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Tomasulo algorithm
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Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600 

(Scoreboard)

 Goal: High performance without compiler support
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Registr renaming
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 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Or make a link and forward

LD       FT, 34(R2)

...

DIVD   F10, F0, FT

ADDD F6, F8, F2

LD       , 34(R2)

...

DIVD   F10, F0, 

ADDD F6, F8, F2
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Scoreboard pipeline

7

 Issue: An instruction is issued if (in order):

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of the 

instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution (out of order)

• Notify the scoreboard when ready

 Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR hazards)
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Scoreboard example
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Tomasulo orgnizations (renaming with RS)
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LD       F6, 34(R2)

...

DIVD   F10, F0, F6

ADDD F6, F8, F2

LD       RS, 34(R2)

...

DIVD   F10, F0, RS

ADDD F6, F8, F2
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Reservation stations
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 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source 

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy
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Three stages of Tomasulo algorithm
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 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operand's values or RS point 

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

❑ Normal Bus: data + destination

❑ Common Data Bus: data + source (snooping)
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Tomasulo example, cycle 0
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:Indicates which RS will write each register
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Tomasulo example, cycle 1
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Tomasulo example, cycle 3

14

Note: 

1. Can have multiple 

loads

2. Registers names are 

removed (“renamed”) 

in Reservation 

Stations
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Tomasulo example, cycle 4
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Note: 

1. CDB forwarding 

LD1 result to 

SUBD
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Tomasulo example, cycle 5
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Tomasulo example, cycle 7
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Tomasulo example, cycle 10
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Can we write the 

result of ADDD?
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Elimation of WAR hazard
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 ADDD can safely finish before DIVD has read register F6 

because:

• DIVD has renamed register F6 to the reservation station
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Tomasulo example, cycle 11
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Tomasulo example, cycle 16
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Tomasulo example, cycle 57
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Comparing: Scoreboard example, CP62
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Tomasulo vs Scoreboard 
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Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus 

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation 

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)
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Outline
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Solution for simple MIPS
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Hardware-base speculation
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 Trying to exploit more ILP (e.g., multiple issue) while 

maintaining control dependencies becomes a burden

 Overcome control dependencies 

• By speculating on the outcome of branches and executing the program as if 

our guesses were correct

• Need to handle incorrect guesses

 Methodologies (combine):

• Dynamic branch prediction: allows instruction scheduling across branches 

(choose which instr. to execute)

• Speculation: execute instructions before all control dependencies are 

resolved 

• Dynamic scheduling: take advantage of ILP (scheduling speculated instr.)

DIVD   F10, F0, F6

if (F10=0)

MULT  F2,  F4, F5

else

ADD    F2,  F4, F5
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Implementing speculation
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 Key idea

• Allow instructions to execute out of order 

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking 

an exception) until an instruction commits 

 Strategies:

• Must separate bypassing of results among instructions from 

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction 

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not 

commiteed
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Tomasulo extended to support speculation
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ROB (reorder buffer)
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 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially

replaced by the ROB
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Four-step speculation
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 Issue:

• Get instruction from instruction queue and issue if reservation 

station and ROB slots available – sometimes called dispatch 

• Send operands or ROB entry # (instead of RS #)

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB 

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer 

speculative; update register with result (or store to memory) and 

remove instr. from ROB; 

• handle mis-speculations and precise exceptions
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ROB (reorder buffer)
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 When MUL.D is ready to commit
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Four-step speculation
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 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or 

exception): remove all instr. from reorder buffer (flush); restart 

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste 

computation power & time if wrong)
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Sandy bridge microarchitecture
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Sandy bridge 

microarchitecture
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Basic 5-stage pipeline
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Pipeline with several FUs
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Scoreboard pipeline
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Tomasulo pipeline
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Tomasulo pipeline with speculation
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Summary pipeline - implementation
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Summary pipeline - implementation
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CPU performance equation
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