: time to replace a block

• measured in ns or # of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty
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Four memory hierarchy questions
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 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)
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Block placement
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cache

memory
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Block placement
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 Direct Mapped Cache

• Each memory location can only be mapped to 1 cache location

• No need to make any decision => Current item replaces previous item 

in that cache location

 N-way Set Associative Cache

• Each memory location have a choice of N cache locations

 Fully Associative Cache

• Each memory location can be placed in ANY cache location

 Cache miss in a N-way Set Associative or Fully 

Associative Cache

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Need to decide which block to throw out!
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Which block should be replaced on a Cache miss?
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 Direct mapped caches don’t need a block replacement 

policy 

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)
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Block identification
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tag index
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Example: 1KB, Direct-Mapped, 32B Blocks
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 For a 1024 (210) byte cache with 32-byte blocks

• The uppermost 22 = (32 - 10) address bits are the tag

• The lowest 5 address bits are the Byte Select (Block Size = 25)

• The next 5 address bits (bit5 - bit9) are the Cache Index

0431 9

Cache Index

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part

of the cache “state”

Valid Bit

:

0

1

2

3

:

Cache Data

Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

Byte Select

Byte 32
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Cache read
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Reads dominate processor cache accesses and are more 

critical to processor performance but write is more 

complicated
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Cache write (hit) 
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Write through: 

• The information is written to both 

the block in the cache and to the 

block in the lower-level memory

• Is always combined with write 

buffers so that the CPU doesn’t 

have to wait for the lower level 

memory

Write back: 

• The information is written only to 

the block in the cache

• Copy a modified cache block to 

main memory only when replaced

• Is the block clean or modified? 

(dirty bit, several write to the same 

block)

Write Buffer
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On a write miss
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 Do we allocate a cache block on a write miss?

• Write allocate (allocate a block in the cache)

• No-write allocate (no cache block is allocated.  Write is only to main 

memory, or next level of hierarchy)

 General (not neccesarily) combination

• A write-back cache uses write allocate, hoping for subsequent writes 

(or even reads) to the same location, which is now cached.

• A write-through cache uses no-write allocate. Here, subsequent 

writes have no advantage, since they still need to be written directly to 

the backing store.
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Cache micro-ops sequencing (AMD Opteron)
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64K bytes in 64-byte blocks

2-way set associative

Address division

Set/block selection

Tag read/Valid bit checking

Hit: Data out

Miss: Signal cache miss; 

initiate replacement
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Cache performance
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Interlude – CPU performance equation
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Cache performance
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 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)
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Cache performance, example
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Sources of Cache miss
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 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and 

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache 

block with a direct or set-associative address mapping
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Miss rate components – 3 C’s
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Miss rate components – 3 C’s
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 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small 

set-associative caches

Miss may move from one to another!
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Block size tradeoff
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 In general, larger block size 

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill 

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too 

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks: 
especially for 
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size
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Summary
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 The performance gap 

between CPU and memory 

is widening

Memory Hierarchy

• Cache level 1

• Cache level ...

• Main memory

• Virtual memory

 Four design issues:

• Block placement

• Block identification

• Block replacement

• Write strategy
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Summary
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 Cache misses increases the CPI for instructions that 

access memory

 Three types of misses:

• Compulsory

• Capacity

• Conflict

Main memory performance:

• Latency

• Bandwidth


