
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part3.2.1: Pipeline - 3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

Outline

 Dynamic scheduling –Tomasulo

 Exception

 Speculation

What we have done so far (pipeline)

3

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Speculation

 ILP limitations

What we have done so far

4

Lund University / EITF20/ Liang Liu

Tomasulo algorithm

5

Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600

(Scoreboard)

 Goal: High performance without compiler support

Lund University / EITF20/ Liang Liu

Registr renaming

6

 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Or make a link and forward

LD FT, 34(R2)

...

DIVD F10, F0, FT

ADDD F6, F8, F2

LD , 34(R2)

...

DIVD F10, F0,

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu

Scoreboard pipeline

7

 Issue: An instruction is issued if (in order):

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of the

instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution (out of order)

• Notify the scoreboard when ready

 Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR hazards)

Lund University / EITF20/ Liang Liu

Scoreboard example

8

Lund University / EITF20/ Liang Liu

Tomasulo orgnizations (renaming with RS)

9

LD F6, 34(R2)

...

DIVD F10, F0, F6

ADDD F6, F8, F2

LD RS, 34(R2)

...

DIVD F10, F0, RS

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu

Reservation stations

10

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

Lund University / EITF20/ Liang Liu

Three stages of Tomasulo algorithm

11

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operand's values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

❑ Normal Bus: data + destination

❑ Common Data Bus: data + source (snooping)

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 0

12

:Indicates which RS will write each register

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 1

13

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 3

14

Note:

1. Can have multiple

loads

2. Registers names are

removed (“renamed”)

in Reservation

Stations

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 4

15

Note:

1. CDB forwarding

LD1 result to

SUBD

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 5

16

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 7

17

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 10

18

Can we write the

result of ADDD?

Lund University / EITF20/ Liang Liu

Elimation of WAR hazard

19

 ADDD can safely finish before DIVD has read register F6

because:

• DIVD has renamed register F6 to the reservation station

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 11

20

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 16

21

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 57

22

Lund University / EITF20/ Liang Liu

Comparing: Scoreboard example, CP62

23

Lund University / EITF20/ Liang Liu

Tomasulo vs Scoreboard

24

Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)

Lund University / EITF20/ Liang Liu

Outline

25

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Exception

 Speculation

What we have done so far

Lund University / EITF20/ Liang Liu

Solution for simple MIPS

26

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

F D X M W

F D X M W

How to handle exception in OOO ExE?

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

27

Lund University / EITF20/ Liang Liu

Hardware-base speculation

28

 Trying to exploit more ILP (e.g., multiple issue) while

maintaining control dependencies becomes a burden

 Overcome control dependencies

• By speculating on the outcome of branches and executing the program as if

our guesses were correct

• Need to handle incorrect guesses

 Methodologies (combine):

• Dynamic branch prediction: allows instruction scheduling across branches

(choose which instr. to execute)

• Speculation: execute instructions before all control dependencies are

resolved

• Dynamic scheduling: take advantage of ILP (scheduling speculated instr.)

DIVD F10, F0, F6

if (F10=0)

MULT F2, F4, F5

else

ADD F2, F4, F5

Lund University / EITF20/ Liang Liu

Implementing speculation

29

 Key idea

• Allow instructions to execute out of order

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking

an exception) until an instruction commits

 Strategies:

• Must separate bypassing of results among instructions from

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not

commiteed

Lund University / EITF20/ Liang Liu

Tomasulo extended to support speculation

30

Lund University / EITF20/ Liang Liu

ROB (reorder buffer)

31

 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially

replaced by the ROB

Lund University / EITF20/ Liang Liu

Four-step speculation

32

 Issue:

• Get instruction from instruction queue and issue if reservation

station and ROB slots available – sometimes called dispatch

• Send operands or ROB entry # (instead of RS #)

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer

speculative; update register with result (or store to memory) and

remove instr. from ROB;

• handle mis-speculations and precise exceptions

Lund University / EITF20/ Liang Liu

ROB (reorder buffer)

33

 When MUL.D is ready to commit

Lund University / EITF20/ Liang Liu

Four-step speculation

34

 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or

exception): remove all instr. from reorder buffer (flush); restart

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste

computation power & time if wrong)

Lund University / EITF20/ Liang Liu

Sandy bridge microarchitecture

35

Lund University / EITF20/ Liang Liu

Sandy bridge

microarchitecture

36

Lund University / EITF20/ Liang Liu

Basic 5-stage pipeline

37

Lund University / EITF20/ Liang Liu

Pipeline with several FUs

38

Lund University / EITF20/ Liang Liu

Scoreboard pipeline

39

Lund University / EITF20/ Liang Liu

Tomasulo pipeline

40

Lund University / EITF20/ Liang Liu

Tomasulo pipeline with speculation

41

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

42

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

43

Lund University / EITF20/ Liang Liu

CPU performance equation

44

