
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part3.2.1: Pipeline - 3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

Outline

 Dynamic scheduling –Tomasulo

 Exception

 Speculation

What we have done so far (pipeline)

3

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Speculation

 ILP limitations

What we have done so far

4

Lund University / EITF20/ Liang Liu

Tomasulo algorithm

5

Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600

(Scoreboard)

 Goal: High performance without compiler support

Lund University / EITF20/ Liang Liu

Registr renaming

6

 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Or make a link and forward

LD FT, 34(R2)

...

DIVD F10, F0, FT

ADDD F6, F8, F2

LD , 34(R2)

...

DIVD F10, F0,

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu

Scoreboard pipeline

7

 Issue: An instruction is issued if (in order):

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of the

instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution (out of order)

• Notify the scoreboard when ready

 Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR hazards)

Lund University / EITF20/ Liang Liu

Scoreboard example

8

Lund University / EITF20/ Liang Liu

Tomasulo orgnizations (renaming with RS)

9

LD F6, 34(R2)

...

DIVD F10, F0, F6

ADDD F6, F8, F2

LD RS, 34(R2)

...

DIVD F10, F0, RS

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu

Reservation stations

10

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

Lund University / EITF20/ Liang Liu

Three stages of Tomasulo algorithm

11

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operand's values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

❑ Normal Bus: data + destination

❑ Common Data Bus: data + source (snooping)

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 0

12

:Indicates which RS will write each register

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 1

13

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 3

14

Note:

1. Can have multiple

loads

2. Registers names are

removed (“renamed”)

in Reservation

Stations

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 4

15

Note:

1. CDB forwarding

LD1 result to

SUBD

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 5

16

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 7

17

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 10

18

Can we write the

result of ADDD?

Lund University / EITF20/ Liang Liu

Elimation of WAR hazard

19

 ADDD can safely finish before DIVD has read register F6

because:

• DIVD has renamed register F6 to the reservation station

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 11

20

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 16

21

Lund University / EITF20/ Liang Liu

Tomasulo example, cycle 57

22

Lund University / EITF20/ Liang Liu

Comparing: Scoreboard example, CP62

23

Lund University / EITF20/ Liang Liu

Tomasulo vs Scoreboard

24

Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)

Lund University / EITF20/ Liang Liu

Outline

25

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Exception

 Speculation

What we have done so far

Lund University / EITF20/ Liang Liu

Solution for simple MIPS

26

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

F D X M W

F D X M W

How to handle exception in OOO ExE?

Lund University / EITF20/ Liang Liu

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

27

Lund University / EITF20/ Liang Liu

Hardware-base speculation

28

 Trying to exploit more ILP (e.g., multiple issue) while

maintaining control dependencies becomes a burden

 Overcome control dependencies

• By speculating on the outcome of branches and executing the program as if

our guesses were correct

• Need to handle incorrect guesses

 Methodologies (combine):

• Dynamic branch prediction: allows instruction scheduling across branches

(choose which instr. to execute)

• Speculation: execute instructions before all control dependencies are

resolved

• Dynamic scheduling: take advantage of ILP (scheduling speculated instr.)

DIVD F10, F0, F6

if (F10=0)

MULT F2, F4, F5

else

ADD F2, F4, F5

Lund University / EITF20/ Liang Liu

Implementing speculation

29

 Key idea

• Allow instructions to execute out of order

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking

an exception) until an instruction commits

 Strategies:

• Must separate bypassing of results among instructions from

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not

commiteed

Lund University / EITF20/ Liang Liu

Tomasulo extended to support speculation

30

Lund University / EITF20/ Liang Liu

ROB (reorder buffer)

31

 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially

replaced by the ROB

Lund University / EITF20/ Liang Liu

Four-step speculation

32

 Issue:

• Get instruction from instruction queue and issue if reservation

station and ROB slots available – sometimes called dispatch

• Send operands or ROB entry # (instead of RS #)

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer

speculative; update register with result (or store to memory) and

remove instr. from ROB;

• handle mis-speculations and precise exceptions

Lund University / EITF20/ Liang Liu

ROB (reorder buffer)

33

 When MUL.D is ready to commit

Lund University / EITF20/ Liang Liu

Four-step speculation

34

 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or

exception): remove all instr. from reorder buffer (flush); restart

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste

computation power & time if wrong)

Lund University / EITF20/ Liang Liu

Sandy bridge microarchitecture

35

Lund University / EITF20/ Liang Liu

Sandy bridge

microarchitecture

36

Lund University / EITF20/ Liang Liu

Basic 5-stage pipeline

37

Lund University / EITF20/ Liang Liu

Pipeline with several FUs

38

Lund University / EITF20/ Liang Liu

Scoreboard pipeline

39

Lund University / EITF20/ Liang Liu

Tomasulo pipeline

40

Lund University / EITF20/ Liang Liu

Tomasulo pipeline with speculation

41

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

42

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

43

Lund University / EITF20/ Liang Liu

CPU performance equation

44

